biofilm mechanics

17
A Combined Experimental and Numerical Study of Biofilm Detachment Presented by: Ashkan Safari Supervisors: Prof. Alojz Ivankovic Prof. Eoin Casey 1 "Biofilms are responsible for over 80% of microbial infections in the bodyβ€œ (US National Institutes of Health)

Upload: ashkan-safari

Post on 16-Apr-2017

168 views

Category:

Science


0 download

TRANSCRIPT

A Combined Experimental and Numerical Study of Biofilm Detachment

Presented by: Ashkan Safari

Supervisors: Prof. Alojz Ivankovic

Prof. Eoin Casey

1

"Biofilms are responsible for over 80% of

microbial infections in the bodyβ€œ (US National Institutes of Health)

The big picture

2

Undefined Compression

AFM Retraction

Adhesive Joint Failure Test

FV simulation (OpenFOAM)

Mode I Mode II

CZM: Max & GIC

E(t)

Biofilm Mechanics, What We Know?

3

β€’ A composite material: cells, EPS, and micro (and macroscale) voids.

β€’ Biofilm detachment: increase in external forces or decrease in interface forces.

β€’ Heterogeneous structure in time and space,

β€’ A combined advanced microscopy methods & various modes of loadings.

β€’ Mechanically heterogeneous, throughout thickness and on the surface.

β€’ Isotropic or anisotropic?

β€’ Strain rate dependency of mechanical properties.

β€’ Viscoelastic fluid or viscoelastic solid?

β€’ Burger model, Standard linear solid and generalised Maxwell models (No spring).

β€’ Ductile Failure behaviour.

Ductile failure

Liquid fraction? Viscoelastic solid

He, Y., et al. (2013), ." PLoS One 8(5): e63750 Aggarwal, S. and R. M. Hozalski

(2010). Biofouling 26(4): 479-486Wilking, J. N., et al., (2011). MRS Bulletin 36(05): 385-391.

This Study: Goals & Methods Used

4

Biofilm maturation, more EPS….β€’ Defining the linear viscoelastic behaviour

β€’ Prony series & Hereditary integral form

β€’ Comparing different test methods at micro and macroscale levels

β€’ Evaluation of elastic modulus at macroscale level:

β€’ Mechanical heterogeneity: Indentation & multiple Hertz model fitting

β€’ Adhesion effect: Retraction and JKR-based method

β€’ Evaluation of failure at biofilm-glass interface under bulk mechanical loads

β€’ CZM applicability for mode I and II interfacial separation

β€’ AFM retraction analysis for a pure adhesive separation

β€’ CZM-base FSI for biofilm detachment under fluid shear stress

Undefined mixed culture mature

biofilm from wastewater system

v

Realistic intact biofilm structureBiofilm sample in this study

𝐸 𝑑 = 𝐸0 + 𝑖=1

𝑀

𝐸𝑖𝑒 βˆ’(𝑑 πœπ‘–

𝜎 𝑑 =

0

𝑑

𝐸 𝑑 βˆ’ 𝜏 π‘‘νœ€(𝜏

π‘‘π‘‘π‘‘πœ

Creep & Stress Relaxation : Rheometry of Different Biofilm Samples

5

Stress Relaxation: Compression vs. Rheometry

6

AB

C

A B C

πΈπ‘π‘œπ‘›π‘‘

𝐸=

1 + 3𝜐1 βˆ’ 𝜐1 + 𝜐

𝑆2

1 + 3𝜐 1 βˆ’ 2𝜐 𝑆2 πΈπ‘π‘œπ‘›π‘‘ =1.8E

𝜐 =0.46

*Williams, J. G. and C. Gamonpilas (2008). International Journal of Solids and Structures 45(16): 4448-4459.

S= π‘Ž β„Ž = 1.6

Compressive Relaxation: Effect of Change in Loading Velocity

7

AFM Indentation and Retraction: Hertz vs. JKR

Distance

Contact line X=0-X

+X

Indentation

Retraction

β€’ Initial nonlinear part due to EPS,

β€’ Variation in EPS, different indentation depths,

β€’ Hertz model used, but better to use JKR,

β€’ Structural/mechanical homogeneity throughout depth,

β€’ Higher indentation, stiffer biofilm due to void closure.

Ξ”

Padh

𝐸 =βˆ’3π‘ƒπ‘Žπ‘‘β„Ž

𝑅

3 βˆ†π›Ώ

1 + 4 βˆ’2 3

βˆ’ 3 2

𝐹 =𝐸

1 βˆ’ 𝜈2

π‘Ž2 + 𝑅2

2𝑙𝑛

𝑅 + π‘Ž

𝑅 βˆ’ π‘Žβˆ’ π‘Žπ‘… ; 𝛿 =

π‘Ž

2𝑙𝑛

𝑅 + π‘Ž

𝑅 βˆ’ π‘Ž

8

Hertz model Simplified JKR based displacement*

*Grunlan, J. C., X. Xia, D. Rowenhorst and W. W. Gerberich (2001). "Preparation and evaluation of tungsten tips relative to diamond for nanoindentation of soft

materials." Review of Scientific Instruments 72(6): 2804-2810.

Finite Volume Numerical Method - Linear Viscoelastic Model

9

Finite Volume Discretization in OpenFOAM

πœ•

πœ•π‘‘

𝑉

πœŒπ΅πœ‘ 𝑑𝑉 +

𝑆

πœŒπ΅πœ‘π’—. 𝒏 𝑑𝑆

=

𝑆

πœ‘π‘”π‘Ÿπ‘Žπ‘‘πœ™. 𝒏 𝑑𝑆 +

𝑉

π‘žπœ™π‘‰ 𝑑𝑉

Continuum mechanics formulations

πœ•

πœ•π‘‘

𝑉

πœŒπ΅πœ‘ 𝑑𝑉 +

𝑆

πœŒπ΅πœ‘π’—. 𝒏 𝑑𝑆 =

𝑆

πœžπœ‘π‘”π‘Ÿπ‘Žπ‘‘πœ™. 𝒏 𝑑𝑆 +

𝑉

π’’πœ™π‘‰ 𝑑𝑉

πœ•πœŒπ΅πœ‘

πœ•π‘‘+ 𝛻. πœŒπ΅πœ‘π’— = 𝛻. πœžπœ‘π›»πœ‘ + π’’πœ‘π‘‰

πœ•πœŒ

πœ•π‘‘+ 𝛻. πœŒπ’— = 0

πœ•πœŒπ‘£

πœ•π‘‘+ 𝛻. πœŒπ’—π’— = 𝛻. 𝜎

𝝈 𝑑 = 0

𝑑

2πœ‡(𝑑 βˆ’ 𝜏 π›ΏπœΊ(𝜏

π›Ώπœπ‘‘π‘‘ + 𝑰

0

𝑑

πœ† 𝑑 βˆ’ 𝜏 π‘‘π‘Ÿ π›ΏπœΊ(𝜏

π›Ώπœπ‘‘π‘‘

π›Ώπˆ 𝑑 = 2πœ‡ 𝑑 βˆ’ 𝜏 π›ΏπœΊ 𝜏 + πœ† 𝑑 βˆ’ 𝜏 π‘‘π‘Ÿπ›ΏπœΊ 𝜏 𝑰

π›ΏπœΊ 𝜏 =1

2𝛻𝛿𝒖 𝜏 + 𝛻𝛿𝒖 𝜏 𝑇

π΅πœ‘=1

π΅πœ‘= 𝒗

β€’ Total work of adhesion vs. pure interfacial separation energy

β€’ Dissimilar bimaterial stress distribution

β€’ Local stress concentration at the free interface edge

β€’ CZM for interfacial crack

Biofilm-Glass Dissimilar Bimaterial Failure: Cohesive Zone Model

10

π‘Šπ‘Žπ‘‘β„Ž = βˆ†π›Ύ(1 + πœ‘

𝐺𝑐 = 0

𝛿𝑐

𝜎. 𝑑𝛿

Interface stress distribution

(/E ratio)

CZM

Homogeneous cohesive crack

Interfacial crack

Experimental Evaluation of Biofilm-glass Interfacial Separation

11

A B

A

B

C

D

C D

Mode I interfacial failure

A B C D

A

B

C

D

Mode II interfacial failure

Separation Energy & Maximum Traction – JKR Contact Model

12

Padh

𝑅03 =

3

4

6πœ‹π‘…2βˆ†π›Ύ

𝐸𝑅𝑝𝑓 = 0.63𝑅0

𝐴𝑝𝑓 = πœ‹π‘…π‘π‘“2

πœŽπ‘ π‘’π‘π‘Žπ‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› =π‘ƒπ‘Žπ‘‘β„Ž

π΄π‘π‘“π‘ƒπ‘Žπ‘‘β„Ž = βˆ’

3

2βˆ†π›Ύπœ‹π‘…

β€’ Cohesive or adhesive pull-off force?

β€’ Microscale separation energy from AFM retraction 4 orders of magnitude smaller than total failure energy (bulk butt joint test)

average= 66.6 Pa

Numerical Prediction of Mode I and II Separation Initiation

13

B

Material Properties Value

Prony Coefficients

E0, E1 (Pa) 339.6, 100.2

t1, (sec) 8.58

Density, (kg/m3) 1000

Poisson’s Ratio, (-) 0.46

CZM Properties Value

Mode I Maximum Traction (Pa) 205

Mode I Separation Energy (mJ/m2) 0.033

Mode II Maximum Traction (Pa) 150

Mode II Separation Energy (mJ/m2) 0.033

B

average= 59.2 Pa

Biofilm: /E=0.001 Pa-1 (E=1 kPa & =0.46)

Glass: /E=5x10-12 Pa-1 (E=50 GPa & =0.25)

FSI Study of Biofilm Detachment under Fluid Shear Stress

*Walter, M., et al., (2013). "Detachment characteristics of a mixed culture biofilm using particle size analysis." Chemical Engineering Journal 228(0): 1140-1147.

** Abe, Y. (2012). "Cohesiveness and hydrodynamic properties of young drinking water biofilms." water research 46, 1155-1166. 14

β€’ Shear Induced Detachment Test in Flow Cell: Particle Size Analysis*:

β€’ Frequency of sloughing/average size of particles (>5.0 ΞΌm2) increased significantly at WSS above 0.04Pa (at 18 mm/s)

β€’ FSI Simulation: Partitioned FSI approach: one-way coupling.

β€’ Mode II CZM/ Dugdale type

β€’ WSS of 0.04 Pa assumed as Max,

β€’ of less than 0.00001 mJ/m2 by Inverse method (critical= 0.25 m).

β€’ Hydrodynamic shear stress is 3 orders of magnitude lower than mechanically

measured value (global versus local properties).**

𝝈 = βˆ’π‘π‘° + 2πœ‡ 𝜺

𝜺 =1

2[𝛻𝒗 𝜏 + 𝛻𝒗 𝜏 𝑇]

Solve Fluid

Fixed Solid

Solve Solid

𝒗=𝒅𝒖

𝑑π‘₯

𝑷

FSI Simulation Results

15

At the highest flow velocity of 18 mm/s

water flow water flow

Just above the flow velocity of 2 mm/s

Conclusions

16

β€’ Mature wastewater biofilm generally have a low elastic modulus.

β€’ Mechanical properties of this mature biofilm do not depend on the mode of loading applied.

β€’ Compressive elastic modulus of biofilm could be an overestimated (a bonded compression)

β€’ Strain rate dependency of elastic modulus (at intermediate range).

β€’ Viscoelastic solid behaviour described by Generalised Maxwell Model with a free spring.

β€’ At microscale level, biofilm is considered mechanically inhomogeneous.

β€’ significant influence of adhesion forces on the elastic properties.

β€’ Macroscale adhesive joint failure evaluation methods as useful methods in order to investigate the interfacial failure for biofilms.

β€’ Cohesive Zone Model can be used as a reliable approach to predict the separation initiation at the crack tip zone at the microscale level.

β€’ Interfacial crack initiates due to a local stress concentration at dissimilar biofilm-glass interface edge.

β€’ AFM retraction curve analysis as a useful method to obtain CZM parameters.

β€’ Biofilm-glass interfacial failure energy is mainly associated with the bulk biofilm deformation than pure separation energy at the interface.

β€’ The measured hydrodynamic separation stress (at global scale) and separation energy are found to be 4 orders of magnitude lower than

mechanically measured values by AFM (at local scale), giving a similar crack opening critical distance for both scales of testing.

β€’ Uneven biofilm surface on the surface may lead to earlier detachment events due to an increase in shear stress at the localised areas.

β€’ Individual biofilm aggregate can detach at earlier stage than a large carpet-like biofilm due to the local stress zone at biofilm-substrate interface.

Publications

17

Conference Publications

β€’ Safari. A., Casey, E. and Ivankovic, A (2007) A fluid-structure interaction approach to the investigation of detachment from bacterial biofilms. Proceedings of 13th

Annual Conference Bioengineering in Ireland.

‒ Safari, A., Ivanković, A. and Tuković, Z (2008) Numerical Modelling of Viscoelastic Response of Bacterial Biofilm to Mechanical Stress. 14th Annual Conference

Proceedings of Bioengineering in Ireland.

β€’ Safari, A., Walter, M., Casey, E., Ivankovic, A (2008) A two-phase flow model of biofilm detachment. Proceedings of the 31st Annual Meeting of the Adhesion Society,

Austin, USA.

‒ Safari, A., Ivanković, A. and Tuković, Z (2008) Numerical Modelling of Fluid-Biofilm. Proceeding of 8th World Congress on Computational Mechanics (WCCM8),

Venice, Italy.

β€’ Safari. A., Ivankovic, A., Tukovic, Z (2009) Numerical modelling of viscoelastic response of biofilm to fluid flow stress. Proceedings of 6th International Congress of

Croatian Society of Mechanics (ICCSM), Dubrovnik, Croatia.

β€’ Safari. A., Tukovic, Z., Casey, E., Ivankovic, A (2013) Cohesive Zone Modelling of Biofilm-Glass Interfacial Failure, Joint Symposium of Irish Mechanics Society &

Irish Society for Scientific & Engineering Computation, Dublin, Ireland.

Journal Publications

β€’ Safari, A, Habimana, O, Allen, A, Casey, E (2014) The significance of calcium ions on Pseudomonas fluorescens biofilms: a structural, and mechanical study.

Biofouling, 30 :859-869.

β€’ Walter, M., Safari, A., Ivankovic, A., Casey, E (2013) Detachment characteristics of a mixed culture biofilm using particle size analysis. Chemical Engineering

Journal, 228 :1140-1147.

Submitted Journal Publications

β€’ Safari. A., Tukovic, Z., Walter, M., Casey, E., Ivankovic, A (Expected in 2015) Mechanical Properties of a Mature Biofilm from a Wastewater System - From

Microscale to Macroscale Level. For peer review in Biofouling.

β€’ Safari. A., Tukovic, Z., Cardiff, Ph., Walter, M., Casey, E., Ivankovic, A (Expected in 2015) Investigation of the Interfacial Separation of a Mixed Culture

Mature Biofilm from a Glass Surface – A Combined Experimental and Cohesive Zone Modelling Study. For peer review in Biotechnology and Bioengineering.