ars.els-cdn.com · web viewsuperhydrophobic, durable and electrically conductive polymer nanofiber...

11
Superhydrophobic, durable and electrically conductive polymer nanofiber composite for multifunctional sensing applications Jiefeng Gao* a,b , Ling Wang a , Zheng Guo a , Bei Li a , Hao Wang a , Junchen Luo a , Xuewu Huang a , Huaiguo Xue a a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China b State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China *Corresponding authors: [email protected]; Fig. S1 (a) Photograph of the PU/SEBS nanofiber membrane. (b) SEM image of PU/SEBS nanofiber membrane.

Upload: others

Post on 29-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ars.els-cdn.com · Web viewSuperhydrophobic, durable and electrically conductive polymer nanofiber composite for multifunctional sensing applicationsJiefeng Gao*a,b, Ling Wang a,

Superhydrophobic, durable and electrically conductive polymer

nanofiber composite for multifunctional sensing applications

Jiefeng Gao*a,b, Ling Wang a, Zheng Guo a, Bei Li a, Hao Wang a, Junchen Luo a,

Xuewu Huang a, Huaiguo Xue a a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou,

Jiangsu, 225002, Chinab State Key Laboratory of Polymer Materials Engineering, Sichuan University,

Chengdu, Sichuan 610065, China

*Corresponding authors: [email protected];

Fig. S1 (a) Photograph of the PU/SEBS nanofiber membrane. (b) SEM image of PU/SEBS nanofiber membrane.

Page 2: ars.els-cdn.com · Web viewSuperhydrophobic, durable and electrically conductive polymer nanofiber composite for multifunctional sensing applicationsJiefeng Gao*a,b, Ling Wang a,

Fig. S2 SEM images of ACNT decorated blend polymer nanofibers with different ultrasonication time (a) 1 min, (b) 5min, (c) 10 min and (d) 20min.

Fig. S3 The normalized conductivity variation of the nanofiber composite (PU/ACNTs) experiencing different times of sand abrasion.

Fig. S4 TGA curves of the PBNF and PBNF/ACNT-10 membrane.

Fig. S5 TEM image of BPNF/ACNTs nanofiber.

Page 3: ars.els-cdn.com · Web viewSuperhydrophobic, durable and electrically conductive polymer nanofiber composite for multifunctional sensing applicationsJiefeng Gao*a,b, Ling Wang a,

Fig. S6 SEM images of BPNF/ACNT-10 experiencing MTS hydrolysis for different time at a controlled MTS concentration of 1 wt%, (a) 15 min, (b) 30 min, (c) 45 min and (d) 60 min.

Fig. S7 Photo of the water droplets including the acid, alkaline and salt solution on the membrane surface. Cyclic vapor sensing behaviors of BPNF/ACNTs-10 and BPNF/ACNTs-10/P-30 against water vapor.

Page 4: ars.els-cdn.com · Web viewSuperhydrophobic, durable and electrically conductive polymer nanofiber composite for multifunctional sensing applicationsJiefeng Gao*a,b, Ling Wang a,

Fig. S8 The variation of conductivity and contact angle of the nanofiber composite (PBNF/ACNTs/Polysiloxane) with the sand abrasion times.

Fig. S9 The toluene vapor sensing performance of the nanofiber composite after immersion in the acid solution for 8h.

Page 5: ars.els-cdn.com · Web viewSuperhydrophobic, durable and electrically conductive polymer nanofiber composite for multifunctional sensing applicationsJiefeng Gao*a,b, Ling Wang a,

Fig. S10 Strain-sensing behavior of the nanofiber composite under a 50 mm/min strain rates with different strain.

Page 6: ars.els-cdn.com · Web viewSuperhydrophobic, durable and electrically conductive polymer nanofiber composite for multifunctional sensing applicationsJiefeng Gao*a,b, Ling Wang a,

Table S1 Comparative chemical vapor sensing behaviors based on the CPCs

MaterialsVapor

concentrationSolvent

Immersion time in organic vapors

(s)

Responsivity(R/R0)

Ref.

CNTs/RF/PLA

Saturated vaporPolar vapors

(dichloromethane)150 3200

[1]Saturated vapor

Nonpolar vapor(cyclohexane,

tetrachloromethane)150 1.01-1.04

MWCNTs@PPY/HTBN PU 500 ppm Chloroform 120 1.055 [2]

MWCNTs/PLA 1000 ppm Chloroform - 1.048 ~ 1.056 [3]

CNT–celluloseSaturated vapor

Polar vapors(methanol, ethanol, acetone and THF)

100 1.4-1.45[4]

Saturated vaporNonpolar vapor

(n-hexane)100 1.125

SBS/CNT10%

Polar vapors(acetone)

100 3.56[5]

10%Nonpolar vapor(cyclohexane)

100 1.19

Our work

Saturated vaporPolar vapors

(acetone)60 2.8

Saturated vaporNonpolar vapor

(heptane)60 1.1

1 ppm Toluene 270 2.3 × 10-2

Note that the 10% acetone in Ref. 5 is diluted using a bubbler-based sensor measurement system [6].

Reference

[1] Y. L. Li, H. Liu, K. Dai, G.Q. Zheng, C.T. Liu, J.B. Chen, C.Y. Shen, Tuning of

vapor sensing behaviors of eco-friendly conductive polymer composites utilizing

ramie fiber, Sens. Actuators B Chem. 221 (2015) 1279-1289.

[2] R.Q. Zhang, L.B. Wang, R.X. Bai, Y.L. Luo, F. Xu, Y.S. Chen, Sensitive

conductive polymer nanocomposites from multiwalled carbon nanotube coated with

polypyrrole and hydroxyl-terminated poly (butadiene-co-acrylonitile) polyurethane

Page 7: ars.els-cdn.com · Web viewSuperhydrophobic, durable and electrically conductive polymer nanofiber composite for multifunctional sensing applicationsJiefeng Gao*a,b, Ling Wang a,

for detection of chloroform vapor, Compos. Part B: Eng. 173 (2019) 106894-106905.

[3] X.P. Wei, Y.L. Luo, F. Xu, Y.S. Chen, Sensitive conductive polymer composites

based on polylactic acid filled with multiwalled carbon nanotubes for chemical vapor

sensing, Synthetic Met. 215 (2016) 216-222.

[4] H.S. Qi, Liu J, J.W. Pionteck, J. Pionteck, P. Pötschke, E. Mäder, Carbon

nanotube–cellulose composite aerogels for vapour sensing, Sens. and Actuators B

Chem. 213 (2015) 20-26.

[5] X.P. Wang, Y.L. Li, J. Pionteck, Z. Zhou, W. Weng, X.G. Luo, Z.Y. Qin, B. Voit,

M.F. Zhu, Flexible poly (styrene-butadiene-styrene)/carbon nanotube fiber based

vapor sensors with high sensitivity, wide detection range, and fast response, Sens.

Actuators B: Chem. 256 (2018) 896-904.

[6] Y.S. Kim, S.C. Ha, H. Yang, Y.T. Kim, Gas sensor measurement system capable of

sampling volatile organic compounds (VOCs) in wide concentration range, Sens.

Actuators B: Chem. 122 (2007) 211–218.