beam orientation optimization for intensity modulated ...home.ustc.edu.cn/~qingling/pdf/xun...

24
Xun Jia [email protected] 7/10/12 Beam Orientation Optimization for Intensity Modulated Radiation Therapy using L 21 Minimization

Upload: ngodan

Post on 12-Jul-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

Xun Jia [email protected]

7/10/12

Beam Orientation Optimization for Intensity Modulated Radiation Therapy

using L21 Minimization

+Outline

2

l  Introduction to Radiation Therapy

l  Motivation of Beam Orientation Optimization (BOO)

l  BOO

l  Model and Rationale

l  Algorithm

l  Validation

l  Conclusions

+Radiotherapy

3

l  Medical applications of radiation for cancer treatment l  Discovery of x-ray in 1895 l  First cancer treatment in US in 1896 l  First treatment in MV linear accelerator in 1957 l  Nowadays, ~2/3 of cancer patients receive radiation

therapy as part of their cancer treatment l  Mechanism

l  Damaging the DNA of cancerous cells l  Objectives

l  Deliver a prescribed amount of dose to cancerous target l  Spare radiation dose to surrounding organs First medical X-ray by Wilhelm

Röntgen of his wife's hand

A TrueBeam linear accelerator First patient treated in a MV linear accelerator

+Linear Accelerator

4

l  A linear accelerator (Linac) produces high energy radiation beams for the treatment

l  Flexible geometry allows the free placement of beam angles l  Multi-leaf Collimator (MLC)

l  To shape the beam and form a fluence map

+IMRT

l  Intensity Modulated Radiation Therapy l  A few beam angels are selected l  A (non-flat) fluence map is delivered at each beam angle l  Conformed dose distribution to target l  Sparing dose to critical organs by beam angle selection and

fluence map modulation

5

+Mathematical View

6

l  Discretize fluence maps into beamlets l  Discretize 3D patient body into voxels

l  T --- target, C --- critical organs l  Dose deposition matrix D

l  Di,j,θ: the dose to the voxel i from the beamlet j at angle θ at unit intensity

l  Patient-specific, determined by physical interactions l  Dose calculation: sum the contributions from all beamlets

{xj,✓}

zi =X

j2s✓,✓2⇥

Di,j,✓xj,✓

i 2 T

[C

+

l  Optimization problem: l  Determine the values of a set of treatment parameters, such that the

dose distribution z agrees with the prescription dose p

l  Objective function l  Designed for various considerations l  A typical (and simple) one

Mathematical View

0 20 40 60 800

500

1000

1500

2000

DoseE

7

Ei[zi] = ↵i max(0, zi − pi)2

i 2 C

Ei[zi] = ↵i max(0, zi − pi)2 + βi max(0, pi − zi)

2i 2 T

E =X

i2TS

C

Ei[zi]

+

l  Dose Volume Histogram: l  To summarize 3D dose distributions in a graphical 2D format l  A organ-specific curve V(z) --- at least V% of the organ receives a

dose level of z

l  Ideal DVH curves l  In reality…

DVH 8

V (z) = 1Z z

0

dz0 p(z0)

+Beam Orientation Optimization

9

l  Motivation for BOO l  IMRT optimization

l  Find fluence maps at a certain angles for a good treatment plan

l  At what angles?

+ 10

l  Notations l  Fluence map l  Dose deposition matrix l  Dose distribution

l  Find a small set of angles for a good plan

l  Available approaches l  Trial-and-error l  Enumeration l  Geometry consideration l  Ranking method l  …

BOO

⇥ = argmin⇥⇥minxj,✓

E[z] s.t. ✓ 2 ⇥, xj,✓ ≥ 0⇤

zi =X

j2s✓,✓2⇥

Di,j,✓xj,✓

xj,✓

Di,j,✓

+Model

11

l  The idea of sparsity l  Find a solution that has only a few non-zero elements, such that… l  For BOO, select only a few beam angles among all candidates l  Sparsity only at the beam angle level

l  Dosimetric objective

l  BOO objective

l  Optimization model

EDose =X

i

↵i[max(0, pi zi(x))]2 + βi[max(0, zi(x) pi)]

2

EAngle =X

µ✓[X

j

(xj,✓)2]1/2

x = argminxµEDose + EAngle

+L21 Norm

12

l  For a beamlet vector

l  Define L21 norm

l  Minimization of an L21 norm leads to sparsity only at beam angle level, while treating all beamlets in an angle equally

2x

3x

o

1x

x = (x1,1, x2,1, x3,1, . . . x1,2, x2,2, . . . )

|x|2,1 =X

[X

j

(xj,✓)2]1/2

1x

2x

3x

o

1x

2x

3x

o

+Algorithm

13

l  Optimalily condition

l  Split

l  Algorithm

0 2 µ

@EDose

@x

+@EAngle

@x

0 2 x− g − λµ

@EDose

@x

0 2 x− g + λ

@EAngle

@x

g = x λµ

@EDose

@x

x = argmin1

2|x g|22 + EAnglex

✓ = g

✓ max(1 µ✓

|g✓|2, 0)

+Algorithm

14

l  Varying µθ

l  A heuristic method to speed up the convergence

0

2000

4000

6000

8000

||xθ ||2

θ  (deg ree)

  ||x θ||2

0 50 100 150 200 250 300 3500

2

4

6

µ θ

 

 µθ

large |x✓|2 ! more likely a good angle ! small µ✓

Only compare to its neighbors

EAngle =X

µ✓[X

j

(xj,✓)2]1/2 =

X

µ✓|x✓|2

1. locate two nearby beams ✓+ and ✓with non vanishing |x✓|2

2. find A = max[|x✓|2, |x✓+ |2, |x✓ |2]

3. compute µ✓ = exp[( |x✓|2A 1)]

+Algorithm

15

l  Summary of algorithm l  Sparsify fluence map:

l  Adjust weighting factor

l  Count the number of beam angles; if more than desired, go back to the first step

g = x λµ

@EDose

@x

x

✓ = g

✓ max(1 µ✓

|g✓|2, 0)

µ✓ = exp[( |x✓|2A 1)]

+Iteration Process

16

0 500 1000 1500

1x104

2x104

850 900 950 1000 1050

4000

4800

5600 (a )

 

 

E

S tep

 EDos e

 

 EAng le

 

 E

l  Objective function value

+Iteration Process

17

0.0

4.0x102

8.0x102

(e)(d)(c )

-

-

-

||xθ ||

2

(b)

0.0

2.0x103

4.0x103

--

-

-

0 .0

5.0x103

1.0x104

---

-

0 .0

5.0x103

1.0x104

- -

-

0 100 200 300

1.0

2.0

3.0 (f)

-

-

µ θ

θ-(deg ree)

(g )

0 100 200 300

1.0

2.0

3.0-

-

θ-(deg ree)

0 100 200 300

1.0

2.0

3.0

-

-

θ-(deg ree)

0 100 200 300

1.0

2.0

3.0 (i)(h)-

- -

θ-(deg ree)

+Results

18

l  A prostate case

0 20 40 60 800

20

40

60

80

100    P T V    R ec tum    B ladder    F emora l  

           head(s )

S olid:  B O OD as h:  E quiangula r  

 

Vol

ume  

(%)

D os e  (G y)

+Results

19

l  A head-and-neck case

0 40 800

20

40

60

80

100    P T V 1    P T V 2      L S G    R S G    MAN    R P G    B S

S olid:  B O OD as h:  E quiangula r

 

 

Vo

lum

e  (

%)

D os e  (G y)

+Varying Beam Angles

20

l  Equiangular plans with various starting angles

l  BOO plans are always better than non-BOO plans

l  Gain of using more angels become diminishing

5 6 7 8 9 10 11

1200

1400

1600

1800

2000  B O O  equiangula r  beams  

                 with  s ta rting                    ang le  a t  0 o

 

 

EFMO

Dos

e

NA

l  Perform FMO based on given angles and compare the resulting objective function value

+Objective Function Values

21

l  Summary of FMO objective function values in all cases

!! !!

Case

5 6 7 8 9

P1 3218/4655 [4655-6004]

3026/6343 [4705-6699]

2966/4052 [3761-4473]

2725/4966 [4054-4966]

2610/3766 [3766-3511]

P2 2098/2268 [2133-2524]

2023/2070 [2070-2879]

1824/1934 [1861-1949]

1812/2009 [1916-2012]

1703/1864 [1714-1893]

P3 1541/1981 [1554-1981]

1404/1669 [1669-1948]

1308/1379 [1379-1569]

1255/1621 [1410-1621]

1244/1412 [1272-1424]

P4 1946/2446 [1930-2446]

1919/2002 [2002-2250]

1815/1874 [1845-2035]

1799/2017 [1972-2042]

1627/1816 [1691-1939]

P5 2289/2689

[2391-2834] 2111/2576

[2433-2815] 1963/2140

[2132-2250] 1956/2353

[2188-2373] 1938/2130

[2003-2188]

H1 191/185 [185-240]

163/238 [237-265]

157/181 [163-181]

155/189 [172-201]

144/152 [148-168]

+Discussions

22

l  L21 VS L11 norms

1x

2x

3x

o 2x

3x

o

1x

0 20 40 60 800

20

40

60

80

100    P T V    R ec tum    B ladder    F emora l  

           head(s )

S olid:  l2,1  norm

D as h:  l1  norm

 

 

Volum

e  (%

)

D os e  (G y)

E[x] =X

X

i

|x✓i |

E[x] =X

[X

i

(x✓i )

2]1/2

+Conclusion

23

l  Beam Orientation Optimization

l  It can be approximately solved by an L21 minimization

approach and the problem is convex

l  We developed an efficient algorithm to solve the optimization

problem

l  We have validated this approach in patient cases

l  L21 is a good approximation to the BOO problem

+Acknowledgement

24

l  Collaborators on this project l  Dr. Steve B. Jiang, UCSD l  Dr. Chunhua Men, Elekta l  Dr. Yifei Lou, UCLA

l  Many other collaborators l  The whole CART group