baku facade

38
1 Aaron Goldin Adam Jongeward Lauren Scammell Cris Wise CEE 226 – Term Project Autumn 2009 ARCHITECTURAL FAÇADES for the HEYDAR ALIYEV CULTURAL CENTER: A Life Cycle Assessment

Upload: truongthu

Post on 14-Feb-2017

269 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Baku Facade

1

Aaron Goldin Adam Jongeward Lauren Scammell Cris Wise  CEE 226 – Term Project Autumn 2009   

 

ARCHITECTURAL FAÇADES for the

HEYDAR ALIYEV CULTURAL CENTER:  

A Life Cycle Assessment  

Page 2: Baku Facade

2

Table of Contents 

ABSTRACT................................................................................................................................ 3

INTRODUCTION ....................................................................................................................... 3

PROBLEMSCOPE...................................................................................................................... 4PROCESS ........................................................................................................................................4ASSUMPTIONS ................................................................................................................................5

INVENTORYANALYSIS.............................................................................................................. 6FRPPANELS ...................................................................................................................................6GFRCPANELS ................................................................................................................................6MOUNTINGHARDWARE ...................................................................................................................7SHIPPING .......................................................................................................................................7REPLACEMENTRATE ........................................................................................................................7RECYCLINGRATES............................................................................................................................7SIMAPRO .......................................................................................................................................7

ANALYSIS ................................................................................................................................. 8SENSITIVITYANALYSIS–INITIAL..........................................................................................................8SENSITIVITYANALYSIS‐REFINED .......................................................................................................9

LIFECYCLEANALYSISRESULTS.................................................................................................. 9INITIAL–BASELINELCARESULTS .......................................................................................................9LCARESULTS–TRANSPORTATIONCOMPARISON................................................................................10LCARESULTS–PRIMARYDRIVERSANDMITIGATIONSTRATEGIES..........................................................11

LIFECYCLECOSTS ................................................................................................................... 11

CONCLUSIONS ....................................................................................................................... 12

REFERENCES........................................................................................................................... 13

APPENDIXA:SIMAPRORESULTS–BASELINE ......................................................................... 14

APPENDIXB:SIMAPRORESULTS–TRANSPORTATIONANALYSIS............................................ 16

APPENDIXC:INITIALSENSITIVITYANALYSISRESULTS ............................................................ 17

APPENDIXD:FINALSENSITIVITYANALYSISRESULTS .............................................................. 27

APPENDIXE:LIFECYCLECOSTBREAKDOWN .......................................................................... 38

Page 3: Baku Facade

3

Abstract

The country of Azerbaijan is in the process of constructing a state of the art culturalcenterinthenation’scapital,Baku.TheHeydarAliyevCulturalCenterwillbecoveredinalargefaçadeconsistingof18,000separatepanels.Eachpanelwillbeapproximately1mby2m.ThefaçadepanelswillbemadeoutofeitherFiberReinforcedPolymer(FRP)or Glass Fiber Reinforced Concrete (GFRC). To determinewhich panel has the lowestenvironmental impact a life cycle assessment (LCA) and an inventory analysis wereperformedforeachpaneltype.

The LCA for each panel were largely based on themanufacturing and transportationprocesses.Littlewasknownabouttheyearlymaintenanceforeachpanel,sonopanelmaintenancewasassumed.Areplacementrateof0.5%waschosenforeachpaneltype.Thedisposalscenario forFRPwas100% landfilledandforGFRCa50%recyclingrate.Due to theuncertaintyof someof the required information a sensitivity analysiswasperformed.ThisanalysisincludedvariationsinthemanufacturingprocessesofFRPandGFRC,andalsochangingthetransportationscenariosforeachpaneltype.

FromthebaselineanalysisofFRP, thetotal impactwas1,760Pt.FortheGFRCpanelsthebaselineimpactwas6,450Pt.GFRChasa266%biggerimpactthanFRP.GFRChadhigher impacts inallmajor categoriesexcept solidwaste.The impacts categories thatGFRC was higher in include Greenhouse Gases, Ozone Depletion, Acidification,Eutrophication, HeavyMetals, Carcinogens, Summer Smog,Winter Smog, and EnergyResources.

Introduction

The country of Azerbaijan is currentlyconstructinganewcultural center tohousea conference hall, museum and culturallibrary. The building, to be known as theHeydarAliyevCulturalCenter,isofparticularimportancesinceAzerbaijanhopes touse itas part of their bid for the 2016 Olympics.The building, as seen in the architecturalrenderings,hasanextensivefaçadecoveringits exterior. This façade will be consist of18,000 panels, approximately 1 m by 2 m.Fiber Reinforced Polymer (FRP) and GlassFiberReinforcedConcrete(GFRC)havebothbeenproposedaspotentialmaterialsforthefaçade. If FRP is chosen, the panels will bemanufactured in Istanbul, Turkey andtransported to Baku via truck. GRFC panels

Figure1:ArchitecturalRenderings‐HeydarAliyevCulturalCenter

Page 4: Baku Facade

4

willbemanufacturedinStuttgart,GermanyandalsotransportedtoBakuviatruck.Tohelp determine the choice of material, the following report has been compiled tocompare theenvironmental impactsofeachpanel typeusinga LifeCycleAssessment(LCA)andInventoryAnalysis.ThisanalysiswasperformedusingSimaProv.7.0.DataforFRP manufacturing and transportation was obtained through the FRP manufacturerKreysler & Associates. Data for the GFRC manufacturing process was compiled fromindustry standards.Materialdata forbothFRPandGFRCwere collectedona square‐footbasis.Thelifecycleanalysiswasconductedusingthefullbuildingwithanestimatedlifespanof50years.Thebuildinghasatotalareaoffaçadeequalto420,446sq.ft.

ProblemScope

Process

The following two figures present the process flow diagrams for FRP and GFRC,respectively.

Figure2:ProcessFlowDiagram‐FiberReinforcedPolymer

Figure3:ProcessFlowDiagram‐GlassFiberReinforcedConcrete

Page 5: Baku Facade

5

ThereareaseriesofstepsinvolvedintheFRPmanufacturingprocess:

1. Applygel‐coatasthefirstlayerinamold.2. Laywovenfiberglassmatinthemold.3. Cover the fiberglass with a vacuum bag and

sealitwithtape.4. Attach a hose to the vacuum bag and pump

outtheair.5. While continuing to pump the air, allow

unsaturatedpolyesterresin(UPR)andfillertoenterthebagandsurroundthefiberglass.

6. Continuetorunpumpuntilpolymersets,creatingapanel.

The GFRC manufacturing process is similar, except cement slurry is used as thecompositematrixinsteadofUPR.Thefiberglassiseitherchoppedorwoven,aswellasalkaliresistanttopreventitfromreactingnegativelywiththeconcrete.Themixturecaneitherbesprayedorpouredintothemold.

Assumptions

BoththeFRPandGFRCmanufacturingprocessesrequireuseofasimilartypeofmold.Assuch,ithasbeenchosentoneglectthemoldintheanalysissincetheirenvironmentaleffectwouldbethesameforeachmaterialandthereforehaveminimalimpactonourcomparison.

InFigure2andFigure3 (above),maintenanceandconstructionequipmentareshownwithhatchedcoloringanddottedlines.Whilethesetwoitemsarepartofthelifecycleofbothfaçadematerials,ithasbeenchosentoalsoneglecttheseaspectsoftheprocessforseveralreasons.Firstly,itischallengingtopredictexactlywhatmaintenancewillberequired for either façade throughout its life.While some cleaning, such as pressurewashing,willberequired,quantifyingthiswouldbeextremelysubjectiveasit isbasedonthedesiresofbuildingowners.Secondly,accordingtoKresyler&Associates,FRPandGFRCareoftenconsidered“maintenance‐free.”Whilethismaytoooptimistic, it leadsonetobelievemaintenanceshouldbeminimal.

Constructionwasalsoomittedfromtheanalysisduetoquantifyingdifficulties.Currentlythe specific type of equipment thatwill be used for eachmaterial is unknown.Mostlikely,duetotheminimalweightofFRP,acranewillnotberequired.However,theuseofacraneisalikelyscenariofortheGFRCduetoitshigherweight.Nonetheless,theseassumptions are contingent upon many variables, including, but not limited to,construction equipment already on site, available work force, and construction costrestraints.Aswell, throughouttheconstructionprocess,someequipmentwillbeusedfor other tasks in addition to mounting the façade. As such, allocating specificequipment directly to the façadewould prove too complex. Initial sensitivity analysisshowed that environmental impact was highly contingent on the input value of

Figure4:Panelinvacuumingstage

Page 6: Baku Facade

6

constructionequipment.Takingalloftheabovefactorsintoaccount,itwasdecidedthattheconstructionequipmentshouldbeleftoutoftheanalysis.

Themanufacturinglocationofbothmaterialshasnotyetbeenfinalized.Theproposedlocation for fabrication of the FRP panels is Istanbul, Turkey. Stuttgart, Germany hasbeenproposedfortheGFRC,butthisisstilluncertain.Thereisalsothepossibilitythateithermaterialcouldbemanufacturedmore locally inAzerbaijan,particularly inBaku.Basedonthelikelihoodofthesescenarios,IstanbulandStuttgarthavebeenchosenforthemanufacturing locations for the base case analysis. In addition analysis has beenconductedconsideringonlyminimaltransportation,todeterminethelevelofeffectofchoosinglocalmanufacturing.Detailsofeachoftheseanalysescanbefoundinresultsbelow.

InventoryAnalysis

FRPPanels

Accordingtothemanufacturer, thecomposition(persquare foot)of theFRPpanel is:0.25 lb. gelcoat (NPGgelcoat), 1.0 lb polyester resin (Hetron814A), 0.67 lb. aluminatrihydrate filler,and0.72 lbglass (alternating layersof24ozwovenrovingand1.5ozCSM). Additional materials required in the manufacturing process are vacuum bagplastic(product#RBG2601‐MCF),whichmaybereusedforapproximately50parts,andrubber tape (product # GS 43 MR 1/8"x1/2"x25'), which is not reused. Themanufacturing process also requires 2 hours of vacuum pumping with an 816.5 Wpump.Amoldisalsorequiredintheprocess,butsincethesametypeofmoldisuseforboththeFRPandGFRC,itwasnotincludedinthemodel.

GFRCPanels

Data on the specific design or manufacturing process of the GFRC panels was notavailable, and therefore industry standards were used to generate an approximatedesign. Initially, the model included a GFRC panel thickness of 3” (a verbalrecommendation from an industry professional). However, after performing thesensitivity analysis (described in Section 4), itwas clear a refined thickness should bedetermined.ThisupdatedthicknesswascalculatedsuchthattheGFRCandFRPpanelswould have equal flexural strength based on industry‐tabulated values. The averagevalueofmaximumstressforFRPis20,000psi,andforGFRCisfrom1,300to2,000psi.Flexuralstrengthisdefinedas:σ=3FL/2bd^2,whereFistheforceappliedinathree‐pointloadingtest,Listhelengthofthespecimen,bisthewidth,anddisthethickness.Using an average of 1650 psi for the flexural strength of GFRC, a thickness ofapproximately1.5"wascalculatedtomatchtheflexuralstrengthof0.433"(11mm)thickFRP.TheestimatefortheglasscontentoftheGFRC,suggestedbyBillKreysler,was8%byvolume,andiswithinthenormalrangeofindustrystandards.

Page 7: Baku Facade

7

MountingHardware

Aconservative initialestimateof themountingbolts for theFRPpanelswassetat (6)3/4”ϕx8”forboththeFRPandGFRC.However,afterthesensitivityanalysis(detailedinSection4),boltsizingforFRPwassharpenedbyKreysler&Associatesto(6)1/2"ϕx6"steelboltsperpanel.Asimilarmountingconfigurationof (6)1.2"ϕ x6"steelboltsperpanelwasassumedfortheGFRC.The1.2"diameterboltwasdeterminedbyscalingthecrosssectionalareaofthebolttotheweightoftheGFRCpanelinordertoaccountfortheadditionalload.

Shipping

Truckingmileagewasestimatedbymeasuringthedirectdistancefromthe locationofmanufacturetoBaku,Azerbaijan inGoogleEarth,andmultiplyingbyafactorof1.5toapproximatearoadpath length.ShippingfromIstanbulwasestimatedtobe1500mi,whileshippingfromStuttgartwasestimatedtobe2100mi.

ReplacementRate

Sincenoharddataonthereplacementrateofthepanelingwasavailable,weassumeda0.5%peryearbaseline inordertomodel this factor's impact.This isanaveragevalueoverthefulllifespan(approximately50years);replacementisnotexpectedeveryyear.

RecyclingRates

Weassumed a 0% recycling rate for the FRP panels, as there is currently nomethodknowntorecycleFRP.Abaserecyclingrateofconcretewasassumedtobe50%inordertomodelthatfactor'ssensitivity.Whilesomereportssaythatalmostallconcretecanberecycled, it isusuallyisgroundandreusedforaggregate.BecausetheGFRCrequiresacement slurry mixture, no aggregate is used, thus potentially changing the effectiverecyclingrate.

SimaPro

AnumberoftheaforementionedrawmaterialsandprocesseswerenotfounddirectlyintheSimaProdatabase,andthereforesurrogateswereused,asdescribedbelow.

Alumina Trihydrate (ATH), a typical filler material for pigments and plastics, was notfoundinSimaPro.AccordingtotheHuberMaterialsdatasheet(asprovidedbyKreysler& Associates), ATH is 64.9% aluminum oxide (Al2O3), and 34.6% is loss on ignition,making ATH 98.6% aluminum oxide after ignition. Therefore, it was determined thataluminum oxide, a material available in the SimaPro database, is a satisfactorysurrogate.

The GFRC concrete matrix was modeled using the basic concrete available in theSimaProdatabase.Althoughthis is likelytobeaccurate, itexistsasasurrogateforanunknownmixdesignusedbythemanufacturer.

Thealkali resistantglass(ARglass)used intheGFRCwasmodeledusingthefiberglassmaterial available in the SimaPro database. Although the addition of zirconia could

Page 8: Baku Facade

8

maketheprocessmoreenergyandresourceintensive,itwasdeterminedthatthehighuncertainty inthepercentageofglassused,andthe lowsensitivityofthatvariabledonotwarrantamoreaccuratesurrogate.

Analysis

SensitivityAnalysis–Initial

Asdiscussed intheabove inventoryanalysis,manyassumptionsandestimationsweremadeinordertoobtainSimaProinputs.Assuch,sensitivityanalyseswereconductedtodeterminewhichvariableshad themostacuteeffect. This analysiswasperformedbyrunning themodelwith all estimated variables scaled by ± 25%. The results of theseanalyseswerethencompiledtocreatetornadodiagramsforeachenvironmentalimpactcategory.

Figure5:ExampleFRPSensitivityDiagram

Figure6:ExampleGFRCSensitivityDiagram

Figure5andFigure6aboveareexamplesfromtheinitialanalysisshowingsensitivitytoemissionsofCO2equivalents.(Acompletesetofimpactcategorytornadodiagramsaregiven in Appendix C). These diagrams demonstrate the high sensitivity of theconstructionequipment.Thedecisiontoomitthisequipmentfromthefinalanalysiswasbased on these results as well as the high level of uncertainty in the originalconstructionequipmentvalueestimate.

Figure5andFigure6alsoshowthehighlevelofsensitivityofthebolts.Atthisstageofanalysis, theboltswereestimatedtobethesamesize forbothpanel types.Sincetheboltswerefoundtohavesubstantialeffectsonthefinalresults,it

wasdetermined that theestimatedboltcontributionshouldbe refined to include thefactthattheGFRCpanelswillrequirelargerboltstoaccountfortheirheavierweight.

Thickness of the concrete panel at this stage had been estimated at 3” based onindustry recommendations.However, the sensitivity analysis showed thatGFRCpanelthicknessishighlysensitiveandthereforeitwasdecidedthatthepanelthicknesswouldbe refined based on the comparison of the flexural strength of the FRP panels (seeinventoryanalysis,Section3.0)

Page 9: Baku Facade

9

SensitivityAnalysis‐Refined

Following the initial round of sensitivity analysis, as well as the omission of theconstructionequipmentandthemodificationoftheboltandGRFCpanelthicknessdata,the sensitivity analysiswas re‐conducted, this time also incorporatingmore variables.Figure 7 and Figure 8 below show the results of the sensitivity analysis for SimaPro’ssinglepointvalueforFRPandGFRCrespectively.Fromthesefigures,itcanbeseenthatthePanel Size aswell as theTruckingMileagearehighly sensitive forbothmaterials.

Figure7:ExampleRefinedFRPSensitivityGraph

Figure8:ExampleRefinedGFRCSensitivityGraph

Itwas interesting tonote that theAluminaTrihydrate filler is very sensitive (more sothananyotherrawmaterial forFRP).Althoughthe filler isknowntoahighdegreeofcertainty, this does show that Alumina Trihydrate is a potential target for furtheroptimization.

GlasspercentageisshownreversedintheabovefigureforGFRC.Inordertokeepthepanelthicknessconstantaswellastheincreasetheglassfibercontent,theamountofconcreteisdecreased.Thisreverserelationshipshowsthatconcreteismoreimpactful.

LifeCycleAnalysisResults

Initial–BaselineLCAResults

As mentioned previously, the baseline casewas chosen with manufacturing of the FRPpanels occurring in Istanbul andmanufacturingoftheGFRCinStuttgart.UsingSimaPro’ssinglescoreimpactevaluation,FRP(singlepoint=1761)was foundtohave lessenvironmental impact than GFRC (singlepoint=6447).Thefollowingfigureshowstheweighting of each impact category for bothFRP and GFRC using SimaPro’s single pointweighting system. It can be seen from thisfigurethatGFRChashigher impactthanFRP

Figure9:BaselineIndividualImpactCategories

Page 10: Baku Facade

10

in every category except solid waste. A particularly significant discrepancy is in theheavymetalsandwintersmogcategories.Itcanbereasonedthatthesehighvaluesaretheresultofthehigh leveloftransportationfromStuttgartrequiredfortheGFRCandtheproductionprocessofPortland cement, respectively. Thehighest impact categoryfor the FRP is heavy metals, which is likely attributable to the transportationrequirementfromIstanbul,butitisstillsignificantlylowerthantheimpactfromheavymetalsfortheGFRC.

LCAResults–TransportationComparison

ThesensitivityanalysisdeterminedthattheresultsarehighlydependentontheamountoftransportationusedforboththeFRPandGFRC.Sincethelocationoffabricationforbothmaterialsisuncertain,itwasdecidedthatthebestwaytocomparebothmaterialswas to conduct additional analyses for minimal transportation. The value oftransportationforthesecaseswassetto200miles,approximately10%ofthedistancerequiredfororiginaltransportationoftheGFRCfromStuttgart.Transportationwasnotset to zero since it would be highly likely that even if thematerials were fabricatedlocallytheywouldstillneedtobetransportedaminimaldistance.

Figure 10 shows that regardless of transportation, GFRC still has a large impact onwinter smog. Reduction of transportation for the GFRC however, decreases its heavymetalsimpacttoavalueapproximatelyequaltotheFRPfabricatedinIstanbul.Ontheotherhand, theFRPwithouttransportationhasthe lowest impact fromheavymetals.Formostimpactcategoriesthelevelofdifferencebetweeneachofthefourscenariosisminimal,makingafinalconclusionbetweenthematerialsdifficult.

Figure10:TransportationAnalysisSummary

Page 11: Baku Facade

11

LCAResults–PrimaryDriversandMitigationStrategies

Reviewing each stage of the LCA, weight appears to be a common thread forperformanceofbothmaterials.Weightdependsontheamountofmaterialused,andsubsequently has an effect on the steel mounting brackets, construction equipmentrequirements, transportation emissions, as well as the building’s structural system.FRP’sreducedweighthelpstomakeitmorecompetitivethanGFRC.

HeavymetalswereahighimpactcategoryforbothGFRCandFRP.Theseemissionsareprimarily caused by use of diesel trucks for the panel’s transportation. The steelmountingbracketsarealsopartlycontributable.Onemethodofreducingenvironmentalimpactfromheavymetalsistoproducethechosenmateriallocally.ThisismorelikelyapossiblescenariofortheGFRCsinceitsmanufacturinglocationislesscertain.However,choosingtoproduceGFRClocallycreatesanother importantdecisionthatneedstobemade.WinterSmog,anotherhighimpactcategoryforGFRC, isa localpollutant. IfthemanufacturingofGFRCiscompletedinAzerbaijan,thepollutantwouldhavemosteffectonthelocalarea.Assuch,Azerbaijanwillneedtodecidewhetherornotthattheyarewilling to accept the higher local environmental impact in return for a lower globalenvironmentalimpact.

Asecondstrategyforreducingheavymetalimpactwouldbetouseanalternativemodeoftransportation.For instance,bothtrainsandbargesareknowntobemoreefficientthandieseltrucks.However,thisstrategydependsontheavailabilityofequipmentandspecificlocationoftheproject.

A third strategy for reducing heavy metals is to simply use FRP instead of GFRC.ProducingGRFCinStuttgarthadanimpactforheavymetalsapproximatelyfiveandhalftimes greater than the FRP produced in Istanbul. Both transportation and boltrequirements are less for the FRP than the GFRC, so FRP is the best option for thiscategory.

A largeportionofGFRC’s environmental impactwas found tobe the result ofwintersmog.Thereareseveralpotentialalternativesthatcouldbeusedtoreducethisimpact.Firstly, use of fly ash in the concretemix would reduce the overall Portland cementcontent,whichistheprimarycauseofthehighwintersmogofconcrete.Furthermore,currently in Italy, a specialized concrete that claims to be ‘smog eating’ is underdevelopment. This concrete, knownas TXActive, and claims to convertNOx and SOxintoharmlessnitratesandsulfates,respectively,whentheconcreteisexposedtosmog.Thisconcreteiscurrentlyexperimental,buttheoptionofitsusestillexists.Finally,andmost obvious, choosing the FRP panels can easily minimize winter smog because noPortlandcementisrequired.

LifeCycleCosts

ThecostfortheFRPpanelsis$26.16persquarefootandthetotalcostis$11.0million.Thesecostfiguresweredirectlyfromthemanufacturer,Kreysler&Associates.ThetotaltransportationcostforFRPfromTurkeyis$260,000.TheendoflifedisposalcostofFRP

Page 12: Baku Facade

12

willbe$1000,thiswillmakethetotallifecyclecost$11.2million.GFRCpanelswillcost$30.9 per square footmaking the totalmanufacturing cost $13.0million. Due to theweightofGFRCandthelongerdistanceofshippingfromStuttgart,theshippingcostwillbe$4.2million.Theendof lifedisposalwillcost$1,400,thismakesthetotal lifecyclecostofGFRC$17.3million.Duetotheinternationalnatureoftheprojectthereismoreuncertainty in the cost ofGFRC sincewewere not in contactwith themanufacturer.Therefore lessemphasiswasplacedon the life cycle costanalysis for the twopanels.Overall, it is safe to say that the heavier GFRC will make the construction,transportation,andtippingmoreexpensivethanFRP.

Conclusions

Inconclusion,initiallyassumptionsfoundFRPtobemoreenvironmentallyfriendlywitha single score value fromSimaPro72% less than theGFRC.Minimizing transportationrequirements for bothmaterials showed that the FRP still remained higher than theGFRCinallimpactcategoriesexceptforsummersmog.However,theGFRCdidbecomesignificantly more competitive when the transportation was minimized. Taking thisinformationintoconsideration,alongwiththefactthatFRPishighlydurableandhasahigher strengthperunitweight,we recommend theuseof FRP for theHeydarAliyevCulturalCenter.However,ifGFRCischosen,wehighlyrecommendthatitbeproducedlocallysuchthattheenvironmentalimpactduetotransportationareminimized.

Page 13: Baku Facade

13

References

Research and Innovative Technology Administration, Bureau of Transportation Statistics . "AverageFreightRevenuePerTon‐mile."Web.3Nov2009.<http://www.bts.gov/publications/national_transportation_statistics/html/table_03_17.html>.

Hypertextbook . "DensityofGlass."Web.3Nov2009.<http://hypertextbook.com/facts/2004/ShayeStorm.shtml>.

GFRC Recommended Practice for Glass Fiber Reinforced Concrete Panels. 3rded.Pre‐CastPre‐Stressed.ConcreteInstitute,Print.

GFRCRecommendedPracticeforGlassFiberReinforcedConcretePanels.3rded.Pre‐CastPre‐Stressed.ConcreteInstitute,Print.

SkyScraper City . "HeydarAliyevCulturalCenter."Web.3Nov2009.<http://www.skyscrapercity.com/showthread.php?t=610923&page=37>.

Kreysler,Bill.PersonalInterview.29Sept2009.

Miller,Lia.“Smog‐EatingCement.”NewYorkTimes.Dec9,2007.

Portland Bolt and Manufacturing Company . "PortlandBoltCalculator."Web.11Nov2009.<http://www.portlandbolt.com/bolt‐weight‐calculator.html>.

RSMeansBuildingConstructionCostData.67thed.RSMeans,2009.Print.

Airtech Advanced Materials Group . "VacuumBaggingMaterials."Web.11Nov2009.<http://www.airtechonline.com/catalog/default.asp?exe=0.4710047>.

Fibre Glast Development Corporation . "VacuumBaggingSupplies."Web.15Nov2009. <http://www.fibreglast.com/showproducts‐category‐Vacuum+Bagging+Supplies‐106.html>.

Page 14: Baku Facade

14

AppendixA:SimaProResults–Baseline

Page 15: Baku Facade

15

Page 16: Baku Facade

16

AppendixB:SimaProResults–TransportationAnalysis

Page 17: Baku Facade

17

AppendixC:InitialSensitivityAnalysisResults

Page 18: Baku Facade

18

Page 19: Baku Facade

19

Page 20: Baku Facade

20

Page 21: Baku Facade

21

Page 22: Baku Facade

22

Page 23: Baku Facade

23

Page 24: Baku Facade

24

Page 25: Baku Facade

25

Page 26: Baku Facade

26

Page 27: Baku Facade

27

AppendixD:FinalSensitivityAnalysisResults

Page 28: Baku Facade

28

Page 29: Baku Facade

29

Page 30: Baku Facade

30

Page 31: Baku Facade

31

Page 32: Baku Facade

32

Page 33: Baku Facade

33

Page 34: Baku Facade

34

Page 35: Baku Facade

35

Page 36: Baku Facade

36

Page 37: Baku Facade

37

Page 38: Baku Facade

38

AppendixE:LifeCycleCostBreakdown