beyond the kalman filter: …read.pudn.com/downloads92/doc/360333/beyond the kalman...beyond the...

47
Beyond the Kalman Filter: Particle filters for tracking applications N. J. Gordon Tracking and Sensor Fusion Group Intelligence, Surveillance and Reconnaissance Division Defence Science and Technology Organisation PO Box 1500, Edinburgh, SA 5111, AUSTRALIA. [email protected] N.J. Gordon : Lake Louise : October 2003 – p. 1/47

Upload: others

Post on 18-Apr-2020

43 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Beyond the Kalman Filter:

Particle filters for tracking applications

N. J. Gordon

Tracking and Sensor Fusion Group

Intelligence, Surveillance and Reconnaissance Division

Defence Science and Technology Organisation

PO Box 1500, Edinburgh, SA 5111, AUSTRALIA.

[email protected]

N.J. Gordon : Lake Louise : October 2003 – p. 1/47

Page 2: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Contents

– General PF discussion

– History

– Review

– Tracking applications

– Sonobuoy

– TBD

– DBZ

N.J. Gordon : Lake Louise : October 2003 – p. 2/47

Page 3: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

What is tracking?

– Use models of the real world to

– estimate the past and present

– predict the future

– Achieved by extracting underlying information from

sequence of noisy/uncertain observations

– Perform inference on-line

– Evaluate evolving sequence of probability distributions

N.J. Gordon : Lake Louise : October 2003 – p. 3/47

Page 4: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Recursive filter

System model

xt = ft(xt`1; ›t) $ p (xt xt`1)

Measurement model

yt = ht(xt ; �t) $ p (yt xt)

Information available

y1:t = (y1; : : : ; yt)

p(x0)

Want

p (x0:t+i y1:t)

and especially

p (xt y1:t)

N.J. Gordon : Lake Louise : October 2003 – p. 4/47

Page 5: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Recursive filter

Prediction

p (xt y1:t`1) =∫

p (xt xt`1) p (xt`1 y1:t`1) dxt`1

Update

p (xt y1:t) =p (yt xt) p (xt y1:t`1)

p (yt y1:t`1)

p (yt y1:t`1) =∫

p (yt xt) p (xt y1:t`1) dxt

Alternatively ...

p (x0:t y1:t) = p (x0:t`1 y1:t`1)p (yt xt) p (xt xt`1)

p (yt y1:t`1)

p (xt y1:t) =

p (x0:t y1:t) dx0:t`1

N.J. Gordon : Lake Louise : October 2003 – p. 5/47

Page 6: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Tracking : what are the problems?

– On-line processing

– Target manoeuvres

– Missing measurements

– Spurious measurements

– Multiple objects and/or sensors

– Finite sensor resolution

– Prior constraints

– Signature information

Nonlinear/non-Gaussian models

N.J. Gordon : Lake Louise : October 2003 – p. 6/47

Page 7: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Analytic approximations

– EKF and variants : linearisation, Gaussian approx,

unimodal

– Score function moment approximation : Masreliez (75),

West (81), Fahrmeir (92), Pericchi, Smith (92)

– Series based approximation to score functions : Wu,

Cheng (92)

N.J. Gordon : Lake Louise : October 2003 – p. 7/47

Page 8: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Numerical approximations

– Discrete grid: Pole, West (88)

– Piecewise pdf: Kitagawa (87), Kramer, Sorenson (88)

– Series expansion: Sorenson, Stubberud (68)

– Gaussian mixtures: Sorenson, Alspach (72), West (92)

– Unscented filter: Julier, Uhlman (95)

N.J. Gordon : Lake Louise : October 2003 – p. 8/47

Page 9: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Monte Carlo Approximations

– Sequential Importance Sampling (SIS): Handschin &

Mayne, Automatica, 1969.

– Improved SIS: Zaritskii et al., Automation and Remote

Control, 1975.

– Rao-Blackwellisation: Akashi & Kumamoto,

Automatica, 1977...

) Too computationally demanding 20-30 years ago

N.J. Gordon : Lake Louise : October 2003 – p. 9/47

Page 10: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Sequential Monte Carlo (SMC)

– SMC methods lead to estimate of the completeprobability distribution

– Approximation centred on the pdf rather thancompromising the state space model

– Known as Particle filters, SIR filters, bootstrapfilters, Monte Carlo filters, Condensation etc

N.J. Gordon : Lake Louise : October 2003 – p. 10/47

Page 11: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Why random samples?

– nonlinear/non-Gaussian

– whole pdf

– moments/quantiles

– HPD interval

– re-parameterisation

– constraints

– association hypotheses

independent over time

– multiple models trivial

– scalable - how big is1

– parallelisable

N.J. Gordon : Lake Louise : October 2003 – p. 11/47

Page 12: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Comparison

Kalman filter

– analytic solution

– restrictive assumptions

– deduce state from

measurement

– KF “optimal”

– EKF “sub-optimal”

Particle filter

– sequential MC solution

– based on simulation

– no modelling

restrictions

– predicts measurements

from states

– optimal (with 1 compu-

tational resources)

N.J. Gordon : Lake Louise : October 2003 – p. 12/47

Page 13: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

•Book Advert

Sequential Monte Carlo methods in practice

Editors: Doucet, de Freitas, Gordon

Springer-Verlag (2001)

– Theoretical Foundations

– Efficiency Measures

– Applications :

– Target tracking, missile guidance, image tracking, terrain referenced

navigation, exchange rate prediction, portfolio allocation, in-situ

ellipsometry, pollution monitoring, communications and audio engineering.

N.J. Gordon : Lake Louise : October 2003 – p. 13/47

Page 14: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Useful Information

Books

– “Sequential Monte Carlo methods in practice”, Doucet, de Freitas, Gordon,

Springer, 2001.

– “Monte Carlo strategies in scientific computing”, Liu, Springer, 2001.

– “Beyond the Kalman filter : Tracking applications of particle filters”, Ristic,

Arulampalam, Gordon, Artech House, 2003?

Papers

– “On sequential Monte Carlo sampling methods for Bayesian filtering”,

Statistics in Computing, Vol 10, No 3, pgs 197-208, 2000.

– IEEE Trans. Signal Processing special issue, February 2002.

Web site

– www.cs.ubc.ca/ nando/smc/index.html (includes software)

N.J. Gordon : Lake Louise : October 2003 – p. 14/47

Page 15: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Particle Filter

– Represent uncertainty over x1:t using diversity of weighted particles

{

x i1:t ; wit

}N

i=1

– Ideally:

x i1:t ‰ p(x1:t j y1:t) =p(x1:t ; y1:t)

p(y1:t)

where

p(y1:t) =

p(x1:t ; y1:t)dx1:t

– What if we can’t sample p(x1:t j y1:t)?

N.J. Gordon : Lake Louise : October 2003 – p. 15/47

Page 16: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Particle Filter - Importance Sampling

– Sample from a convenient proposal distribution q(x1:t j y1:t)

– Use importance sampling to modify weights

p(x1:t j y1:t)f (x1:t)dx1:t =∫p(x1:t j y1:t)q(x1:t j y1:t)

q(x1:t j y1:t)f (x1:t)dx1:t

ıN∑

i=1

w it f (xi1:t)

where

x i1:t ‰q(x1:t j y1:t)

w it =p(x1:t j y1:t)q(x1:t j y1:t)

N.J. Gordon : Lake Louise : October 2003 – p. 16/47

Page 17: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Particle Filter - Importance Sampling

– Pick a convenient proposal

– Define the un-normalised weight:

~w it =p(x1:t ; y1:t)

q(x1:t j y1:t)

– Can then calculate approximation to p(y1:t)

p(y1:t) ıN∑

i=1

~w it

– Normalised weight is

w it =p(x1:t j y1:t)q(x1:t j y1:t)

=p(x1:t ; y1:t)

q(x1:t j y1:t)1

p(y1:t)=

~w it∑Ni=1 ~w

it

N.J. Gordon : Lake Louise : October 2003 – p. 17/47

Page 18: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Particle Filter - SIS

– To perform Sequential Importance Sampling, SIS

q(x1:t j y1:t) , q(x1:t`1 j y1:t`1)︸ ︷︷ ︸

Keep existing path

q(xt j xt`1; yt)︸ ︷︷ ︸

Extend path

– The un-normalised weight then takes the appealing form

~w it =p(x i1:t ; yt j y1:t`1)q(x i1:t j y1:t)

=p(x i1:t`1 j y1:t`1)q(x i1:t`1 j y1:t`1)

p(x it ; yt j x i1:t`1)q(x it j x it`1; yt)

=w it`1p(yt j x it`1)p(x it j x it`1)q(x it j x it`1; yt)

︸ ︷︷ ︸

Incremental weight

N.J. Gordon : Lake Louise : October 2003 – p. 18/47

Page 19: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Illustration of SIS

N.J. Gordon : Lake Louise : October 2003 – p. 19/47

Page 20: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Illustration of SIS - data conflict

N.J. Gordon : Lake Louise : October 2003 – p. 20/47

Page 21: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

SIS

Problem : Whatever the importance function, degeneracy is observed (Kong, Liu and Wong

1994).

– Introduce a selection scheme to discard/multiply particles x i0:t with respectively

high/low importance weights

– Resampling maps the weighted random measure (x i0:t ; wt) onto the equally

weighted random measure (x i0:t ; N`1)

– Scheme generatesNi children such that∑Ni=1 Ni = N and satisfies

E(Ni ) = Nwik

N.J. Gordon : Lake Louise : October 2003 – p. 21/47

Page 22: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Illustration of SIR

N.J. Gordon : Lake Louise : October 2003 – p. 22/47

Page 23: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Illustration of SIR

N.J. Gordon : Lake Louise : October 2003 – p. 23/47

Page 24: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Ingredients for Particle filter

– Importance sampling function

– Prior p(xt j x(i)t`1)

– Optimal p(xt j x(i)t`1; yt)

– UKF, linearised EKF, : : :

– Redistribution scheme

– Multinomial

– Deterministic

– Residual

– Stratified

– Careful initialisation procedure (for efficiency)

N.J. Gordon : Lake Louise : October 2003 – p. 24/47

Page 25: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Improvements to SIR

To alleviate degeneracy problems many other methods have been proposed

– Local linearisation (Doucet, 1998; Pitt & Shephard, 1999) using the EKF to estimate

the importance distribution or UKF (Doucet et al, 1999)

– Rejection methods (Müller, 1991; Hürzeler & Künsch, 1998; Doucet, 1998; Pitt &

Shephard, 1999)

– Auxiliary particle filters (Pitt & Shephard, 1999)

– Kernel smoothing (Gordon, 1993; Liu & West, 2000; Musso et al, 2000)

– MCMC methods (Müller, 1992; Gordon & Whitby, 1995; Berzuini et al, 1997; Gilks &

Berzuini, 1999; Andrieu et al, 1999)

– Bridging densities : (Clapp & Godsill, 1999)

N.J. Gordon : Lake Louise : October 2003 – p. 25/47

Page 26: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Auxiliary SIR - ASIR

– Introduced by Pitt and Shephard 1999.

– Use importance sampling function q(xt ; i j y1:t)

– Auxiliary variable i refers to index of particle at time t ` 1

– Importance distribution chosen to satisfy

q(xt ; i j y1:t) / p(yt j—it)p(xt j x it`1)w it`1

– —it is some characterisation of xt given x it`1– eg, —it = E(xt j x it`1) or —it ‰ p(xt j x it`1)

– This gives

w jt / w ij

t`1p(yt j x jt )p(x

jt j x i

j

t`1)

q(x jt ; ij j y1:t)

=p(yt j x jt )p(yt j—i jt )

N.J. Gordon : Lake Louise : October 2003 – p. 26/47

Page 27: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

ASIR

– Naturally uses points at t ` 1 which are “close” to

measurement yt

– If process noise is small then ASIR less sensitive to

outliers than SIR

– This is because single point —it characterises

p(xt j xt`1) well

– But if process noise is large then ASIR can degrade

performance

– Since a single point —it does not characterise

p(xt j xt`1)

N.J. Gordon : Lake Louise : October 2003 – p. 27/47

Page 28: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Regularised PF - RPF

– Resampling introduced to reduce degeneracy

– But, also reduces diversity

– RPF proposed as a solution

– Uses continuous Kernel based approximation

p̂(x1:t j y1:t) ı

N∑

i=1

w itKh(xt ` x

it

)

N.J. Gordon : Lake Louise : October 2003 – p. 28/47

Page 29: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

•RPF

N.J. Gordon : Lake Louise : October 2003 – p. 29/47

Page 30: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

•RPF

– Kernel K(.) and bandwidth h chosen to minimise MISE

MISE(p̂) = E[∫ fp̂(xt j y1:t)` p(xt j y1:t)g2 dxt]– For equally weighted samples, optimal choice is Epanechnikov kernel

Kopt =

nx+22cnx(1` k x k2) if k x k< 1

0 otherwise

– Optimal bandwidth can be obtained as a function of underlying pdf

– Assume this is Gaussian with unit covariance matrix

hopt =[8N(nx + 4)(2

pı)nx c`1nx

]1=(nx+4)

N.J. Gordon : Lake Louise : October 2003 – p. 30/47

Page 31: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

MCMC Moves

– RPF moves are blind

– Instead, introduce Metropolis style acceptance step

– Resampled xRk and created xR1:k ={

xRk ; xR1:k`1

}

– Resampled xRk and then sampled from a proposal distribution

xPk ‰ q(: j xRk ) and created xP1:k ={

xPk ; xR1:k`1

}

– Assume q(: j :) symmetric

x1:k =

xP1:k with probability ¸

xR1:k otherwise

¸ =min

(

1;p(xP1:k j y1:k)q(xRk j xPk ))p(xR1:k j y1:k)q(xPk j xRk )

)

=min

(

1;p(yk j xPk )p(xPk j xRk`1)p(yk j xRk )p(xRk j xRk`1)

)

N.J. Gordon : Lake Louise : October 2003 – p. 31/47

Page 32: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Tracking dim targets

– Detection and tracking of low SNR targets - better not to threshold the sensor data !

– The concept: track-before-detect

– Conventional TBD approaches:

- Hough transform (Carlson et al, 1994)

- dynamic programming (Barniv, 1990; Arnold et al, 1993)

- maximum likelihood (Tonissen, 1994)

– The performance improved by 3-5 dB in comparison to the MHT (thresholded data).

N.J. Gordon : Lake Louise : October 2003 – p. 32/47

Page 33: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Recursive Bayesian TBD

– Drawbacks of conventional TBD approaches: batch processing; prohibit or

penalise deviations from the straight line motion; require enormous computational

resources.

– A recursive Bayesian TBD (Salmond, 2001), implemented as a particle filter

– no need to store/process multiple scans

– target motion - stochastic dynamic equation

– valid for non-gaussian and structured background noise

– the effect of point spread function, finite resolution, unknown and

fluctuating SNR are accommodated

– target presence and absence explicitly modelled

– Run Demo

N.J. Gordon : Lake Louise : October 2003 – p. 33/47

Page 34: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Mathematical formulation

– Target state vector

xk = [xk _xk yk _yk Ik ]T :

– State dynamics:

xk+1 = fk(xk ; vk);

– Target existence - two state Markov chain, Ek 2 f0; 1g

with TPM

˝ =

1` Pb Pb

Pd 1` Pd

:

N.J. Gordon : Lake Louise : October 2003 – p. 34/47

Page 35: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Mathematical formulation (Cont’d)

– Sensor model: 2D map, image of a region ´x ˆ ´y .

– At each resolution cell (i ; j) measured intensity:

z(i ;j)k =

h(i ;j)k (xk) + w

(i ;j)k if target present

w(i ;j)k if target absent

where

h(i ;j)k (xk) ı

´x´y Ik2ı˚2

exp

{

`(i´x ` xk)

2 + (j´y ` yk)2

2˚2

}

N.J. Gordon : Lake Louise : October 2003 – p. 35/47

Page 36: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

•Example

– 30 frames and target present in 7 to 22

– SNR = 6.7 dB (unknown)

– 20ˆ 20 cells

Frame 2

Frame 7

Frame 12

Frame 17

Frame 22

Frame 27

N.J. Gordon : Lake Louise : October 2003 – p. 36/47

Page 37: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Particle filter output (6 states)

Figures suppressed to reduce file size.

N.J. Gordon : Lake Louise : October 2003 – p. 37/47

Page 38: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Particle filter output (6 states)

5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FRAME NUMBER

PR

OB

AB

ILIT

Y

0 2 4 6 8 10 12 142

4

6

8

10

12

14

16

x

y

TRUE PATHESTIMATED

START

N.J. Gordon : Lake Louise : October 2003 – p. 38/47

Page 39: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

PF based TBD - Performance

– Derived CRLBs (as a function of SNR)

– Compared PF-TBD to CRLBs

– Detection and Tracking reliable at 5 dB (or higher)

N.J. Gordon : Lake Louise : October 2003 – p. 39/47

Page 40: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Sonobuoy and Submarine

– Noisy bearing measurements from drifting sensors

– Uncertainty in sensor locations

– Sensor loss

– High proportion of spurious bearing measurements

– Run demo

N.J. Gordon : Lake Louise : October 2003 – p. 40/47

Page 41: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Blind Doppler

– Blind Doppler zone to to filter out ground clutter +

ground moving targets

– A simple EP measure against any CW or pulse Doppler

radar

– Causes track loss

– Aided by on-board RWR or ESM

N.J. Gordon : Lake Louise : October 2003 – p. 41/47

Page 42: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Tracking with hard constraints

– Prior information on sensor constraints

– Posterior pdf is truncated (non-Gaussian)

– Example :

– 2-D tracking with CV model

– (r; „; _r) measurements

– pd < 1

– EKF and Particle Filter with identical gating and

track scoring

N.J. Gordon : Lake Louise : October 2003 – p. 42/47

Page 43: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

•EKF

−15 −10 −5 0 5 10 15

0

10

20

30

40

50

X [km]

Y [k

m]

(a)

0 50 100 150

0

0.2

0.4

0.6

0.8

1

T I M E [s]

Tra

ck S

core

(c)

0 50 100 150

−800

−600

−400

−200

0

200

400

T I M E [s]

Ran

ge−

Rat

e [k

m/h

]

(b)

TRACKLOSS

N.J. Gordon : Lake Louise : October 2003 – p. 43/47

Page 44: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Particle Filter

−10 0 10

0

10

20

30

40

50

X [km]

Y [k

m]

(a)

0 50 100 150

−800

−600

−400

−200

0

200

400

T I M E [s]

Ran

ge−

Rat

e [k

m/h

]

(b)

0 50 100 150

0

0.2

0.4

0.6

0.8

1

T I M E [s]

Tra

ck S

core

(c)

CLOUD OF PARTICLESAT t=108 s

N.J. Gordon : Lake Louise : October 2003 – p. 44/47

Page 45: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Track continuity

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

Doppler blind zone limit [km/h]

Pro

babi

lity

of T

rack

Mai

nten

ance

PF EKF

T=2s

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

Doppler blind zone limit [km/h]

Pro

babi

lity

of T

rack

Mai

nten

ance

PF EKF

T=4s

N.J. Gordon : Lake Louise : October 2003 – p. 45/47

Page 46: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Problems hindering SMC

– Convergence results

– Becoming available (Del Moral, Crisan, Chopin, Lyons, Doucet ...)

– Communication bandwidth

– Large particle sets impossible to send

– Interoperability

– Need to integrate with varied tracking algorithms

– Computation

– Expensive so look to minimise Monte Carlo

– Multi-target problems

– Rao-Blackwellisation

N.J. Gordon : Lake Louise : October 2003 – p. 46/47

Page 47: Beyond the Kalman Filter: …read.pudn.com/downloads92/doc/360333/Beyond the Kalman...Beyond the Kalman Filter: Particlefiltersfortrackingapplications N. J. Gordon Tracking and Sensor

Final comments

– Sequential Monte Carlo methods

– “Optimal” filtering for nonlinear/non Gaussian

models

– Flexible/Parallelizable

– Not a black-box: efficiency depends on careful

design.

– If the Kalman filter is appropriate for your application

use it

– A Kalman filter is a (one) particle filter

N.J. Gordon : Lake Louise : October 2003 – p. 47/47