basic proteins of mouse ova and blastocysts

2
646 Specialia EXPERIENTIA 26/6 period. The cells affected could be those which were at the S-stage at the time of treatment. The uptake of DNA precursor, H3-thymidine, measured in terms of number of silver grain formation, is suggestive that at a comparable concentration NMU is more effective in inhibiting DNA synthesis (Table III). It is also evident Table III. Pattern of incorporation Treatment No. of No. of Mean No. of Labelling slides cells silver grains as % per nucleus 9 of con trol Control 4 65 32.06 100 (Ha-thymidine in distilled water) MNG 0.1% 2 25 12.28 38.3 MNG 0.2% 4 50 7.66 23.8 NMU 0.2% 4 70 5.60 17.4 Mean calculated after deduction of background incorporation. that DNA synthesis when compared to normal control is significantly reduced though not completely inhibited. The major portion of the chromosomal damage and the reduction in mitotic activities are present in those cells which were at synthetic stage of DNA replication at the time of treatment. DNA is considered to be the most sensi- tive material to alkylation within the cell and a primary site for alkylation 8,9. Chromosomal aberrations observed in the cells belonging to G2 stage could be independent of DNA synthesis or, alternatively, DNA here is quantita- tively or qualitatively different I~ The effect of these chemicals appears to be similar to that of ionizing radia- tion. Their ability to induce chromosomal changes could partly be due to their capacity to alter the state and pro- perties of DNA, but still the exact mechanism by which the aberrations are induced is not clearly understood 11. Zusammen/assung. Mit Nitrosemethylurethan und Nitroseguanidin behandelte keimende Gerstensamen zeigten eine auffallend geringere MitoseaktivitAt, chromo- somale Abweichungen, nichtverz6gerte Effekte und Ab- nahme der DNA-Synthese. Die chromosomale Sch~tdigung scheint vonder DNS-Synthese unabhgtngig zu sein. R. K. I'{ATIYAR, C. S. KALIA and M. P. SINGH Division o/ Genetics, Indian Agricultural Research Institute, New Delhi-12 (India), 5 December 1969. Metaphase showing chromosomal aberrations after 2 h of recovery. 1 B. A. KIHLMAN,Expl. Cell. Res. 20, 657 (1960). 2 T. GICKNER,A. MICHALLIS and R. RIEGER, Biochem. biophy. Res. Commun. 11, 120 (1963). 3 C. J. GRANTand H. HESLOT, Chromosome Today 1, 118 (1964). 4 V. N. SAVIN)M. S. SWAMINATHAN and B. SHARMA, Mutation Res. 6, 101 (1968). 5 C. D. DARLINGTONand L. F. LACouR, The Handling o] Chromo- somes (G. Allen and Unwin Ltd., London 1962). F. D'AMATO,Caryologia l, 327 (1949). 7 F. D'AMATO,Genet. iber. d, 3 (1952). 8 B. A. KIHLMAN, Action o/ Chemicals on Dividing Cells (Prentice Hall Inc. 1966), p. 260. 9 G. P. WHEELER, Cancer Res. 22, 651 (1962). 10 S. BELL and S. WOLFF, Proc. natn. Acad. Sci. USA 51,195 (1964). 11 Acknowledgement. Our thanks are due to Dr. H. K. JhlU, Head of Genetics Division, for his interest in the problem. Basic Proteins of Mouse Ova and Blastocysts We have undertaken a cytochemical study of nuclear and cytoplasmic basic proteins associated with nucleic acids on early mouse embryos, because several lines of evidence point to the precocious beginning of gene activity in this species 1, 2. Tubal and uterine embryos were obtained from random- bred, not superovulated, albino mice. The alkaline fast- green procedure3 was standardized for whole ova by try- ing variations of each step. The optimal conditions are: fixation in 10% neutral formalin for 120 min; 10 min rinsing in H20; 30 min extraction in 5% TCA at 90~ rinsing in 70% ethanol for 30 rain; rinsing in H20; stain- ing in 0.1% fast-green FCF (National Allied) at pH 8.2 for 60 min; dehydration and mounting. The nucleic acid extraction is omitted in the controls. This procedure revealed basic proteins, which must be linked to nucleic acids, since they do not stain when these are not extracted. The cytoplasmic staining decreased from the 1- to 4-cell embryos, and thereafter the process continued at a diminishing rate. When the nucleic acids were extracted with ribonuclease 4 (Mann Lab.), the results were somewhat inconclusive, due to the high extraction observed in the controls. But after deoxyribonuclease treatment 5 (Worthington Lab.), the cytoplasm remained as pale as in the controls, thus showing that it is with RNA that the basic cytoplasmic proteins are associated. Our observations recall those made on the oocytes of some marine invertebrates e-9 and in the early embryo of the sea-urchin 10,11, though, in the latter, the cytoplasmic basic proteins increase after fertilization up to the late

Upload: l-izquierdo

Post on 13-Aug-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Basic proteins of mouse ova and blastocysts

646 Specialia EXPERIENTIA 26/6

period. The cells affected could be those which were a t the S-stage at the t ime of t r e a t m e n t .

The up take of D N A precursor , H3-thymidine, measured in t e rms of n u m b e r of si lver grain format ion, is suggest ive t h a t a t a comparab le concen t ra t ion NMU is more effective in inhibi t ing D N A syn thes i s (Table I I I ) . I t is also ev ident

Table III. Pattern of incorporation

Treatment No. of No. of Mean No. of Labelling slides cells silver grains as %

per nucleus �9 of con trol

Control 4 65 32.06 100 (Ha-thymidine in distilled water) MNG 0.1% 2 25 12.28 38.3 MNG 0.2% 4 50 7.66 23.8 NMU 0.2% 4 70 5.60 17.4

Mean calculated after deduction of background incorporation.

t h a t DNA synthes is when compared to normal control is s ignif icant ly reduced t h o u g h not comple te ly inhibi ted.

The major por t ion of the ch romosomal damage and the reduct ion in mi to t ic act ivi t ies are p resen t in those cells which were a t syn the t i c s tage of D N A repl icat ion at t he t ime of t r e a t m e n t . DNA is considered to be the mos t sensi- t ive mater ia l to a lkylat ion wi th in t he cell and a p r imary si te for a lkyla t ion 8,9. Chromosomal aber ra t ions observed in t he cells belonging to G2 s tage could be independen t of D N A synthes is or, a l te rna t ive ly , D N A here is quan t i t a - t ive ly or qua l i ta t ive ly di f ferent I~ The effect of these chemicals appears to be similar to t h a t of ionizing radia- t ion. Their abi l i ty to induce ch romosomal changes could pa r t l y be due to the i r capac i ty to a l ter the s ta te and pro- per t ies of DNA, bu t still the exac t mechan i sm by which the aber ra t ions are induced is no t clearly unders tood 11.

Zusammen/assung . Mit N i t r o s e m e t h y l u r e t h a n und Ni t roseguanid in behande l t e ke imende Gers tensamen zeigten eine auffal lend geringere Mitoseaktivi tAt, chromo- somale Abweichungen, n ich tve rz6ger te Ef fek te und Ab- n a h m e der DNA-Syn these . Die chromosomale Sch~tdigung scheint v o n d e r D N S - S y n t h e s e unabhgtngig zu sein.

R. K. I'{ATIYAR, C. S. KALIA and M. P. SINGH

Div is ion o/ Genetics, I n d i a n Agr icul tural Research Inst i tute , N e w Delhi-12 (India), 5 December 1969.

Metaphase showing chromosomal aberrations after 2 h of recovery.

1 B. A. KIHLMAN, Expl. Cell. Res. 20, 657 (1960). 2 T. GICKNER, A. MICHALLIS and R. RIEGER, Biochem. biophy. Res.

Commun. 11, 120 (1963). 3 C. J. GRANT and H. HESLOT, Chromosome Today 1, 118 (1964). 4 V. N. SAVIN) M. S. SWAMINATHAN and B. SHARMA, Mutation Res.

6, 101 (1968). 5 C. D. DARLINGTON and L. F. LACouR, The Handling o] Chromo-

somes (G. Allen and Unwin Ltd., London 1962). F. D'AMATO, Caryologia l, 327 (1949).

7 F. D'AMATO, Genet. iber. d, 3 (1952). 8 B. A. KIHLMAN, Action o/ Chemicals on Dividing Cells (Prentice

Hall Inc. 1966), p. 260. 9 G. P. WHEELER, Cancer Res. 22, 651 (1962).

10 S. BELL and S. WOLFF, Proc. natn. Acad. Sci. USA 51,195 (1964). 11 Acknowledgement. Our thanks are due to Dr. H. K. JhlU, Head of

Genetics Division, for his interest in the problem.

Basic Prote ins of M o u s e Ova and Blas tocys t s

We have u n d e r t a k e n a cy tochemica l s tudy of nuclear and cy toplasmic basic p ro te ins associated wi th nucleic acids on early mouse embryos , because several lines of evidence po in t to the precocious beginning of gene ac t iv i ty in th is species 1, 2.

Tubal and uter ine embryos were ob ta ined f rom random- bred, no t superovula ted , a lbino mice. The alkaline fast- green procedure3 was s t anda rd i zed for whole ova by t ry- ing var ia t ions of each step. The op t imal condi t ions are: f ixa t ion in 10% neut ra l formal in for 120 min ; 10 min r insing in H20; 30 min ex t rac t ion in 5% TCA at 90~ r insing in 70% e thanol for 30 rain; r insing in H20; s ta in- ing in 0.1% fas t -green F C F (Nat ional Allied) a t p H 8.2 for 60 min ; d e h y d r a t i o n and mount ing . The nucleic acid ex t rac t ion is o m i t t e d in the controls.

This procedure revealed basic proteins , which mus t be l inked to nucleic acids, since they do no t s ta in when these are no t ex t rac ted . The cy toplasmic s ta in ing decreased f rom the 1- to 4-cell embryos , and the rea f t e r the process cont inued a t a d imin ish ing rate. W h e n the nucleic acids were ex t r ac t ed with r ibonuclease 4 (Mann Lab.), the results were s o mew h a t inconclusive, due to t he high ex t rac t ion observed in t he controls. Bu t af ter deoxyr ibonuclease t r e a t m e n t 5 (Wor th ing ton Lab.), the cy top lasm remained as pale as in t he controls, thus showing t h a t it is wi th R N A t h a t t he basic cy toplasmic p ro te ins are associated.

Our observa t ions recall those made on the oocytes of some mar ine inve r t eb ra tes e-9 and in the early embryo of t he sea-urchin 10,11, though, in the la t ter , the cy toplasmic basic pro te ins increase af ter fer t i l izat ion up to the late

Page 2: Basic proteins of mouse ova and blastocysts

15.6. 1970 Specialia 647

b l a s t u l a a n d l a t e r d i s a p p e a r . If , a s in o t h e r m a t e r i a l s , t h e c y t o p l a s m i c b a s i c p r o t e i n s a r e r i b o s o m a l ~2, t h e d i m i n u - t i o n we o b s e r v e d m i g h t be r e l a t e d t o t h e b e g i n n i n g of g e n e t i c t r a n s l a t i o n .

T h e n u c l e i of 1- a n d 2-cell e m b r y o s b o u n d as m u c h s t a i n as t h e c y t o p l a s m , a n d f r o m t h e 4-cel l s t a g e o n w a r d s , t h e n u c l e a r s t a i n i n g i n c r e a s e d wh i l e t h e c y t o p l a s m i c s t a i n - i n g d c r e a s e d .

' L y s i n e - r i c h ' a n d ' a r g i n i n e - r i c h ' b a s i c p r o t e i n s w e re d i f f e r e n t i a t e d b y t r e a t i n g t h e ova , a f t e r T C A e x t r a c t i o n , w i t h a c e t i c a n h y d r i d e for 3 h in a m i c r o c h a m b e r 13 b e f o r e s t a i n i n g w i t h a l k a l i n e f a s t - g r e e n . S ince a c e t y l a t i o n i n h i - b i t s t h e b a s i c i t y d u e to l y s ine , o n l y t h e ' a r g i n i n e - r i c h ' b a s i c p r o t e i n s t a i n s a f t e r t h i s t r e a t m e n t a.

E a r l i e r t h a n t h e 4-cell s t a g e , t h e e m b r y o s s t a i n e d s i m i - l a r ly , w h e t h e r a c e t v l a t e d or n o t ; a f t e r t h e 4-cell s t a g e t h e a c e t y l a t e d m a t e r i a l s t a i n e d g r a d u a l l y less, w h i c h m e a n s a r e l a t i v e i n c r e a s e in l y s ine . T h i s s u g g e s t s a r e g u l a t i o n of g e n e t i c t r a n s c r i p t i o n , t h o u g h t h e r e l a t i o n of h i s t o n e k i n d t o c h r o m a t i n a c t i v i t y is n o t y e t c lea r 14.

D i f f e r e n t i a t i n g b y a c e t y l a t i o n , we e x p e c t e d to w i t n e s s t h e h i s t o n e t r a n s i t i o n t h a t r e v e r s e s t h e p r o c e s s w h i c h o c c u r s in spe rmatogenes i s~- ,~5 ; b u t t h e p r o n u c l e i a p p e a r e q u a l l y f a i n t l y co lou red , a c e t y l a t e d or no t , a s if t h e y c a r r i e d t h e s a m e k i n d o f h i s t o n e , d i l u t e d in t h e i r l a rge v o l u m e . W e c a n n o t a r g u e for o r a g a i n s t t h e m a s k i n g of p r o n u c l e a r h i s t o n e s 16 o n t h e b a s i s of t h e S a k a g u c h i t e s t , s i nce in o u r h a n d s i t s h o w s t h a t t h e nuc l e i s t a i n s t r o n g e r t h a n t h e c y t o p l a s m o n l y for a whi le , d u r i n g t h e p r o c e s s of f a d i n g .

I n c o n c l u s i o n , o u r f i n d i n g s s u p p o r t t h e a s s u m p t i o n t h a t t h e c h a n g e s in n u c l e a r a n d c y t o p l a s m i c b a s i c p r o t e i n s a s s o c i a t e d w i t h nuc l e i c ac ids , a re r e l a t e d to t h e b e g i n n i n g of g e n e t i c a c t i v i t v ~7.

Zusamn*en/assum:. Mit e i n e r spez i e l l en F / i r b e t e c h n i k a u f b a s i s c h e P r o t e i n e w i r d geze ig t , d a s s d ie l n t e n s i t g t u n d d a m i t a u c h d ie Q n a n t i t ~ i t de r b a s i s c h e n P r o t e i n e b e i m { } b e r g a n g v o m 4 - Z e l l - S t a d i u m z u m 8 - Z e l l - S t a d i u m im C y t o p l a s m a s t a r k z u n i m m t . D a r a u s w i rd de r S c h l u s s ge- zogen , d a s s e r s t zu d i e s e m Z e i t p u n k t d ie g e n e t i s c h e In - f o r m a t i o n ftir d ie P r o t e i n s y n t h e s e w i r k s a m wi rd .

L. 1ZQUIERDO a n d PATR1CIA 3/IARTICORENA

Universidad de Chile, Casilla 5539, Santiago (Chile), 25 November 7969.

The microphotographs do not reveal the overall staining concentra- tion, due to the automatic correction of the exposure meter.

1. Pronuelear stage.

2. 2-cell stage. 3. 4-cell stage.

4. Early morula. 5. Early morula, acetylated. 6. Early blastoeyst.

The microphotographs do riot reveal the overall staining concentra- tion, due to the automatic correction of the exposure meter. 1. Pro- nuclear stage. 2. 2-cell stage. 3. 4-cell ~tage. 4. Early morula. 5. Early morula, aeetylated. 6. Early blastoeyst.

1 L. IZQU1ERDO and L. ROBLERO, Experientia 2l, 532 (1965). 2 L. IZQUIERDO, Proc. 8th Int. Cong. IPPF (1967), p. 376. 3 M. ALFERT and I. I. GESCHWlND, Proe. natn. Acad. Sci. 39, 991

(1953). M. AMANO, J. Histoehem. Cytochem. 70, 204 (1962).

:' W. G. B. CASSELMAN, Histochemical Technique (Methuen & CO LTD, London 1959), p. 123.

6 S. Bs Acta Embryol. Morph. exp. 8, 178 (1965). 7 R. I)AVENPORT and J. C. DAVENPORT, Expl. Cell. Res..39, 74 (1905). 8 N. DAVENPORT and J. C. DAVENPORT, J. Cell. Biol. 25, 319 (1965). 9 R. DAVENPORT and J. C. DAVENPORT, Expl. Cell. Res. :12, 429

(1966). 10 So B;{CKSTROM, Aeta Embryol. Morph. exp. 8, 20 (1965). n S. BXCKSTR/3M, Expl. Cell. Res. dd, 578 (1966). 12 p. COHN and P. SIMSON, Biochem. J. 88, 206 (1963). la L. IZQUIERDO, Stain Technol. 42, 35 (1967). it I). E. COMINGS, J. Cell. Biol. 35, 699 (1967). 54 V. MONESI, Expl. Cell. Rot..3.0, 197 (19~5). ~'; M. ALFERT, Ges. Physi(~l. Chem. Colloq. 9, 73 (1958). 17 This work was supported by CONICT Grant No. 92.