behavioural+foundations+forthe+ two2fluid+model+users.monash.edu/~mpetn/files/talks/dixit.pdf ·...

19
BEHAVIOURAL FOUNDATIONS FOR THE TWOFLUID MODEL Vinayak V. Dixit School of Civil and Environmental Engineering University of New South Wales

Upload: others

Post on 24-Dec-2019

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

BEHAVIOURAL  FOUNDATIONS  FOR  THE  TWO-­‐FLUID  MODEL  

Vinayak V. Dixit School of Civil and Environmental Engineering

University of New South Wales

Page 2: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

The  Two-­‐Fluid  Model  The   two-­‐fluid   model   describes  the   relaDonship   between   the  running  Dme  per  mile  and  travel  Dme  per  mile   of   a   vehicle   in   an  urban  network.      This  model  was  developed  based  on   ‘parDcle   physics’   and   lacked  the  understanding  of  behavioral  significance.  

( )11 1

nm r

nn n

m

v v f

T T Tr + +

=

=Stop time, Ts (min/km)

Page 3: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

The  Two-­‐Fluid  Model  Two-­‐fluid  model  has  been  used  to  characterize:    

–  Traffic  flow  on  urban  networks.      [Herman  and  Prigogine  (1971),  Ardekani  (1984)].    

–  Traffic  flow  on  urban  arterials.      [Jones  and  Wahid  (2003)]  

–  Individual  driver  behavior,      [Herman,  Malakhoff  and  Ardekani  (1988)]  

 –  Safety      [Dixit  et  al.  (2009)]  

Page 4: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

MoDvaDon:  Two-­‐Fluid  Model  

(Herman  et  al.,  1988)  

Weather  Effects  

Time  of  Day  Effects  

Dixit,  V.,  Gayah,  V.,  and  Radwan,  E.  (2012).  ”Comparison  of  Driver  Behavior  by  Time  of  Day  and  Wet  Pavement  CondiDons.”  J.  Transp.  Eng.,  138(8),  1023–1029.  

Page 5: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

CorrelaDon  •  NegaDve  correlaDon  between  Tm  and  n  •  As  n  increases  the  correlaDon  with  

crash  severity  increases.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rate of No-InjuryCrashes

Rate of Possible InjuryCrashes

Rate of Non-Incapicitating Injury

Crashes

Rate of Severe Crashes

Severity of Crash

Cor

rela

tion

with

n

Page 6: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Risk  of  Driving  

Descrip4ve  Psychological  Theories  Task  difficulty  Homeostasis-­‐  Risk  Homeostatsis  

Page 7: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Individual  Driving  Behavior  

•  Driving  can  be  described  in  the  form  of  a  state-­‐dependent  approach.    – S  =  {crash,  no  crash}.    

•  The  uDlity  of  being  in  state  “no  crash”  is  associated  to  reaching  the  desDnaDon  as  quickly  as  possible.    

•  The  (dis)uDlity  of  being  in  the  state  “crash”  is  the  associated  to  severity  of  the  crash.      

Page 8: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Model  AssumpDons  

•  Perceived  Probability  of  Crashing                 "↓$%&'ℎ =*(,/,↓%  )↑0   –  Conforms  with  Empirical  Findings  by  Elvik  et  al.  (2004)    

•  DisuDlity  of  crashing  –  Related  to  perceived  severity  (kineDc  energy)  

•  UDlity  of  Not  Crashing  –  Travelling  faster  

( ) ( )ku crash w vr= −

( ) u no crash v=

Page 9: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Expected  UDlity  For  A  Driver  

Where

( ) ( ) EU P u no crash P u crashno crash crash= × + ×

(1 ) ( )kEU f v f w vr r rβ β

α α= − −

( ) ( ) ( )(1 ) ( )kEU v v v w v vr rβ β β β

α α− −

= − −

vfr

vr=

Page 10: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

UDlity  MaximizaDon  of  Driver  ( ) ( ) ( )1 1 1

( ) ( ) 0EU k

v v k w v vr rvr

β β β βαβ α β

∂ − − + − −= − − =

∂ 11 1

1 ( ) 11

kk

k w k kv vr

ββ

−⎛ ⎞

⎛ ⎞ ⎜ ⎟⎛ ⎞− ⎛ ⎞−⇒ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎜ ⎟⎝ ⎠

Solution exists if k β>

PcrashP v vr rcrash

β∂= −

( )( )u crash k

u crash v vr r

∂=

The marginal rate of change for the perceived disutility

is larger than

the marginal rate of change for the perceived probability to crash.

Page 11: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Gulf Coast Center for Evacuation and Transportation Resiliency

UDlity  MaximizaDon  of  Driver  

1(1 )

ndT w n n wmdn n n

β

β β

−− + −

⇒ =⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

11( 1 ) 1

nn nn n w nT Tr nββ

⎛ ⎞ +⎛ ⎞+ − +⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(1 )n

n n wTm

n

β

β

+ −⇒ =

⎛ ⎞⎜ ⎟⎝ ⎠

In order to get the form of the traditional two-fluid model. To ensure k>1 Substitute k=(n+1)/n

11 1

nn nT T Tr m+ +=

Comparing:

Tm and n are negatively correlated

Page 12: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

RelaDonship  Between  Tm  and  n  

•  Using  Data  from  1983,  1990  and  1991  from  the  ciDes  of  Dallas,  Forth  Worth,  Arlington,  AusDn,  Lubbock,  Houston,  San  Antonio,  Albuquerque,  Mexico  City  and  Matamoros.  (Ardekani,  1981)  

•  Tm  and  n  have  a  nega4ve  correla4on  of  -­‐0.47  

•  Test  validity  of     ( )1 1 1n w

T wm nβ β= + −

⎛ ⎞⎜ ⎟⎝ ⎠

Page 13: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Empirical    ValidaDon  Urban  Network  Data  

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(Tm

)(1/n

)

1/n

Page 14: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Effect  of  Network  Features  

k=0.75-­‐1.169  (fraction  of  one-­‐way)+0.147  (#Lanes)        +0.005  (Intersection  Density)+0.502  (density  of  actuated  signals) R2=0.58

severity  factor  (k)  

crash  likelihood  factor  (0)  β=1.075-­‐0.295  (fraction  of  one-­‐way) @↓A↑ 1/B    =( 2.081/1.075−0.295 C↓2    )( B+1/B  )−2.081                                                                  R2=0.89

Page 15: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Two-­‐Fluid  Model  Arterials  

0

1

2

3

4

5

6

7

0 1 2 3 4 5

Ts (Stopped Time/Mile)

SR 50 West of SR434

SR 50 (SR434-SR436)

SR 50 East of SR434

SR 426 SR 551

SR 436 (South Section)

SR 434

SR 436 (North Section)

T (T

rave

l Tim

e/M

ile)

Page 16: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

(Tm) (1/n) = 0.6276 (1/n) + 0.3566 R² = 0.92

0

0.2

0.4

0.6

0.8

1

1.2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

(Tm) 1/

n

1/n

Arterial  Data  (Weak  Evidence)  

k=-­‐2793.56  (total  crash  rate)  +  5.35            R2=0.60 @↓A↑1/B  =1.476(B+1/B )−1.83                                            R2=0.92

Page 17: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Physics  of  Traffic  Flow  

•  Models  based  on  physics  of  parDcles  and  fluid  – Finng  models  from  fluid  dynamics  and  parDcle  physics  to  explain  traffic  behavior  

– Useful  for  engineering    

•  Models  based  on  explicitly  assuming  behavior  (risk  antudes  and  UDlity  Models)  – Enhances  understanding  for  safety  

Page 18: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Example:  Fundamental  Diagram  

Story  of  the  hare  and  slugs  –  Hares  are  aggressive  and  maintain  

shorter  gaps  and  therefore  greater  flows  –  In  congesDon,  flows  are  constrained    

Flow

Density

TRADITIONAL  THEORY  

Flow

Density

OBSERVED  

Banks,  James  H.;  Amin,  Mohammad  R.;  Cassidy,  Michael;  Chung,  Koohong    “ValidaDon  of  Daganzo's  Behavioral  Theory  of  MulD-­‐Lane  Traffic  Flow”  California  Partners  for  Advanced  Transit  and  Highways  (PATH),  UC  Berkley  Final  Report,  2003  

Dominance  of  physics  of  traffic,  with  systemaDc  addiDon  of  behavioural  parameters    

Page 19: BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+users.monash.edu/~mpetn/files/talks/Dixit.pdf · BEHAVIOURAL+FOUNDATIONS+FORTHE+ TWO2FLUID+MODEL+ Vinayak V. Dixit School of Civil

Conclusion  •  This  study  puts  the  two-­‐fluid  model  from  a  behavioral  

perspecDve.    •  The  condiDon  that  k>  β  is  a  necessary  condiDon  for  the  two-­‐

fluid  model  to  exist.  –  On  freeways  this  might  not  exist  (the  perceived  probability  to  crash  

might  increase  at  a  larger  rate  than  the  perceived  uDlity  to  crash.)    •  EvaluaDon  of  training  and  educaDonal  programs  for  new  

drivers.  •  The  two-­‐fluid  model  can  be  used  on  corridors  to  evaluate  

safety.    •  The  uDlity  model  has  the  potenDal  of  being  used  to  engineer  

human  driving  behavior.  (IncenDves,  disincenDves  and  Insurance)