aromatic and heterocyclic chemistry 4 lectures, michaelmas...

79
Aromatic and Heterocyclic Chemistry 1 Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas 2014 [email protected] handout at: http://burton.chem.ox.ac.uk/teaching.html Advanced Organic Chemistry: Parts A and B; Francis A. Carey, Richard J. Sundberg Organic Chemistry; Jonathan Clayden, Nick Greeves, Stuart Warren, Peter Wothers Advanced Organic Chemistry: Reac7ons, Mechanisms and Structures; J. March Fron7er Orbitals and Organic Chemical Reac7ons; I. Fleming Heterocyclic Chemistry; J. Joule, K. Mills, G. Smith Aroma7c Heterocyclic Chemistry; D. Davies Reac7ve Intermediates; C. Moody and G. Whitham Aroma7c Chemistry; M. Sainsbury The Chemistry of CC πBonds – Lecture notes; Dr MarFn Smith Osugar O HO NHCO 2 Me S Osugar O HO NHCO 2 Me S Osugar O HO NHCO 2 Me S DNA Osugar O HO NHCO 2 Me S Bergman cyclisation DNA diradical O 2 DNA damage +

Upload: vuliem

Post on 28-Jul-2018

291 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 1

Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas 2014

[email protected] handout at: http://burton.chem.ox.ac.uk/teaching.html  

   

   

 Advanced  Organic  Chemistry:  Parts  A  and  B;  Francis  A.  Carey,  Richard  J.  Sundberg      Organic  Chemistry;    Jonathan  Clayden,  Nick  Greeves,  Stuart  Warren,  Peter  Wothers    Advanced  Organic  Chemistry:  Reac7ons,  Mechanisms  and  Structures;  J.  March    Fron7er  Orbitals  and  Organic  Chemical  Reac7ons;  I.  Fleming    Heterocyclic  Chemistry;  J.  Joule,  K.  Mills,  G.  Smith    Aroma7c  Heterocyclic  Chemistry;  D.  Davies    Reac7ve  Intermediates;  C.  Moody  and  G.  Whitham    Aroma7c  Chemistry;  M.  Sainsbury    The  Chemistry  of  C-­‐C  π-­‐Bonds  –  Lecture  notes;  Dr  MarFn  Smith

Osugar

O

HO NHCO2Me

SOsugar

O

HO NHCO2Me

S

Osugar

O

HO NHCO2Me

S

DNA

Osugar

O

HO NHCO2Me

S

Bergmancyclisation

DNA diradicalO2

DNA damage

+

Page 2: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 2

Synopsis    The  Origin  of  AromaFcity  and  General  CharacterisFcs  of  AromaFc  Compounds    

   Examples  of  AromaFcity  

   Nucleophilic  AromaFc  SubsFtuFon  

   Arynes  

   ReacFons  with  Metals:  Ortho  MetallaFon  

   IntroducFon  of  FuncFonal  Groups  

   Pyridine:  Synthesis  and  ReacFons  

   Pyrrole,  Thiophene  and  Furan:  Synthesis  and  ReacFons  

   Indole:  Synthesis  and  ReacFons  

   ReducFon  of  AromaFcs  

     

Page 3: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 3

retains  aromaFc  sextet  of  electrons  in  subsFtuFon  reacFons    does  not  behave  like  a  “normal”  polyene  or  alkene    benzene  is  both  kine7cally  and  thermodynamically  very  stable  

 typical  reacFons  of  alkenes  

 typical  reacFons  of  benzene  

 heats  of  hydrogenaFon  

   

ΔHohydrog  =  -­‐120  kJmol-­‐1  

ΔHohydrog=  3  x  -­‐120  =  -­‐360  kJmol-­‐1    

(hypotheFcal,  1,3,5-­‐cyclohexatriene)  

ΔHohydrog=  -­‐210  kJmol-­‐1  

 

 benzene  ≈150  kJmol-­‐1  more  stable  than  expected  –  (represents  stability  over  hypotheFcal  1,3,5-­‐cyclohextriene)  –  termed  the  empirical  resonance  energy  (values  vary  enormously)    we  know  that  delocalisaFon  is  stabilising,  but  how  much  more  stabilising  is  the  delocalisaFon  in  

benzene  –  should  compare  benzene  with  a  real  molecule  –  we  will  use  1,3,5-­‐hexatriene    require  a  theory  which  explains  the  stability  of  benzene  

 

Me + Br2

fast

Me

Br

Braddition

MeBr not substitution

+ Br2FeBr3 catalyst Br

substitution

+ HBr not additionBr

Br

H2/Pt catalyst H2/Pt catalyst

H2/Pt catalyst

Page 4: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 4

Understanding  Aroma2city      

 Hückel’s  Rule:  planar,  monocyclic,  completely  conjugated  hydrocarbons  will  be  aroma%c  when  the  ring  contains  (4n  +2)  π-­‐electrons  (n  =  0,  1,  2….posi7ve  integers)    

   

Corollary      planar,  monocyclic,  completely  conjugated  hydrocarbons  will  be  an%-­‐aroma%c  when  the  ring  contains  (4n)  π-­‐

electrons  (n  =  0,  1,  2….posi7ve  integers)  

Hückel  Molecular  Orbital  Theory  (HMOT)    applicable  to  conjugated  planar  cyclic  and  acyclic  systems  

   only  the  π-­‐system  is  included;  the  σ-­‐framework  is  ignored  (in  reality  σ-­‐framework  affects  π-­‐system)  

   used  to  calculate  the  wave  funcFons  (ψk)  and  hence  rela7ve  energies  by  the  LCAO  method  

i.e.  ψk  =  c1φ1  +  c2φ2  +  c3φ3  +  c4φ4  +  c5φ5  …..  

 HMOT  solves  energy  (Ek)  and  coefficients  ck    there  are  now  many  more  sophisFcated  methods  for  calculaFng  the  stabilisaFon  energy  in  conjugated  systems;  

however,  HMOT  is  adequate  for  our  purposes.        

ø1ø2

ø3 ø5ø4

Page 5: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 5

Understanding  Aroma2city      HMOT  in  Ac2on    For  cyclic  and  acyclic  systems:  molecular  orbital  energies  =  Ek  =  α  +  mjβ    

   

 α  =  coulomb  integral  -­‐  energy  associated  with  electron  in  an  isolated  2p  orbital  (albeit  in  the  molecular  environment)  –  α  is  negaFve  (stabilising)  and  is  the  same  for  any  p-­‐orbital  in  π-­‐system      β  =  resonance  integral  –  energy  associated  with  having  electrons  shared  by  atoms  in  the  form  of  a  covalent  bond  –  β  

is  negaFve  (stabilising)  and  is  set  to  zero  for  non-­‐adjacent  atoms.  

 (all  overlap  integrals  S  assumed  to  be  zero,  electron  correlaFon  ignored)      

 linear  polyenes      mj  =  2cos[jπ/(n+1)]  j  =  1,  2……n          (n  =  number  of  carbon  atoms  in                  conjugated  system)  

cyclic  polyenes    mj  =  2cos(2jπ/n)  j  =  0,  ±1,  ±2……±[(n-­‐1)/2]  for  odd  n,  ±n/2  for  even  n  

Ethene  

mj  =  2cos(π/3)    and  2cos(2π/3)      =  1  or  -­‐1                    E  =  α  ±  β     α  

α  +  β  

α  -­‐  β  

stabilisaFon  energy  Estab  =  2α  +  2β  

 two  2p  atomic  orbitals  give  2π  molecular  orbitals    

Page 6: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 6

 six  2p  atomic  orbitals  give  6π  molecular  orbitals;  n  =  6,  j  =  1,  2,  3,  4,  5,  6      

 1,3,5-­‐hexatriene  vs  benzene  

   

MO   no.  nodes   energy   HMOT  MO  (calculated)  

ψ6   5   α  -­‐  1.80β  

ψ5   4   α  -­‐  1.25β  

ψ4   3   α  -­‐  0.45β  

ψ3   2   α  +  0.45β  

ψ2   1   α  +  1.25β  

ψ1   0   α  +  1.80β  

 stabilisaFon  energy  =  Estab=  2(3α  +  3.5β)  =  6α  +  7β        

α  

 mj  =  2cos(π/7)  =  1.80      2cos(2π/7)  =  1.25      2cos(3π/7)  =  0.45......              and  the  corresponding  negaFve  values  

 energy  E  =  α  +  1.80β      α  +  1.25β      α  +  0.45β      α  –  0.45β…..etc  

 stabilisaFon  energy  ethene  =  2α  +  2β        

Page 7: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 7

 Benzene  mj  =  2cos(2jπ/n)  j  =  0  ±1,  ±[(n-­‐1)/2]  for  odd  n;              ±n/2  for  even  n  

   

MO   no.  nodes   energy   HMOT  MO  (calculated)  

ψ6   6   α  -­‐  2β  

ψ4,5   4   α  -­‐  β  

ψ2,3   2   α  +  β  

ψ1   0   α  +  2β  

 stabilisaFon  energy  =  Estab=  2(α  +  2β)  +  4(α  +  β)  =  6α  +  8β;  stabilisaFon  energy  w.r.t.  1,3,5-­‐hexatriene  =  β  

α  

 six  2p  atomic  orbitals  give  6π  molecular  orbitals;  n  =  6,  j  =  0  ±1,  ±2,  ±3    mj  =  2cos(0)  =  2,    2cos(±2π/6)  =  1,    2cos(±4π/6)  =  -­‐1,    2cos(±6π/6)=  -­‐2    energy  E  =  α  +  2β,      α  +  β,      α  -­‐  β,      α  –  2β  

 HMOT  predicts  benzene  is  more  stable  than  1,3,5-­‐hexatriene    aroma7c  compounds  are  those  with  a  π-­‐system  lower  in  energy  than  that  of  acyclic  counterpart    an7-­‐aroma7c  compounds  are  those  with  a  π-­‐system  higher  in  energy  than  that  of  acyclic  counterpart  

   

Page 8: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 8

E

α

2β 2β

α

cyclobutadiene benzene

α"+"β

α"$"β

α"$"2βα"$"2β

α"+"2β α"+"2β

Frost-­‐Musulin  Diagram  –  Frost  Circle      simple  method  to  find  the  energies  of  the  molecular  orbitals  for  an  aromaFc  compound  

General  CharacterisFcs  of  AromaFc  Compounds    planar  fully  conjugates  cyclic  polyenes  

 inscribe  the  regular  polygon,  with  one  vertex  poinFng  down,  inside  a  circle  of  radius  2β,  centred  at  energy  α    

 each  intersecFon  of  the  polygon  with  the  circumference  of  the  circle  corresponds  to  the  energy  of  a  molecular  orbital  

 more  stable  than  acyclic  analogues    bonds  of  nearly  equal  length  i.e.  not  alternaFng  single  and  double  bonds    undergo  subsFtuFon  reacFons  (rather  than  addiFon  reacFons)    support  a  diamagneFc  ring  current  -­‐  good  test  for  aromaFc  character  of  a  compound  

 

H HδH = 5-6 ppm δH = 7.26 ppm

aromatics δH = 7-8 ppm

HB0

applied field

> >

> >

>

ring current

induced magnetic field

Page 9: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 9

ClNu Nu

Cl

SbCl5(Lewis acid)

SbCl6

H

H

H

Examples  of  AromaFc  and  AnF-­‐AromaFc  Compounds  Hückel’s  rule  [(4n  +2)  π-­‐electrons  for  aromaFc  compounds  [4n  π-­‐electrons  for  anF-­‐aromaFc  compounds]  holds  for  

anions,  caFons  and  neutrals      

Cyclopropenium  caFon    (4n  +2),  n  =  0,  2π  electrons;  stabilisaFon  energy  =  2α  +  4β  –  stabilisaFon  energy  of  allyl  caFon  =  2α  +  2.8β    

 insoluble  in  non-­‐polar  solvents;  1  signal  in  1H  NMR  δH  =  11.1  ppm  -­‐  aromaFc  and  a  caFon    compare  with  cyclopropyl  caFon  which  is  subject  to  rearrangement  to  the  allyl  caFon  

 

Cyclopropenium  anion    (4n),  n  =  1,  4π  electrons  –  anF-­‐aromaFc    stabilisaFon  energy  Estab=  4α  +2β;  stabilisaFon  energy  of  allyl  anion  =  4α  +2√2β  

rate  of  proton  exchange:  cyclopropane/cyclopropene  =  10000    

E

α!+!2β

α!$!β

Ph Ph

Ph H

Ph Ph

Ph

- H+ E

α!+!2β

α!$!β Ph Ph

NC H

Ph Ph

NC H

Page 10: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 10

N

H δ = 7.46H δ = 7.01

H δ = 8.50

1.40 Å

1.39 Å

1.34 Å

2.2 D

Benzene    (4n  +2),  n  =  1,  6π  electrons      δH  =  7.26  ppm,  planar  molecule;  bond  length  =  1.39  Å

   

isoelectronic  with  pyridine  

Cyclopentadienyl  Anion      (4n  +2),  n  =  1,  6π  electrons  

H

pKa  =  16   pKa  =  43   pKa  <  -­‐2    

C-­‐C   sp3-­‐sp3   1.54  Å  

C-­‐C   sp3-­‐sp2   1.50  Å  

C-­‐C   sp3-­‐sp   1.47  Å  

C-­‐C   sp2-­‐sp2   1.46  Å  

C-­‐C   benzene   1.39  Å  

C=C     1.34  Å  

C≡C   1.21  Å  

H H H

CF3F3C

F3CCF3CF3

Hbase

B:  

E

pKa  H2O  =  15.74   pKa  HNO3  =  -­‐1.3  

Page 11: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 11

Examples  of  aromaFc  and  anFaromaFc  compounds    (4n  +2),  n  =  1,  6  electrons    cyclopentadienide  anion  is  isoelectronic  with  furan  pyrrole  and  thiophene    

   in  each  case  the  (one  of  the)  lone  pair(s)  is  parallel  to  the  p-­‐orbitals  and  part  of  the  π-­‐system  

   all  3  are  aromaFc,  show  ring  currents  and  undergo  electrophilic  aromaFc  subsFtuFon  

   

S O NH X

thiophene furan pyrrole

0.66 D0.55 D 1.74 D

NH

pyrrolidine

X X X

Page 12: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 12

Examples  of  AromaFc  and  AnF-­‐AromaFc  Compounds    cyclopentadienyl  caFon    (4n),  n  =  1,  4π  electrons  –  anF-­‐aromaFc  

cyclopentadienone  

I I

XAgClO4

CH3CH2CO2HAgClO4

CH3CH2CO2H

OO

Br

Et2NH O

anti-aromatichighly reactive compoundreadily dimerises

O

O

heat-CO

O

O

O

Diels-Alderreaction

O

Ph

PhPh

Ph CO2Me

O

CO2Me

H

Ph Ph

PhPh

Page 13: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 13

O O

hνO

O hν, 4 K -CO2 warm

Diels-Alder

Examples  of  AromaFc  and  AnF-­‐AromaFc  Compounds    cyclobutadiene    (4n),  n  =  1,  4π  electrons  –  anF-­‐aromaFc  

 cyclobutadiene  can  be  stabilised  with  very  bulky  subsFtuents    stable  up  to  150  °C  but  very  reacFve  towards  O2  

 HMOT  predicts  triplet  ground  state  for  cyclobutadiene  –  cyclobutadiene  is  actually  a  singlet  ground  state  and  is  rectangular  not  square  

 only  possible  to  isolate  at  very  low  temperatures  in  an  argon  matrix  

1.567 Å

1.346 Ådistorts

CO2Me

CO2Me

Me

MeMe Me

MeMe

Me

MeMe

H

Page 14: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 14

HPh

Ph PhBF4

+

trityl tetrafluoroborate(hydride acceptor)

Examples  of  AromaFc  and  AnF-­‐AromaFc  Compounds    tropylium  caFon    (4n  +2),  n  =  1,  6π  electrons  –  aromaFc        

cyclooctatetraene    non-­‐aromaFc,  alternaFng  bond  lengths,  distorts  to  avoid  planar  anF-­‐aromaFc  conformaFon,    normal  reacFvity  of  polyene  

     

 ionic  compound  mp  205  °C  insoluble  in  non-­‐polar  solvents  

1.33 Å

1.46 Å

D2dtub shaped

Br Br

Page 15: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 15

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

6.3 D

Ph

Ph

Ph

Ph

Ph

Ph

reduced barrierto rotation

0.8$D

6π 6π

Examples  of  AromaFc  and  AnF-­‐AromaFc  Compounds  

Azulene  

[18]-­‐Annulene    (4n+2),  n  =  4,  18π  electrons  –aromaFc   ring  large  enough  to  be  planar  without  steric  congesFon  of  inner  protons   2  signals  in  1H  NMR  consistent  with  ring  current  

         

Lactarius  indigo,  the  indigo  milk  cap  

6π   2π  

6π-­‐aromaFc   2π-­‐aromaFc  

δH = 9.3

δH = -3.0

18 π electronsbright red

HH

B0

applied field> >

>

>

>

ring current

induced magnetic field

HH

decreased fieldlower chemical shift

Page 16: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 16

 electron  donaFng  groups  acFvate  the  aromaFc  ring  (i.e.  substrate  reacts  faster  than  benzene)  and  are  ortho  and  para  direcFng  

 electron  withdrawing  groups  deacFvate  the  aromaFc  ring  (i.e.  substrate  reacts  slowed  than  benzene)  and  are  meta  direcFng  

 halogens  are  mildly  deacFvaFng  and  direct  ortho  and  para  

Y YE

Y

E

Y

E

E

ACTIVATING  group  means  that  the  reacFon  of  the  subsFtuted  benzene  is  faster  than  that  of  benzene  itself    Typical  acFvaFng  groups  include:  OH,  O-­‐,                          ,                                ,OR,  NH2,  NR2,  alkyl,  Ph  O R

O

HN R

O

OR

O

NR2

O

R

ODEACTIVATING  group  means  that  the  reacFon  of  the  subsFtuted  benzene  is  slower  than  that  of  benzene  itself    Typical  deacFvaFng  groups  include:  R3N+,  CF3,  NO2,  SO3H,  CN,    O-­‐,                          ,                                ,    

OMe

Br2, AcOH

OMe

Br

OMeBr

98 2

kanisole  /  kbenzene    =  109  

Electrophilic  AromaFc  SubsituFon  -­‐  SubsFtuent  Effects    subsFtuent  Y  affects  both  the  rate  and  regiochemistry  of  the  reacFon    

Page 17: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 17

Halogens  

   

 mildly  deacFvaFng  as  they  are  electronegaFve  and  withdraw  electron  density  from  the  ring  through  the  σ-­‐framework  (falls  off  with  distance)    halogens  direct  ortho  and  para  as  they  have  lone  pairs  in  high  energy  orbitals  which  stabilise  the  intermediates  for  

ortho/para  a�ack  

MeO  –  overall  electron  donaFng  on  benzene  ring   Cl  –  overall  electron  withdrawing  on  benzene  ring  

with  chlorobenzene  the  σ-­‐electron  withdrawing  of  the  chlorine  is  greater  than  the  π-­‐donaFon  of  the  chlorine  3p  lone  pair  and  chlorobenzene  is  deacFvated  with  respect  to  benzene  

OMe: OMe

1.2 D

Cl: Cl

1.6 D

2p  –lone  pair  

good  2p  -­‐2p  overlap  

3p  –lone  pair  

poor  2p  -­‐3p  overlap  

 both  oxygen  and  chlorine  are  electronegaFve        with  anisole  the  σ-­‐electron  withdrawing  of  the  oxygen  is  less  than  the  π-­‐

donaFon  of  the  oxygen  2p  lone  pair  and  anisole  is  acFvated  with  respect  to  benzene  

N   O   F  

P   S   Cl  

Se   Br  

Te   I  

Po   At  

increasin

g  electron

ega7

vity  

increasin

g  siz

e  of  p-­‐orbita

ls  

increasing  electronega7vity    

OMe

Cl

Page 18: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 18

product  distribuFon  %   kArX/kbenzene  ortho   meta   para  

PhF   12   -­‐   87   0.18  

PhCl   30   0.9   69   0.064  

PhBr   37   1.2   62   0.060  

PhI   38   1.8   60   0.12  

Xconc. HNO3, conc. H2SO4 X

NO2

NitraFon  of  halobenzenes  

why  does  fluorobenzene  react  faster  than  than  the  other  halobenzenes?   why  does  fluorobenzene  give  the  largest  amount  of  the  para  isomer?    

NitraFon  of  toluene  

Me  is  an  electron  donaFng  group  and  hence  an  acFvaFng  group   Wheland  intermediate  for  ortho  /  para  a�ack  is  stabilised  by  hyperconjugaFon  –  σCH  →  π  

CH3

HNO3 / H2SO4

CH3NO2

CH3

NO2

CH3

NO259% <4% 37%

H

HH

+H

O2N

NO2

H

H

HH

+

deactivatingm directing

NitraFon  of  dimethyl  aniline  strongly activatingand o/p directing

NMe2 H2SO4,HNO3

NMe2

NO2

NMe2

NO2

H

Page 19: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 19

Ipso  aMack  and  reversible  reacFons      electrophilic  aromaFc  subsFtuFon  is  generally  an  irreversible  process  all  of  the  above  arguments  with  regard  to  

ortho,  meta  and  para  raFos  have  been  based  on  the  irreversibility  of  the  process        i.e.  the  reacFons  are  under  kineFc  control  -­‐  but  there  are  some  excepFons  

   

 not  all  electrophilic  aromaFc  subsFtuFon  reacFons  are  under  kineFc  control  

sulfonaFon  -­‐  usual  reacFon  condiFons:  conc.  H2SO4  with  SO3  

sulfonyl  group  is    electron  withdrawing  so  we  only  have  mono-­‐subsFtuFon  

at  high  temperatures  with  dilute  H2SO4  –  sulfonaFon  is  reversible    

a�ack  by  an  electrophile  at  a  posiFon  which  already  carries  a  non-­‐hydrogen  subsFtuent  is  termed  ipso-­‐subs7tu7on  

OHBr SO3H

SO3H

H2SO4

OHBr

ipso  a�ack  

we  can  use  an  SO3H  group  as  a  blocking  group  

SOO

O

H SOHO

O HO3S HHO3S

OHBr SO3H

SO3H

H

OHBr SO3H

SH

OO

OH

OHBr SO3H

H

OHBr H

H

Page 20: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 20

Ipso  aMack  –  aXack  at  posi7on  already  carrying  a  subs7tuent  

10000  Fmes  faster  than  proton  exchange  in  benzene    Si  stabilises  a  β-­‐caFon  –  see  organoelement  course  in  Hilary  SiMe3

H

SiMe3

ClH

+ Me3SiCl

Cl

Me

tBuCl / AlCl3

Me

low temperature

tBuCl / AlCl3

Me

high temperatureMe

MeMe

Me

MeMe

MeMeMe

kineFc  control  thermodynamic    control  

Me

H

Me

HMe Me

MeMe Me

Me

Me

Me

MeMeH

Me

Me

MeMe

Me

Me

MeMe

Me

MeMe

Page 21: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 21

Nucleophilic  Aroma2c  Subs2tu2on  SNAr  –  AddiFon  –  EliminaFon  Mechanism    for  halogens  as  leaving  groups,  rate  of  reacFon  usually  follows    kF  >  kCl  >  kBr  (c.f.  rate  of  SN2  reacFons  kI  >  kBr  >  kCl  >  kF)  

   

 rate  determining  step  is  generally  a�ack  of  nucleophile  on  aromaFc  ring  therefore  bond  strength  to  leaving  group  is  not  so  important  in  influencing  the  rate      fluorine  is  the  most  electronegaFve  element  and  enhances  the  electrophilicity  of  the  carbon  being  a�acked  

increasing  the  rate  of  a�ack  by  the  nucleophile  

MeO

NO2

50 °C

NO2X OMe X  =     F   Cl   Br   I  

krel   2810   3.1   2.1   1  

1st  step  usually  rate  determining  

 leaving  group  ability  does  depend  on  the  nucleophile,  nevertheless  leaving  groups  can  broadly  be  divided  into  three  classes:  

good:  F,  NO2,  Me3N+,  OTs,  Me2S+   medium:  Cl,  Br,  I,  OR,  OAr,  SR,  SO2R   poor:  NMe2,  H  

rate  =  k[substrate][nucleophile]  N

F

OO

Nu

NF

OO

Nu

NNu

OO

Page 22: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 22

Cl

Y

OMe

Y

O2N O2NMeO

Y   NO2   Me3N+   SO2Ph   O=CPh   CF3   H  

krel   114000   2130   18400   2700   800   1  

Nucleophilic  Aroma2c  Subs2tu2on    electron  withdrawing  groups  ortho/para  to  leaving  group  enhance  rate    electron  donaFng  groups  ortho/para  to  leaving  group  retard  rate    subsFtuents  meta  to  the  leaving  group  have  less  influence  

     the  acFvaFng  group  

 

Cl

Y

HN

+

N

Y

O2N O2NH

Y   CN   OMe   Br  

krel   6000   0.25   10  

Page 23: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 23

 vicarious  Nucleophilic  SubsFtuFon  -­‐  (nucleophilic  subsFtuFon  of  hydrogen)  

   

mechanism  

 LG  =  Cl,  Br,  PhO,  PhS,  RO-­‐  etc;    EWG  =  SO2Ph,  SO2NR2,  SO2OPh,  POPh2,  CN,  CO2Et  

for  VNS  require  a  nucleophile  which  

carries  a  leaving  group  

LG EWG

Cl SO2Ph

KOH, DMSO

O2N

SO2Ph

O2N

H

O2NH

HPhO2S

rate  determining    step  

rate  determining  step  is  eliminaFon  of  H-­‐X  (HCl)  from  σ-­‐adduct  

N

H

O

O

Cl

SO2Ph

NO

O

HCl

SO2Ph

NO

O

SO2Ph

NO

O

SO2Ph

NO

O

SO2PhHO

Page 24: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 24

Vicarious  Nucleophilic  SubsFtuFon    

orientaFon  of  addiFon  depends  on:  structure  of  the  carbanion;  structure  of  the  arene;  reacFon  condiFons  

for  a�ack  on  nitrobenzene,  as  the  bulk  of  the  nucleophile  increases  the  amount  of  para  isomer  increases    

NO2

F

Cl SO2Ph

KOH, DMSO

NO2

FSO2Ph

18%

X   R   yield  /  %   ortho   para  

F   H   63   74   26  

Cl   H   75   53   47  

Cl   Et   68   100  

Cl   Ph   93   100  

NO2

X SO2Ph

KOH, DMSO

NO2

SO2Ph

NO2

PhO2SR

R R

low  yield  due  to  compeFng  SNAr  of  fluoride  

Page 25: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 25

ortho-benzyne(benzyne)

relative energy = 0 kJmol-1

best represented

as

meta-benzynerelative energyca. 64 kJmol-1

para-benzynerelative energyca. 130 kJmol-1

Br

H

NaNH2, NH3(I)NH2

H

NH2 NH2

NH2

Arynes    removal  of  two  hydrogen  atoms  from  benzene  leaving  two  electrons  to  be  distributed  between  two  orbitals  gives  

rise  to  the  various  arynes  

   

ortho-­‐benzyne  Synthesis  

Evidence    IR  spectrum  of  benzyne  in  an  argon  matrix  shows  C-­‐C  bond  is  0.05  Å  shorter  than  in  benzene    Roberts  isotope  labelling  experiment  –  disproves  direct  subsFtuFon  or  SNAr  addiFon/eliminaFon  mechanism  

1:1  mixture      •  =  14C  

ClKNH2NH3(l) •• NH2• •+

NH2

Page 26: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 26

O

O

Diels-Alder reaction

Arynes    trapping  experiments  

       

   

 isolaFon  of  complexes    

Structure  of  ortho-­‐benzyne    best  represented  as  an  alkyne  with  a  very  strained  triple  bond  

   benzyne  has  a  very  small  HOMO-­‐LUMO  gap  (the  “triple”  bond  is  very  weak)  

   the  LUMO  energy  is  very  low  and  arynes  are  very  electrophilic;  they  are  uncharged  their  reacFons  tend  to  be  

dominated  by  orbital  control  (i.e.  they  are  very  “so�”)      carbene  like  –  two  electrons  in  two  orbitals  

oxidaFve  addiFon    then  ligand  subsFtuFon  

PNi

P

Cy Cy

CyCy

LiCl

Br

Br

Br

NiP

PCy

Cy

CyCy

Cl

Na/Hg

reduction

PNi

P

Cy Cy

CyCy

Page 27: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 27

SiMe3

I+Ph TfO-

Bu4N FOSO2CF3

SiMe3

F

X

Br

RLi X r.d.s

Arynes  GeneraFon    relaFve  reacFvity  for  formaFon  of  benzyne  with  alkyl  lithiums  by  deprotonaFon  is  F  >  Cl  >  Br  >  I;  actual  rate  of  

generaFon  of  benzyne  depends  on  solvent,  base  and  leaving  group    

   

 lithium  halogen  exchange  is  very  fast  for  Br  and  I  and  loss  of  X-­‐  is  r.d.s.  hence  rate  is  Br>Cl>F  

 mildest  method  of  benzyne    generaFon  involves  hypervalent  iodine  intermediate  

F

H

RLiF E1CB

F

most acidic proton (inductive effect)

anion in sp2 orbitaltherefore mesomericeffects far less importantthen inductive effects

R

exceptionalleaving group

Page 28: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 28

EWGX base

EWG

Nu

EWG

Nu

EWG(-)

Nu(-)

EDGX base

EDGNu

EDGNu

EDGNu(-)

(-)

Arynes    OrientaFon  of  a�ack  on  arynes  from  ortho-­‐disubsFtuted  substrates  can  be  raFonalised  by  a  charge-­‐control  model  

–  recently  a  more  sophisFcated  model  involving  aryne  distorFon  has  been  proposed.      

   

Note:  EWG  and  EDG  in  the  above  examples  refer  to  induc7ve  effects    aryne  orbitals  are  orthogonal  to  the  aromaFc  π-­‐system  hence  subsFtuents  exert  influence  inducFvely  through  σ-­‐

framework  

major product

developing negativecharge distal fromEDG

major product

EWG stabilisesdeveloping negativecharge

Page 29: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 29

EDG

base

EDG

Nu

EDG EDG

(-)XH

Nu Nu(-)

EWG

base

EWG

Nu

EWG

Nu

EWG

Nu(-)X

H

H

(-)

Arynes    OrientaFon  of  a�ack  on  arynes  from  meta-­‐disubsFtuted  substrates  

   

Note:  EWG  and  EDG  in  the  above  examples  refer  to  induc7ve  effects  

major product

most acidic

EWG stabilisesdeveloping negativecharge

developing negativecharge distal fromEDG

major productbut lowerselectivity

most acidic

Page 30: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 30

OMe

Br

N- Li+OMe OMe OMe

NN

N- Li+53:47

Arynes  Examples  

   

R  =  mild  inducFve  EDG  but  when  R  =  iPr,  sterics  win  

OMeBr KNH2, NH3

OMe

NH2high selectivity

OMe

inductive EWG

Cl

Cl

NaNH2, NH3

Cl Cl

NH2

high selectivity

H

inductive EWG

inductive EWG

RN- Li+

R R R

N

N- Li+Br N R = Me, 34:66R = iPr, 4:96

Page 31: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 31

+

+

Arynes    CycloaddiFon  reacFons  of  benzyne  

 

   

 2+2  of  benzyne  is  not  completely  stereospecific  –  probably  a  diradical  mechanism      

anthracene  

Cl

Cl

Cl

Cl

+

Cl

Cl

Cl Cl

major product minor product

minor product major product

Page 32: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 32

Osugar

O

HO NHCO2Me

SOsugar

O

HO NHCO2Me

S

Osugar

O

HO NHCO2Me

S

DNA

Osugar

O

HO NHCO2Me

S

Bergmancyclisation

DNA diradicalO2

DNA damage

+

H

H

CCl4

Cl

Cl

ClCl

Cl

Cl

H

H

D

D

D

D

200 °Ct1/2 = 30 s

D

D

H

HD

D

N2

O

O

heatMe

MeHMe

Me

Arynes    ene  reacFon  (a  group  transfer  reacFon)  

   

para-­‐benzyne    the  Bergman  cyclisaFon  

 mechanism  of  acFon  of  calicheamicin  γ1I  

Page 33: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 33

OMeH BuLi

OH

Me LiBu O

Me

Li

O

NMe2H

DMF

MeO

NMe2

H OLi MeO

NMe2

H OH, H2O

H

H

MeO

H

O

Aroma2c  organometallics  Ortho-­‐directed  electrophilic  aromaFc  subsFtuFon  

   

     ortho-­‐lithiaFon  by  lithium  halogen  exchange  –  faster  then  deprotonaFon  and  generally  requires  an  organolithium  base  an  aryl  /  alkenyl  bromide  or  iodide.  

mechanism  involves  a�ack  of  alkyl  lithium  at  the  halogen  via  an  intermediate  “ate”  complex  

via  “ate”  complex  

OMeBrBu

reacFon  is  an  equilibrium  process  which  favours  the  more  stable  anion  (remember,  anion  order  is  sp3>sp2>sp  –  the  stability  of  the  anion  is  in  the  order  of  the  pKa  of  the  corresponding  hydrocarbon)  

in  the  above  example  an  sp3  anion  (butyl  lithium)  gives  an  sp2  anion  

anion  in  an  sp2  orbital  anion  in  an  sp3  orbital  

 directed  ortho-­‐lithiaFon  

use  amides  as  electrophiles:  reac7ve  formyl  group  is  not  unmasked  un7l  the  reac7on  is  

quenched  with  acid  

OMeBr

OMeLi

+ BuBrBu Li

Page 34: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 34

O O

NR2

SR O

OR2N O

SR2N

OO

RN O

NO

MeMe

O NR2

O

RNStBuO

CF3

X

NR2

OR

NR2( )n

O O

N

O

OtBu

increasing  ability  to  direct  ortho-­‐lithiaFon  

temperature  (°C)  of  ortho-­‐lithiaFon  with  RLi  in  THF  or  ether  

-­‐78  °C   -­‐78  °C   -­‐78  °C   -­‐78  °C   -­‐50  °C   -­‐20  °C     0  °C   >0  °C   >20  °C  

condiFon  dependent  order  

O-­‐carbamates   3°  amides  

sulfoxides  

sulfonamides  sulfones  

2°  amides   imines  

oxazloines   MOM  ethers   ethers   halogens   benzylic  alkoxides  

anilines  

aminomethyl  

trifluoromethyl  

remote  amines  

N-­‐carbamates  

Adapted  from:  J.  Clayden  in  “Organolithiums:  Selec7vity  for  Synthesis”,  Pergamon,  Oxford  2002.    

most  powerful  directors  

Page 35: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 35

COClHO NH2

MeMe

then dehydrate

NO

Me Me

BuLi

NO

Me Me

Li Br R

NO

Me Me

R

normal selectivityfor SN2

   

Aroma2c  organometallics  Directed  ortho-­‐lithiaFon  

   

applicaFon:  ortho-­‐allylaFon  

cooperaFon  between  two  ortho-­‐directors  

Et2N O

HH

HF

BuLithen PhCHO

Et2N O

H

F

Ph

OHputs electrophile in

most difficult positionbetween two groups

Page 36: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 36

MeMe

Me Me

H

Me Me

MeMe

Me MeMe Me

Introduc2on  of  Func2onal  Groups  –Synthesis    Friedel  Cra�s  AlkylaFon    polyalkylaFon  and  rearrangement  predominate  

 with  one  equivalent  of  alkylaFng  agent  mixtures  of  products  result  as  the  iniFally  formed  monoalkyl  arene  is  more  reacFve  than  the  unalkylated  arene  –  alkyl  groups  are  electron  donaFng        

AlCl3, cat. MeCl Me Me

Me

MeMe

+

more  reacFve  than  benzene  

more  reacFve  than  toluene  

more  reacFve  than  toluene  

excess MeCl, cat. AlCl3

MeMeMe

Me MeMe

ClHHH

AlCl3

Page 37: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 37

Br AlBr3H

MeMe Me

MeBr: AlBr3 Me

MeH

Me

Me

Introduc2on  of  Func2onal  Groups  –Synthesis    Friedel  Cra�s  AlkylaFon    polyalkylaFon  and  rearrangement  predominate    with  primary  alkyl  halides  rearrangement  occurs  

     

cat. AlBr3

MeBr Me Me

+

Me

major   minor  

of  monoalkylated  products  

1,2-­‐hydride  shi�  

primary  carbocaFons  are  very  unstable  rearrangement  to  the  secondary  carbocaFon  occurs  

Page 38: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 38

MeCl

O

AlCl3 MeO

OMe

H

OMe AlCl3

OMe

AlCl3

Introduc2on  of  Func2onal  Groups  –Synthesis    Friedel  Cra�s  AcylaFon    requires  a  full  equivalent  of  the  Lewis  acid    mono-­‐subsFtuFon  predominates  as  introduced  group  is  electron-­‐withdrawing  and  deacFvates  aromaFc  ring  

 

 carbonyl  group  can  then  be  removed  if  required  (Clemensen  reducFon,  Zn/HCl;  Wolf-­‐Kishner  reducFon,  NH2NH2  then  KOH,  heat;    dithiane  than  Raney  Ni)  giving  products  of  a  selecFve  Friedel-­‐Cra�s  alkylaFon  

 para-­‐isomer  generally  favoured  by  steric  hindrance  

monosubsFtuFon  Me

Cl

O OMe

1 equivalent AlCl3

MeOMe

O

O Me

O+

AlCl3, toluene

MeO

Me

O

93%  yield  

Page 39: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 39

O

Me

OH

O

MeO

AlCl3solvent-separated

ion pair

polar solvent

O

AlCl3

O

MeH

AlCl3

OMe

O

AlCl3

Introduc2on  of  Func2onal  Groups  –Synthesis    Friedel  Cra�s  AcylaFon    Fries  rearrangement  can  give  access  to  either  the  ortho-­‐  or  para-­‐isomer  

 Friedel  Cra�s  summary          Alkyla2on    Acyla2on  AlCl3    cataly7c    stoichiometric  Rearrangement  possible    no,  but  loss  of  CO  from  R-­‐C≡O+  if  R+  stable,  e.g.  Ph3C+  subsFtuFon  order  poly    mono    

HOMe

O

O Me

O+ pyridine

OMe

O

O

AlCl3

O

Me

inside solvent cage - tight ion pair

non-polarsolvent

O

O

Me

Cl3Al

major product in non polar solvents

workup

HO

O

Me

major product in polar solvents e.g. PhNO2

workup

HO

Me

O

Page 40: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 40

Introduc2on  of  Func2onal  Groups  –Synthesis    Synthesis  of  benzyl  halides  

   free  radical  brominaFon  

 mechanism  

good  radical  iniFator   Blanc  chloromethylaFon  –  related  to  Fiedel-­‐Cra�s  reacFons  

OMe

O

Me

Me

(CH2O)n,conc. HCl

OMe

O

Me

Me

ClCl

Me1 equivalent

N

O

O

Br

BrNBS, hv, or heat or AIBN

BrAIBN = azobisisobutyronitrile

NN

Me Me

CNNC

Me Me

OH

H

HOH

HHCl Cl

Page 41: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 41

Introduc2on  of  func2onal  groups  

halogenaFon  –  standard  method  is  by  electrophilic  aromaFc  subsFtuFon  using  a  source  of  posiFve  halogen  generally  in  the  presence  of  a  Lewis  acid    

with  acFvated  aromaFcs  Lewis  acid  acFvaFon  of  the  electrophile  is  not  required,      

with  benzene  and  with  deacFvated  aromaFcs  Lewis  acid  acFvaFon  of  the  electrophile  is  required  

NO2

Me

Br2, FeBr3

NO2

MeBr

halogenaFon  can  frequently  be  best  achieved  using  Sandmeyer  reacFons  (parFcularly  good  for  introducing  I  and  F  as  well  as  Cl,  Br  and  CN)  

conc. HNO3conc. H2SO4

NO2Sn, HClor H2Pd/C NH2 N

HX, NaNO2,0 °C N

X

Page 42: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 42

Ar N NX

HOHO N

N Ar

Introduc2on  of  Func2onal  Groups  –Synthesis    diazonium  salts  -­‐  reacFons  

Ar N NX

H2O, 100 °CAr OH Ar N N

BF4

heatAr F

Ar N NX

cat. CuX,KX

X = Br, Cl, CNAr X Ar N N

XAr X

KI

Ar N NX

Ar HH3PO2

Ar N NX

Me

O

OR

O

Me

O

OR

O

NNHAr

SN1  reacFon  via  carbenium  ion    

v.  high  energy  intermediate,  offset  by  the  formaFon  of  N2  carbenium  not  stabilised  by  π-­‐system  as  is  orthogonal  to  π-­‐system  

empty  sp2  orbital  

SN1  reacFon  via  carbenium  ion  –  Balz  Schiemann  reacFon    

radical  reacFon  

radical  reacFon  

radical  reacFon  

electrophilic  aromaFc  subsFtuFon  

via  enol  

NH2

NaNO2,HX 0 °C N

N -N2

slow

Page 43: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 43

X

NN•

N •NNNI

NN

IKI, 0 °C I

MX

XCuIX

CuI Xstart here

XCuII

X

N2

NN

SET

XCuII

X

Introduc2on  of  Func2onal  Groups  –Synthesis   HalogenaFon  /  cyanaFon  Sandmeyer  -­‐    X  =  Br,  Cl,  CN  

 IodinaFon  Sandmeyer  –  no  copper  salt  required  

NN

X

cat. Cu(I) XMX, 0 °C X

I I

I• I I+

Page 44: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 44

Br Bu Li I I I

NN

BF4

MeO

MeOOMe

OH I ClMeO

MeOOMe

OH

I

Me Me

Me Me

I2HIO4

Me Me

Me Me

I

NN

BF4

heat solid F+ BF3

Introduc2on  of  Func2onal  Groups  –Synthesis    FluorinaFon  from  diazonium  salts  –  Baltz-­‐Schimann  reacFons  

 IodinaFon  other  methods  

 Iodine  less  reacFve  electrophile  than  bromine  or  chlorine,  therefore  require  acFvated  substrate  or  presence  of  an  oxidising  agent  (maybe  generaFng  I+),  or  more  reacFve  interhalogen  e.g.  I-­‐Cl  

 examples  

 metal  halogen  exchange  

FB

F FF

Page 45: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 45

HNOH

HF HNOH2

F

NH

HF

H

N

F

N

OP

O HH

N

F

NOPO

H H

N

F

NOPO

H H

N

F

N•

F

NH2

F

OP

HO HH

H

F

N

F

i) SnCl2, HClii) NaNO2, HCl

NNO

O

NO2

Bu4N F NO

O

NO2F

NO

O

F

Introduc2on  of  Func2onal  Groups  –Synthesis    FluorinaFon  –  Halex  reacFon  –  SNAr-­‐type  

example    

 Bamberger  reacFon  to  give  para-­‐fluoroanilines  

Page 46: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 46

O

MeF3C O

OOH O

OHMe

O

CF3O

O

OH

MeO Me

O

MgBr OHB(OMe)3then HCl B(OMe)2 H2O2, NaOH

Br Mg MgBr O2OH

N2 Cl heat, SN1

water

H2O OH

Introduc2on  of  Func2onal  Groups  –Synthesis    Phenols    Diazonium  route  

 OxidaFon  of  Grignard  reagents  

 OxidaFon  of  organoboranes  

 Baeyer  Villiger  OxidaFon  

Page 47: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 47

MeMeH

O2

OMeMe

OH

HOH

+O

Me Me

OH

OH

O

O

Me

O

O

OOMeHO

O

OOH

Me

O Me

OH

H2O2, NaOH

then H3O

OH

OH

Introduc2on  of  Func2onal  Groups  –Synthesis    Dakin  reacFon  –  usually  used  on  phenolic  substrates  

 Aerial  oxidaFon  of  iso-­‐propylbenzenes  followed  by  cumenehydroperoxide  rearrangement  

Page 48: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 48

Br BuLi Li

O

NMe2H NMe2

LiO HH3O O

H

MgBr

O

NMe2H NMe2

BrMgO HH3O O

H

O

H

NaBH4 OH

Br Mg MgBr (CH2O)n OH

Introduc2on  of  Func2onal  Groups  –Synthesis    Benzyl  alcohols      via  Grignard  reagents  

   

 reducFon  of  benzaldehydes  

 Benzaldehydes   Organometallic  route  

Page 49: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 49

O

N HMe

Me

OP

Cl ClCl Me

NMe

OPO

ClCl

Cl

MeNMe

Cl

H

OR

Me

Me

OR

Me

Me

HNMe

Me

H

OR

Me

Me

HNMe

Me

OR

Me

Me

OH2NMe

Me

H2O

OR

Me

Me

OHNHMe

Me

OR

Me

Me

O

Me

MeOR

POCl3,then H3O

O

NMe2H Me

MeOR

OH

Introduc2on  of  Func2onal  Groups  –Synthesis    Vilsmeir  reacFon  –  requires  acFvated  aromaFcs  –  very  good  with  furan,  thiophene,  pyrrole  and  indole    

     

Vilsmeir  reagent  

Page 50: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 50

C NH H/Zn NH

Cl

H/Zn

reactive electrophileArH

NH2Cl

Ar H

MeO

MeO

Zn(CN)2, HClthen H3O MeO

MeO

O

H

Introduc2on  of  Func2onal  Groups  –Synthesis        formyl  chloride  is  too  unstable  to  partake  in  Friedel  Cra�s  reacFons  as  it  readily  decomposes  to  CO  and  HCl  

 Ga�ermann-­‐Koch  formylaFon  –  good  for  alkyl  benzenes,  generally  an  industrial  method  

 Ga�ermann  aldehyde  synthesis    Neither  the  Ga�ermann  nor  the  Ga�ermann-­‐Koch  reacFons  can  be  used  with  aromaFc  amines    

C OH AlCl4 C OClCu

may involve intermediates such as

Me

CO, HCl, CuCl, AlCl3

high pressure Me

O

H

Page 51: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 51

O O

Cl

ClH H

OHHO

O

Cl

Cl

O

ClOH

O

Cl

OH

OH

O

H

O

OH

H

O

Cl Cl

O

Cl

Cl

HCl

ClClHO

Cl

ClCl

ClCl

dichlorocarbene

HN CHCl3, NaOH N

Cl

Cl

HHO

N

Cl

OHCHCl3, NaOH

OH

H

O

OH

H

O+

major minor

Introduc2on  of  Func2onal  Groups  –Synthesis    Reimer-­‐Tiemann  Synthesis  –  requires  a  phenolic  substrate  

Pyrrole  gives  3-­‐chloropyridine  under  Reimer-­‐Tiemann  reacFon  condiFons  

Page 52: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 52

NO2

OMe

Me

Me

KMnO4, heat

NO2

OMe

COOH

HOOC

MgBrCO2 (g) or (s)H3O workup

O

OH

Introduc2on  of  Func2onal  Groups  –Synthesis    Carboxylic  acids    Grignard  route  

 OxidaFon  of  alkyl  benzenes  

 NitraFon    standard  nitraFng  mixture  conc.  sulfuric  acid  and  conc.  nitric  acid  is  very  harsh    NO2

+  BF4-­‐  is  non-­‐oxidizing  and  non-­‐acidic  –  compaFble  with  many  more  funcFonal  groups          SulfonaFon    reversible  process  –  sulfonated  product  formed  with  conc.  H2SO4    desulfonaFon  can  be  achieved  using  dilute  H2SO4  

     

Page 53: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 53

NH

O

O

OOOONH3

NH2 ON

Hetroaroma2cs    Pyridine    properFes  –  pyridine  is  polarised  by  the  presence  of  the  nitrogen  atom  both  through  the  π-­‐system  and  σ-­‐

framework    the  lone  pair  on  nitrogen  is  orthogonal  to  the  π-­‐system,  and  is  the  HOMO  of  pyridine;  the  LUMO  of  pyridine  is  an  

anF-­‐bonding  π-­‐orbital    pyridine  is  electron  poor  and  undergoes  EARS  only  very  slowly  

 synthesis  of  pyridines  and  derivaFves  –  generally  aim  to  make  dihydropyridine  and  then  oxidise  it  to  the  corresponding  pyridine    dihydropyridines  are  readily  prepared  by  the  condensaFon  of  ammonia  with  1,5-­‐dicarbonyl  compounds  

   1,5-­‐dicarbonyl  compounds  are  readily  prepared  by  addiFon  of  an  aldehyde  or  ketone  to  an  α,β-­‐unsaturated  

carbonyl  compound    

pyridine  is  electron  deficient  at  C-­‐2  and  C-­‐4  and  it  is  prone  to  a�ack  by  nucleophiles      

HOMO  of  pyridine  is  nitrogen  lone  pair  in  sp2  orbital  

N N N

Page 54: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 54

N

CO2MeMeO2C

Me Me

Ph

-H2O

tautomerise x 2

NH2

CO2MeMeO2C

Me O

Ph

MeMe

NH2

OMe

O

PhCO2Me

OHMe

r.d.sMe

O

OMe

O

Ph

-H2O(Knoevenagel)

PhCHO

Me

O

OMe

O

Ph OH

Me

HN

OMe

OH

tautomerise

Me

NH

OMe

O

NH3, -H2O

Me

O

OMe

O2

NH3, 1 equiv.

PhCHO, 2 equiv. NH

CO2MeMeO2C

Me Me

Ph

HNO3

oxdidationN

CO2MeMeO2C

Me Me

Ph

N NH

NH2 O OONH3

OO O

O

Heteroaroma2cs  Hantzsch  pyridine  synthesis  

 other  oxidants  to  convert  dihydropyridines  to  pyridines  include:    (NH4)2Ce(NO3)6  (CAN),  MnO2,  DDQ  

O

O

CN

CN

Cl

Cl

Page 55: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 55

N

NMe Me

Ph Cl

O

then NaBPh4N

NMe Me

OPh

BPh4

v. slowNE

E E

NE

N

E

H

NOH

H

MeNH2OH•HCl,

heat

Me

O

170 °CO

Me

O

Me

O

NMe2

O

+

Heteroaroma2cs    Pyridine  synthesis  with  hydroxylamine  –  no  oxidant  required  

 Electrophilic  subsFtuFon  with  pyridines  

NMe

high  energy  intermediate  -­‐  electrophile  reacFng  with    posiFvely  charged  nucleophile  

E

N

E

N

E

v.  poor  yielding  low  concentraFon  of  free  pyridine  meta-­‐posiFon  least  deacFvated  

 Pyridines  are  nucleophilic  (on  nitrogen)  

Page 56: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 56

-H2SO3

N SO3H

NO2

[2,3]-sigmatropicrearrangement

H

N SO3H

O

NO

[2,3]-sigmatropicrearrangementN

N

SO3H

OO

HSO3N

NO2 NO3

NO O

N

NO2

N

N2O5, MeNO2then NaHSO3

77%

Heteroaroma2cs    NitraFon  of  pyridine  

 nitraFon  of  pyridine  with  N2O5          plausible  mechanism  

1  

2  

3  2  

3  

1  

2  2  

1  1  

N

c. HNO3, c. H2SO4, 300 °C, 24 h

N

NO2

6% NH

Page 57: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 57

PCl3

N

O

MeNO2

PClCl

Cl

N

MeNO2

+ POCl3

N

O

MeHNO3, H2SO4,100 °C

N

O

MeNO2

N

H2O2, CH3CO2H

N

O

2

34

Heteroaroma2cs    pyridine  N-­‐oxides  –  much  more  suscepFble  to  electrophilic  a�ack  at  2  and  4  posiFons  (and  to  nucleophilic  

addiFon  at  2  and  4  posiFons)  

 nitraFon  of  pyridine  N-­‐oxide    

promotes  electrophilic  subsFtuFon  at  2  and  4  posiFons  N

O

N

O

N

O

NO2

66%  yield,  c.f.  nitraFon  of  pyridine  in  acid  (6%  yield)    

N

O

MeH NO2

N

O

MeNO2

Page 58: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 58

N

Me

H

O

Me

O

O Me, 100 °C

O

N

Me

O Me

O

N

Me

H

O

Me

O

O

MeO N

Me

O

Me

O

Heteroaroma2cs    pyridine  N-­‐oxides  –  N-­‐deoxygenaFon  with  rearrangement  

 pyridine  N-­‐oxides  –  conversion  to  chloro  compounds  

N

R

O

OP

Cl ClCl

N

R

OPO

Cl Cl

N

R

OPO

Cl Cl

H

Cl N

R

ClCl

3  2  1  

3  2  

1  

Page 59: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 59

N

ONO2

PCl

OCl

H

ClPOCl3

N

ONO2

PCl

OCl

H

Cl

N

ONO2

H

H

Heteroaroma2cs    pyridones  

 nitraFon  

NH

O N OH NH

O

N

OH

N

O

HNO3, H2SO4

NH

ONO2

N

ClNO2POCl3 NaBH4

N

NO2

H

NO2

NH

ONO2

N

NO2Cl

NaBH4

Page 60: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 60

N Cl

MeO Na

N Cl

OMeN OMeN

HO

POCl3

Heteroaroma2cs  and  Nucleophilic  subs2tu2on  

nucleophilic  aromaFc  subsFtuFon  

R Cl

O MeOR OMe

Ocompare  with    

 Chichibabin  reacFon  

pyridine  is  electron  deficient  at  C-­‐2  and  C-­‐4  and  is  prone  to  a�ack  by  nucleophiles      N N N

HOMO  of  pyridine  is  nitrogen  lone  pair  

N

NaNH2

N

NaNH2

N

Na

NH2

HN N

H

H100 °C

-NaH

NNH

HN NH2

HNHNN NH2

+

Page 61: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 61

N

OH2

H

N

OHH

H

N

OH

H

tautomerise+ H

NH

H

OH

OH

HO OH

H

HO OHOH2

NH2

HO OHOH

H2SO4, PhNO2,heat+

N

Heteroaroma2cs   quinolines  and  isoquinolines  

 Synthesis  –  Skraup  synthesis  

NN

quinolines isoquinolines

HO OH

N H

H

N

H

NH

H

NPhO

O

Page 62: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 62

Heteroaroma2cs    synthesis  of  isoquinolines    Bischler-­‐Napieralski    

 

Pictet-­‐Spengler  

 quinoline  and  isoquinoline  undergo  EArS  more  readily  than  pyridine,  with  reacFon  occurring  on  the  benzenoid  ring    

NH2

R Cl

O

NHO

R

POCl3

N

Pd

N

POCl3

NCl

R

H N

R

HClH

N

R

HCl

NH2H H

O

NH NHN HH

HCl

N

HNO3, H2SO4

N

NO2

NNO2

+ N

HNO3, H2SO4

N

NO2

Page 63: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 63

 order  of  aromaFcity  is:  thiophene  >  pyrrole  >  furan  (enol  ether  like)      sulfur  is  the  largest  atom  and  hence  is  be�er  matched  for  bonding  to  sp2-­‐hybridised  carbon  atoms  in  a  5-­‐membered  

ring  leading  to  thiophene  being  the  most  aromaFc  

Heteroaroma2cs    

pyrrole,  thiophene  and  furan      all  three  have  aromaFc  properFes  

   in  each  case  the  (one  of  the)  lone  pair(s)  is  parallel  to  the  p-­‐orbitals  and  part  of  the  π-­‐system  

     the  aromaFc  heterocycles  are  electron  rich  

S O NH X

thiophene furan pyrrole

0.66 D0.55 D 1.74 D

NH

pyrrolidine

1

23

αβ

pyridine  is  electron  poor  

X X X

NNu

Page 64: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 64

XE

XH

EXH

EXH

EXE

Heteroaroma2cs  Reac2ons    electrophilic  subsFtuFon  –  kineFc  reacFon  at  the  2-­‐posiFon  is  favoured  over  reacFon  at  the  3-­‐posiFon  

   more  reacFve  than  benzene  –  e.g.  pyrrole  similar  reacFvity  to  aniline      

more  delocalised    intermediate  ∴  more  stable  ∴  2-­‐subsFtuFon  favoured  

less  delocalised    intermediate  ∴  less  stable  ∴  3-­‐subsFuFon  disfavoured  

 subsFtuents  already  present  on  the  aromaFc  heterocycle  exert  less  direcFng  effect  than  the  corresponding  subsFtuents  in  benzene  

with  EWG  at  α-­‐posiFon  β’-­‐subsFtuFon  favoured  

with  EDG  at  α-­‐posiFon  α’-­‐subsFtuFon  favoured  

X

E

X

HE

X

HE

X

E

XE XH

EEDG EDG XH

EEDG X EDGE

X X

HE

XEWG EWG EWG

EE

Page 65: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 65

HN

HN

83%

O

N H, POCl3, RTMe

H

O

then hydrolysisMe

S

O

OMeN

O

O

AcOH, 0 °C

S NO2 +S

NO260% trace

HN

O

ClCl3CHN

CCl3

O

90% HNO3, -50 °CHN

CCl3

O

O2N

α'

β'

Heteroaroma2cs  Reac2ons    nitraFon  

addiFon  product    acylaFon  and  formylaFon  

β’  >  α’  or  β  for  α-­‐EWG  

O

O

OMeN

O

O

AcOH,-25 °C

O NO2O NO2

HMe O

O

O NO2H

AcON

HN

O

OMeN

O

O

AcOH, -10 °C

HN NO2 +

HN

NO251% 13%

S

O

NS

78%

H, POCl3, 35 °CPh

H

O

then hydrolysis

Me

Page 66: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 66

lithiaFon  of  5-­‐membered  heterocycles    

lithiaFon  occurs  preferenFally  α  to  the  heteroatom  due  to  inducFve  effect  of  heteroatom  with,  in  some  instances  a  DOM  effect  

furan  and  thiophene  can  be  readily  metalled  α  to  the  metal  

S n-BuLi S Li O n-BuLi O Li

-10 °C, ether ether, reflux

with  pyrrole  itself,  the  N-­‐deprotonaFon  occurs  first  –  the  more  ionic  the  N-­‐metal  bond  the  greater  the  percentage  a�ack  at  nitrogen    

with  a  more  covalent  N-­‐M  bond  C-­‐a�ack  occurs.      

HN NaNH2 N Na Me I N

MeNMe

BuLi Et I NMe

Et

HN EtMgBr N N

HN

MgBr O

H OEtO

H

H Oworkup

Page 67: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 67

with  pyrroles  bearing  an  N-­‐EWG  on  nitrogen  α-­‐metallaFon  occurs  

SO2PhN

then HCl, water

SO2PhN B(OH)2

LDA, then B(OMe)3

selecFvity  can  be  achieved  using  LDA  or  butyllithium  

no  lithium  halogen  exchange  with  LDA  as  would  make  weak  N-­‐Br  bond  most  acidic  proton  removed  by  directed  metallaFon  S

Br

Bu LiS

Li

S

E

ES

Br

LiN

Li

iPriPr

H

Bu LiO Br O Li R X O R

NSO2Ph

I

INSO2Ph

I

NSO2Ph

MeLDA, I2 tBuLi, MeI

lithium  halogen  exchange  occurs  with  aromaFc  heterocycles  

Page 68: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 68

S

Heteroaroma2cs    indole  

 more  enamine-­‐like  than  pyrrole          a�ack  of  electrophiles  at  the  β  posiFon  is  the  lowest  energy  pathway  

a�ack  at  β  posiFon  retains  aromaFc  sextet  of  benzenoid  ring  

benzofuran   benzothiophene  

minor  

major  

NH

E

NH

EH N

H

E

NH

E

NH

NH

EH E

NH

α

β

2

3

1 NH

O

Page 69: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 69

Heteroaroma2cs    indole  

 if  the  β-­‐posiFon  is  blocked  α-­‐a�ack  occurs      α-­‐a�ack  can  occur  via  β-­‐a�ack  followed  by  rearrangement  (●  =  CT2  i.e.  a  triFated  methylene  group)  

NH

α

β

2

3

1 NH

O Sbenzofuran   benzothiophene  

1:1  mixture  direct  a�ack  at  α-­‐posiFon  would  give  solely  

NH

NH

OH NH

OF3B

H NH

NH

H NH

BF3•OEt2

NH

NH

H NH

Page 70: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 70

Heteroaroma2cs  Synthesis    pyrrole  -­‐  synthesis  from  1,4-­‐dicarbonyls,  Paal-­‐Knorr  synthesis  

   

 from  α-­‐amino  ketones  and  carbonyl  compounds  with  acFvated  α-­‐methylene  groups  –  Knorr  synthesis  

HN N NH2

ONH

OOO + NH3

1,4-dicarbonyl

OOMeMe

NH3, benzene, heat OO

MeMeNH3 ±H

HOOMeMe

NH2O

MeMeNH-H2O

OMeMe

NH2

tautomerise

HN MeMe

HOHN MeMe

H2N MeMe

O±H-H2O

HN Me

CO2RMe

NH2

Me O

Me

CO2R

O+

-H2OMe

CO2R

N

OMe

tautomeriseMe

CO2R

HN

OMe

N Me

CO2RMeHO

tautomerise

HN Me

CO2RMeHO

H

HN Me

CO2RMe

H

H

Page 71: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 71

O

R1

X

R2

R3

O

OR4

O

X = Br, ClR1 = H, alkylR2 = alkyl

R3, R4 = alkyl

R1 = H

baseR1

X

R2

O

O R3

OR4O ±H

R1

X

R2

HO

O R3

OR4O O

R3

R4O2C

R1

R2

H

-H2OO

R3

R4O2C

R1

R2OH

Cl

Me O O Me

CO2Et NH3+Cl

Me O H2N Me

CO2Et

NH2Me

O Me

CO2EtH

NH

MeHO

CO2Et

Me

NH

Me

CO2Et

Me

-H2O

Heteroaroma2cs    Hantzsch  pyrrole  synthesis  –from  α-­‐chloroketones  and  carbonyl  compounds    

 Furans  –  Paal-­‐Knorr  synthesis  

 Furans  –  from  α-­‐halocarbonyls  and  acFve  methylene  compounds  

OOMeMe

acid catalyst O MeMe

R R' R' R'

R1 = alkyl

baseR2 R1

O R3

OR4OR2

OH

R1

O R3

OHR4O O

R3

R4O2C

R2

R1

H

-H2OO

R3

R4O2C

R2

R1

O

H

HO

Page 72: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 72

Heteroaroma2cs   thiophenes  –  from  1,4-­‐dicarbonyl  compounds  

 from  1,2-­‐dicarbonyl  compounds  –  Hinsberg  synthesis  

 from  1,3-­‐dicarbonyl  compounds  

OOPh Ph

P2S5 SSPh Ph

-H2S

heat

S PhPh

Ph

OO

PhEtO2C S CO2Et+

EtONa, EtOHS

Ph Ph

CO2HEtO2C

OO

H

HSOMe

O

cat. H2SO4

OS

CO2Me

MeONa, MeOH

S CO2Me

Page 73: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 73

-NH3 HN

PhNH2

NH NH2

PhH

HHNNH2

Ph

HNNH

Ph

HNN

PhH

Heteroaroma2cs    Indoles  –  the  Fischer  indole  synthesis  

[3,3]-­‐sigmatropic  rearrangement  

 unsymmetrical  ketones  give  mixtures  of  indoles:  strong  acids  favour  indole  formaFon  from  the  less  subsFtuted  ene-­‐hydrazine;  weak  acids  favour  indole  formaFon  from  the  more  subsFtuted  ene-­‐hydrazine  

HN

NH2Me

O Ph+

protic or Lewis acid

heat

HN

Ph

HN

Me

Me

HN

Me

HN

NH2Me

OMe

acid+ +

10022

078

AcOHMeSO3H, P4O10

H

Page 74: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 74

CO2

H

HEtO H

H OEt

CO2

H

H

H OEt MeOH

H OEt

HMeO

HMeO

SET add electron

•MeO MeO

MeO

Na or Li in liquid NH3, EtOHMeO MeO O

O

H3Omild

H3Ostronger or

longer

Reduc2on  of  Aroma2cs    Birch  reducFon  –  covered  with  Dr  Smith  

protonaFon  at  site  of  highest  charge  to  give  most  stable  radical  

protonaFon  at  site  of  highest  charge  and  largest  HOMO  coefficient  

protonaFon  at  site  of  highest  charge  and  largest  HOMO  coefficient  

Na or Li in liquid NH3, EtOH

H

SET add electron

HMeO

protonaFon  at  site  of  highest  charge  and  largest  HOMO  coefficient  

Na or Li in liquid NH3, EtOH

CO2H CO2H

deprotonation SET add electron

••

CO2 CO2 CO2

SET add electron

CO2

H

Page 75: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 75

SET add electron

•O

RO

R

SET add electron

Reduc2on  of  Aroma2cs    Birch  reducFon  examples  

 Birch  reducFon  with  C-­‐X  bond  cleavage  

naphthalene  

Na, NH3, EtOH

OMe

HO

Li, NH3, tBuOH OMe

HO

OMe

O

OR Na or Li, NH3

with or without ROHROH

"H ""H "

further reduction

NH

OHN

MeO

OMe

O

OH

O

Me

O

Li, NH3, THF NH

OHN

MeO

OMe

OH

OH

OH

Me

Page 76: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 76

SET add electron

HN N NMeI

MeN •N

Li, NH3, EtOH •HN

H OEt

Reduc2on  of  Aroma2cs   Birch  reducFon  –  heteroaromaFcs    pyridine  -­‐  in  the  absence  of  added  alcohol  dimerisaFon  of  the  intermediate  radical  anion  occurs  

 pyridine  -­‐  in  the  presence  of  added  alcohol  dimers  are  not  formed  

 with  sufficient  electron  withdrawing  groups,  the  addiFon  of  a  further  electron  to  the  iniFally  formed  radical  anion  occurs  to  give  a  dianion  

•N N•N N NLi, NH3

MeN NMeMeI

N

OOiPr

OiPrO

Na, NH3 N

OOiPr

OiPrO

add one electronthen another electron

then NH4ClNH

OOiPr

OiPrO

MeMe I

reaction at mostbasic site

Page 77: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 77

Me Iadd one electron

then another electron

N

OtBuO

N

OtBuO

Na, NH3 N

OtBuO

basic enoughto deprotonate

ammonia

N

OtBuO

NH3

NO

NO O

N

MeO

N

add one electronthen another electron

NO

OiPr

OtBuO

MeN

O

OiPr

OtBuONa, NH3 N

O

OiPr

OtBuO

basic enoughto deprotonate

ammonia

NO

OiPr

OtBuO

NH3 Me I

Reduc2on  of  Aroma2cs    Birch  reducFon  –  pyrroles,  furans,  thiophenes    electron  rich  and  hence  require  an  electron  withdrawing  group  

 

 with  enough  electron  withdrawing  groups  further  reducFon  of  the  intermediate  radical  anion  occurs  to  give  a  dianion    

cf.  dianion  of  alkyl  acetoacetates  reacts  with  electrophiles  at  most  basic  site  to  leave  most  stable,  conjugated  enolate  

N MeMe Na, NH3, MeOH N MeMepreferenFal  reducFon    of  benzenoid  aromaFc  

H

OMe

O O

OMe

O O

Page 78: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 78

NMe

H NMe

H NMe

H NMe

H H

HBH

HH Na

H OEt

HBH

HH Na

NMe I

EtOH NMe

H OEt

H NMe

H NMe

H H

HBH

HH Na

HBH

HH Na

Reduc2on  of  Aroma2cs      Hydride  reducFons  –  pyridinium  salts    

major  

minor  

 Simple  pyrroles  are  only  reduced  by  hydride  reducing  agents  in  the  presence  of  acid    

NSO2Ph

HBCNH

HNa

O

OH,F3C NSO2Ph

H NSO2Ph

HHH +NSO2Ph

minor

 “Ionic  hydrogenaFon”  of  furan  and  thiophene  gives  the  saturated  derivaFves    

X Me Et3SiH, TFA X Me X = O, 72%X = S, 80%

Page 79: Aromatic and Heterocyclic Chemistry 4 Lectures, Michaelmas ...burton.chem.ox.ac.uk/jwb-aromatic-2014-arial-3.pdf · Aromatic and Heterocyclic Chemistry 1 ... !M.!Sainsbury! 䡧!The!Chemistry!of!CDC!πDBonds!–Lecture!notes;

Aromatic and Heterocyclic Chemistry 79

Reduc2on  of  Aroma2cs    HydrogenaFon  –  complete  reducFon  of  the  aromaFc  ring    hydrogenaFon  of  aromaFc  ring  occurs  most  readily  with  Pt,  Rh  and  Ru  catalysts;  Pd  is  less  acFve      

alkynes/alkenes  and  many  other  funcFonal  groups  can  be  readily  reduced  in  the  presence  of  aromaFc  rings    

 Hydrogenolysis  of  benzylic  heteroatoms  readily  occurs  under  palladium  catalysis;  a  cartoon  mechanism  is  shown    

 Pyridines  are  more  easily  hydrogenated  than  benzenoid  aromaFcs    

 hydrogenaFon  of  pyrrole  and  furan  is  relaFvely  straigh�orward;  hydrogenaFon  of  thiophene  is  complicated  by  catalyst  poisoning  and  the  hydrogenolysis  of  the  C-­‐S  bond  with  complete  removal  of  sulfur  

OH

Me

MeMe

H2, Ru/C, i-PrOH OH

Me

MeMe

55% cis

H2, Ru/C

92% cis

COOHHOOC COOH

COOHHOOC COOH

OR H2, Pd/C

HOR

+

H ORH H

catalyst surface

N

H2, Ru/C

NH

95% cisMe

HO HO

Me

HNMeO2C (CH2)2CO2Me

H2, Rh/Al2O3,

AcOHHNMeO2C (CH2)2CO2Me

S MeMe

(CH2)3CO2H

Raney Ni,H2O,

100 °C MeMe

(CH2)3CO2H