bacterial protein translocation & pathogenesis

32
Bacterial Protein Translocation & Pathogenesis David R. Sherman HSB G-153 221-5381 [email protected]

Upload: chadwick-morse

Post on 31-Dec-2015

49 views

Category:

Documents


1 download

DESCRIPTION

Bacterial Protein Translocation & Pathogenesis. David R. Sherman HSB G-153 221-5381 [email protected]. Lecture outline. Cellular addresses Getting stuck in the membrane: YidC Crossing the inner membrane: Sec-dependent SRP Sec B TAT-mediated - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Bacterial Protein Translocation & Pathogenesis

Bacterial Protein Translocation & Pathogenesis

David R. Sherman

HSB G-153

221-5381

[email protected]

Page 2: Bacterial Protein Translocation & Pathogenesis

Lecture outline

• Cellular addresses

• Getting stuck in the membrane: YidC

• Crossing the inner membrane:Sec-dependent

SRP

Sec B

TAT-mediated

• Crossing the outer barrier - specialized secretion systems

• An example in gram (+) bacteria (paper discussion)

Page 3: Bacterial Protein Translocation & Pathogenesis

Protein destinations

Approx 10% of proteins cross at least the inner membrane.

Approx 30% of proteins are membrane associated.

Page 4: Bacterial Protein Translocation & Pathogenesis

Machinery of bacterial protein translocation

Cytosolic membrane (Gram +/-): YidC. Sec machinery. Tat translocation.

Cell wall (Gram +/-): very little known.

Outer membrane (Gram -): several specialized systems.

Much better studied in Gram-negatives.

Page 5: Bacterial Protein Translocation & Pathogenesis

Membrane insertion via YidC

Multi-pass membrane protein.

Needed for insertion of some (all?) membrane proteins.

Can act alone or w/ Sec YEG.

Evolutionary origin of secretion?

Page 6: Bacterial Protein Translocation & Pathogenesis

Across the cytoplasmic membrane -- the Sec machinery

General features:

Sec YEG: heterotrimeric pore-forming membrane proteins.

SecA: membrane-associated ATPase.

Substrates are generally unfolded.

Substrates have a signal peptide:

usually N-terminal

1(+) basic AAs followed by10-20 hydrophobic AAs

Page 7: Bacterial Protein Translocation & Pathogenesis

SecYEG topology

Homologous to eukaryotic Sec61p complex.9:494-500, 2001

Page 8: Bacterial Protein Translocation & Pathogenesis

SRP-mediated translocation

SRP: homologous to eukaryotic SRP

Ffh (54 homolog) 48kDa GTPase

ffs (4.5S RNA)

essential for cell viability

Recognizes ribosome-bound nascent membrane proteins.

Substrate recognition is via signal sequence.

SecA is NOT needed for membrane association, but IS needed for translocation.

Page 9: Bacterial Protein Translocation & Pathogenesis

SRP targeting

Page 10: Bacterial Protein Translocation & Pathogenesis

SecB-mediated translocation

SecB: acidic, cytosolic chaperone.

recognizes “mature”, unfolded proteins.

destination -- periplasm, outer membrane or beyond.

Substrate recognition is NOT via the signal sequence.

Binding motif:

~9 AAs long.

hydrophobic and basic.

acidic AAs strongly disfavored.

Page 11: Bacterial Protein Translocation & Pathogenesis

SecB protein targeting

Nat Struct Biol. 2001 8(6):492-8.

Page 12: Bacterial Protein Translocation & Pathogenesis

Sec interactions

9:494-500, 2001

Page 13: Bacterial Protein Translocation & Pathogenesis

Twin-arginine (Tat)-mediated protein translocation

Independent of the Sec system.

TatA and TatC are essential.

Transports folded proteins.

Not found in eukaryotes; some bacteria.

# of Tat substrates per organism varies very widely --

None (Clostridium tetani, Fusobacterium)

145 (Streptomyces coelicolour)

Page 14: Bacterial Protein Translocation & Pathogenesis

Twin-arginine (Tat)-mediated protein translocation

Targeting signal (in the first 35 AAs) has 3 regions:

N-term is positively charged

(S/T)-R-R-x-F-L-K

hydrophobic -helical domain

C (cleavage) domain.

TATFIND 1.2

Page 15: Bacterial Protein Translocation & Pathogenesis

Specialized secretion pathways (Gram-negative bacteria)

1. Type I pili.2. Type I secretion.3. Type II secretion/general secretory pathway/type IV pili.4. Type III secretion (TTSS).5. Type IV secretion.6. Type V/autotransporters.

Classification is based on the sequence/structure of the transport machinery and their catalyzed reactions.

These systems are usually associated with virulence.

Page 16: Bacterial Protein Translocation & Pathogenesis

Assembly of type I pili

Allow for attachment during the initial stages of infection.

Assembled in two stages:Sec-dependentPap C/D-dependent

Page 17: Bacterial Protein Translocation & Pathogenesis

Type I secretion of repeat toxins: HlyA

Lipid-modified toxin.11-17 repeats of 9 AAs.Binds Ca++

Punches holes.

Sec-independent.Requires ABC-transporter (HlyB).C-term signal sequence.

Page 18: Bacterial Protein Translocation & Pathogenesis

Type II secretion -- the “general” secretory pathway

Occurs in 2 steps -- 1st is Sec-dependent; 2nd requires 10 proteins and ATP. Secretion signal?

Many examples:**cholera toxin**alkaline phosphataseproteaseselastaseType IV pili

Page 19: Bacterial Protein Translocation & Pathogenesis

Type IV pili (a type II machine)

Page 20: Bacterial Protein Translocation & Pathogenesis

Type III secretion

Triggered by contact w/ host cells.Sec-independent, similar to flagellar assembly.Assembly of the needle occurs at the tip.

Needle

Page 21: Bacterial Protein Translocation & Pathogenesis

Type IV secretion

Very versatile; Sec- and ATP-dependent.

Page 22: Bacterial Protein Translocation & Pathogenesis

Autotransporters: Neisseria IgA protease

Synthesized as a pre-proenzyme.C-term -barrel inserts in OM, pulls N-term through.N-term auto-cleaves, promoting release.

Page 23: Bacterial Protein Translocation & Pathogenesis

Cell wall proteins of Gram (+)s

Initially Sec-dependent.

N-term signal cleaved.

C-term signal sorts to CW.

L-P-x-T-G.

Amide linkage to peptidoglycan.

Page 24: Bacterial Protein Translocation & Pathogenesis

So what’s in common?

All secretion systems must:

• assemble themselves.

• recognize the appropriate substrates.

• maintain proper folding state.

• determine their final locations.

Page 25: Bacterial Protein Translocation & Pathogenesis

Additional reading (not assigned)

The structural basis of protein targeting and translocation in bacteria.Driessen AJ, Manting EH, van der Does C. Nat Struct Biol. 2001 8(6):492-8.

The Tat protein export pathway.Berks BC, Sargent F, Palmer T. Mol Microbiol. 2000 Jan;35(2):260-74.

Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey.Dilks K, Rose RW, Hartmann E, Pohlschroder M. J Bacteriol. 2003 Feb;185(4):1478-83.

Protein secretion and the pathogenesis of bacterial infections.Lee VT, Schneewind O. Genes Dev. 2001 Jul 15;15(14):1725-52.

Getting out: protein traffic in prokaryotes.Pugsley AP, Francetic O, Driessen AJ, de Lorenzo V. Mol Microbiol. 2004 Apr;52(1):3-11.

Page 26: Bacterial Protein Translocation & Pathogenesis

Fig 1.

0

25

50

75

100

125

0 2 4 6 8

days

% m

etab

olis

m

A B

+ RD1 tn3870 tn3871 tn3874 3875 tn3876

x H37Rv- tn0982-- tn3864

H37Rv

H37Rv:t

n098

2

H37Rv:t

n386

4

H37Rv:

RD1

H37Rv:t

n387

0

H37Rv:t

n387

1

H37Rv:t

n387

4

H37Rv:

3875

H37Rv:t

n387

6

5.0×1006

1.0×1007

1.5×1007

2.0×1007

day 0

day 4

day 7

ba

cte

ria

/ w

ell

Guinn et al, Mol Microbiol, 2004, 51(2):359-370.

Page 27: Bacterial Protein Translocation & Pathogenesis

Fig. 2

0

20

40

60

80

100

120

0 2 4 6 8

days

% m

etab

olis

m

A

0

20

40

60

80

100

120

0 2 4 6 8days

% m

etab

olis

m

B

Guinn et al, Mol Microbiol, 2004, 51(2):359-370.

Page 28: Bacterial Protein Translocation & Pathogenesis

Fig. 3

Guinn et al, Mol Microbiol, 2004, 51(2):359-370.

day 0 day 4 day 70

25

50

75 H37Rv

H37Rv: RD1

***

***

% o

f ce

lls

infe

cted

A B

day 0 day 4 day 70

25

50

75

100

***

***

% o

f in

fect

ed c

ells

wit

h>

10 b

acil

li

Page 29: Bacterial Protein Translocation & Pathogenesis

Fig. 4

Guinn et al, Mol Microbiol, 2004, 51(2):359-370.

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

0 4

weeks

ba

cte

ria

/ lu

ng

H37Rv

H37Rv: RD1

H37Rv:tn3870

H37Rv: 3875

H37Rv:tn3876

Page 30: Bacterial Protein Translocation & Pathogenesis

Fig. 5

Guinn et al, Mol Microbiol, 2004, 51(2):359-370.

A B

C ED

Page 31: Bacterial Protein Translocation & Pathogenesis

Fig. 6

Guinn et al, Mol Microbiol, 2004, 51(2):359-370.

Page 32: Bacterial Protein Translocation & Pathogenesis

Fig. 7

Guinn et al, Mol Microbiol, 2004, 51(2):359-370.

A B

0 25 50 750

100

200

300

ng/ml CFP-10

spo

t fo

rmin

g u

nit

s(I

FN

-)

H37Rv

RD1

tn38

70

tn38

70:K

G18

tn38

71

tn38

71:K

G18

tn38

74

tn38

74:M

H408

3875

3875

:MH40

6

tn38

76

tn38

76:M

H429

0

100

200

300 filtratepellet

spo

t fo

rmin

g u

nit

s(I

FN

-)