apuntes de maquinas de desplazamiento positivo

69
BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA FACULTAD DE INGENIERIA COLEGIO DE INGENIERIA MECANICA Y ELECTRICA A P U N T E S D E M A Q U I N A S D E D E S P L A Z A M I E N T O P O S I T I V O

Upload: chock-cadel-espinosa

Post on 24-Jul-2015

836 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Apuntes de Maquinas de Desplazamiento Positivo

BENEMERITAUNIVERSIDAD AUTONOMA DE PUEBLA

FACULTAD DE INGENIERIA

COLEGIO DE INGENIERIA MECANICA Y ELECTRICA

A P U N T E S

D E

M A Q U I N A S

D E

D E S P L A Z A M I E N T O

P O S I T I V O

RECOPILADO PORING. PABLO OTHON ROSAS RAMOSDICIEMBRE 2008

Page 2: Apuntes de Maquinas de Desplazamiento Positivo

U N I D A D U N O

1.1 C I R C U I T O S N E U M A T I C O S Circuito: Red ó camino por el cual fluirá el flujo de un fluido gaseoso bajo presión para transmitir potencia y controlar movimientos precisos de mecanismos de una máquina.

Cilindros neumáticos: Son dispositivos que tienen la capacidad de transforman energía de aire comprimido en movimiento lineal.

1.2 ESQUEMA GENERAL DE VÁLVULAS, SÍMBOLOS GRÁFICOS

Page 3: Apuntes de Maquinas de Desplazamiento Positivo

1.3 CODIFICACION DE ORIFICIOS DE UNA VÁLVULA

La codificación alfabética está regida por la norma ISO – 1219 ó DIN 24 300

P = Entrada de aire comprimido

A, B, C, = Salidas ó descargas de aire comprimido

R, S, T, = Escape de aire comprimido a la atmósfera

X, Y, Z, = Mandos ó pilotajes

L = Fugas

Page 4: Apuntes de Maquinas de Desplazamiento Positivo

La codificación numérica está regida por la norma CETOP

1 = Entrada de aire comprimido

2, 4, 6 = Salidas ó descargas de aire comprimido

3, 5, 7 = Escape de aire comprimido a la atmósfera

12, 14, 16 = Mandos ó pilotajes

9 = fugas

1.4 CONCEPTOS BASICOS EN CIRCUITOS HIDRAULICOS Y NEUMATICOS

Entre los importantes se citan

1.- Presión: Magnitud que se define como el cociente de carga, fuerza, peso que actúa En la unidad de área. Se denota

2.- Fuerza: Magnitud que se define de distintas maneras según su aplicación

Page 5: Apuntes de Maquinas de Desplazamiento Positivo

3.- Flujo = Gasto = Caudal: Magnitud que define la cantidad de fluido que fluye a través De un conducto, éste puede másico ó volumétrico. Se denotan

4.- Trabajo de flujo: Magnitud que define la cantidad de energía requerida ó generada Por un fluido en movimiento., se denota

5.- Potencia de flujo: Magnitud que se define de varias maneras de acuerdo a su aplicación en la resolución de problemas. Se denota

6.- Temperatura: Magnitud que define el grado térmico de una sustancia, se denota

7.- Viscosidad: Magnitud que expresa la resistencia para fluir de un fluido sobre una superficie, se denota

1.5 CALCULO DE LA CAPACIDAD O TAMAÑO DEL TANQUE O DEPÓSITO DE ALMACENAMIENTO DE AIRE COMPRIMIDO

Para una demanda de aire comprimido constante, se aplican las igualdades siguientes.

Page 6: Apuntes de Maquinas de Desplazamiento Positivo

CASO IDEAL CASO REAL

Tiempo de carga ó descargaPara una demanda de aire comprimido variable, se aplican las igualdades

CASO IDEAL CASO REAL

Caudal de entradaCaudal de salidaPresión de trabajo inicialPresión de trabajo final

1.6 DESPLAZAMIENTO VOLUMÉTRICO DE UNA BOMBA

Magnitud que se expresa como la relación del caudal volumétrico con el número de revoluciones, se denota

1.7 AREAS DE INTERES DE UN PISTON CON VASTAGO

Page 7: Apuntes de Maquinas de Desplazamiento Positivo

1.8 PARAMETROS DE ACTUADORES NEUMATICOS

1.- En cilindros: Fuerza y carrera2.- En actuadores giratorios: Par y ángulo3.- En motores neumáticos: Par y rpm

NUMERACION DE ELEMENTOS DE TRABAJO

1.0 3.0 5.02.0 4.0| 6.0, etc.

NUMERACION PARA ORGANOS DE GOBIERNO

1.1 3.1 5.12.1 4.1 6.1, etc.

NUMERACION PARA CAPTADORES DE INFORMACION

1.2 1.31.4 1.52.2 2.32.4, etc. 2.5, etc.

De la primera columna los números enteros indican grupo, los decimales como son pares indican salidas del vástago.

De la segunda columna los números enteros indican grupo, los decimales como son impares indican retroceso del vástago. NUMERACION PARA ELEMENTOS AUXILIARES

Page 8: Apuntes de Maquinas de Desplazamiento Positivo

0.1 0.40.2 0.50.3 0.6, etc.

NUMERACION PARA ELEMENTOS DE REGULACION

1.02 2.021.03 2.03, etc.

VELOCIDADES RECOMENDADAS PARA FLUIDO HIDRÁULICO

PRESION VELOCIDAD

bar

En tuberías de aspiración, la velocidad recomendable es,

En tuberías de retorno, la velocidad recomendable, es

.1.9 APLICACIONES DE LA NEUMÁTICA

1.- Herramientas de impacto

2.- Válvulas de control y posiciona doras

3.- Martillos

4.- Pistolas para pintar

5.- Motores rotativos

6.- Sistemas de empaquetado

7.- Elevadores

8.- Vibradores

9.- Frenos

10.- accionamiento de robots industriales

1.10 DIAGRAMAS ESPACIO – FASE Y ESPACIO – TIEMPO DE CILINDROS NEUMATICOS

Page 9: Apuntes de Maquinas de Desplazamiento Positivo

Diagrama espacio – fase = diagrama de proceso: Se utilizan para circuitos secuenciales y se emplean para representar la secuencia de movimientos de 2 ó mas elementos de trabajo.

Para cada elemento de trabajo se trazan dos líneas horizontales paralelas que definen inicio y termino de la operación.

Diagrama espacio – tiempo: Se utilizan para circuitos programables, las líneas verticales no son equidistantes.

Existen tres casos de movimientos de actuadores longitudinales, según si el vástago del pistón salga ó entre con una rapidez lenta, rápida y normal.

Velocidad lenta: Aire comprimido al cilindro controlado por regulador unidireccional ó bidireccional.

Page 10: Apuntes de Maquinas de Desplazamiento Positivo

Las líneas verticales indican fases y son equidistantes una respecto a otra, se denotan con números como 1, 2, 3, 4, etc. También se les conoce como pasos secuenciales.

Velocidad rápida: Aire comprimido al cilindro controlado por válvula de escape rápido.

Las líneas verticales cuando definen tiempo, éstas no son equidistantes

Velocidad Normal: Aire comprimido al cilindro suministrado por tuberías que comunican sus cámaras anterior y posterior.

1.11 DIAGRAMA ESPACIO – FASE PARA DOS ELEMENTOS DE TRABAJO

Page 11: Apuntes de Maquinas de Desplazamiento Positivo

Observando la gráfica en el plano espacio – fase

El vástago del cilindro A

En 1 empieza a salir. En 2 termina su carrera de ida ó de extensión. De 2 a 4 permanece salido. En 4 inicia la carrera de regreso ó retroceso, comienza a meterse. En 5 termina su carrera de retroceso ó de regreso. De 5 a 6 permanece metido.

El vástago del cilindro B

Page 12: Apuntes de Maquinas de Desplazamiento Positivo

De 1 a 2 permanece metidoEn 2 empieza a salirEn 3 finaliza la carrera de extensión é inicia la carrera de regreso, se empieza a meter.En 4 finaliza la carrera de retrocesoEn 5 ambos vástagos de los dos cilindros A, B permanecen metidosEl ciclo se repite en 5 = 1

1.12 RELACION DE MOVIMIENTOS DE LOS DESPLAZAMIENOS DEL VASTAGO

1.13 DIAGRAMA ESPACIO – TIEMPO PARA DOS ELEMENTOS DE TRABAJO

Page 13: Apuntes de Maquinas de Desplazamiento Positivo

Interpretar diagrama espacio – tiempo

El vástago del cilindro A recorre 100 mm de 1 – 2 en 8 seg, permanece extendido de 2 – 3 en 12 seg. y retrocede de 3 – 4 en 2 seg.

El vástago del cilindro B de 1 – 2 permanece metido en 8 seg. De 2 – 3 recorre 100 mm en 12 seg, de 3 – 4 permanece salido en 2 seg. De 4 – 5 regresa en 10 seg.

1.14 DIAGRAMAS PARA MOTORES NEUMÁTICOS

Para un sentido de giro

Para dos sentidos de giro

Page 14: Apuntes de Maquinas de Desplazamiento Positivo

Par dos sentidos con giro limitado

Interpretar diagrama estado – fase

El vástago del pistón antes de alcanzar la fase 2 se activa la válvula 1S2 que envía aire comprimido al pilotaje 12 de la válvula biestable, 1V que cambia su posición. El vástago

Page 15: Apuntes de Maquinas de Desplazamiento Positivo

del cilindro inicia su carrera de retroceso en fase 2 y termina en 3. Instantes después es desactivada la válvula 1S2 por la señal que envía el microswitch del vástago.

1.15 C I R C U I T O S H I D R Á U L I C O S

Circuito: Red ó camino por el cual fluirá el flujo de un fluido líquido bajo presión para transmitir potencia y controlar movimientos precisos de mecanismos de una máquina.

El líquido confinado a presión es tan resistente como el acero y es de los más versátiles para modificar movimientos de mecanismos y transmitir potencia. Cambia de forma para adaptarse al cuerpo que resiste su empuje, se puede dividir en partes haciendo trabajo a su medida, puede ser reunido para que trabaje como conjunto, se puede remover rápidamente a lo largo de una parte y lento en otra.

Hidráulica: Significa agua entubada ó agua a través de tubo, se utiliza como medio para generar trabajo y transmitir potencia cuando se empuja. El elemento componente de entrada ó de empuje en un sistema hidráulico se denomina bomba y el elemento componente de salida ó empuje de salida se denomina actuador

Page 16: Apuntes de Maquinas de Desplazamiento Positivo

Cilindros hidráulicos = actuadores hidráulicos: Son dispositivos que tienen la capacidad de transforman energía de un aceite presurizado en movimiento lineal.

En el campo práctico el fluido de trabajo en sistemas hidráulicos es el aceite hidráulico por su habilidad de lubricación de todas las partes móviles que componen el sistema. El aceite hidráulico tiene un peso específico que oscila entre.

Este peso genera una presión de 0.4 Psi. En la entrada de la bomba por cada columna prismática de tal como la figura siguiente.

Page 17: Apuntes de Maquinas de Desplazamiento Positivo

1.16 P R I N C I P I O D E B L A I S E P A S C A L

Dice: La presión aplicada a un fluido confinado en un recipiente, éste se transmite con la misma intensidad en todas direcciones de manera normal a la geometría de las áreas interiores del recipiente

Si sobre el tapón de de la boquilla de una botella se aplican , entonces se tiene una presión de

En cualquier dirección de las paredes internas de la botella.

¿Cuál seria el empuje que recibe el fondo de la botella en .

De la igualdad se despeja fuerza y se iguala al empuje, E , se tiene.

1.17 P R E N S A H I D R A Ú L I C A

Page 18: Apuntes de Maquinas de Desplazamiento Positivo

Dispositivo constituido de dos cilindros de los cuales uno es de diámetro menor y el otro de diámetro mayor interconectados por tubería ó manguera de alta presión en la que se aplica el principio de Blaise Pascal tal como se muestra en la figura.

f = fuerza que actúa sobre el émbolo menor

a = área del émbolo menor

d = diámetro del embolo menor

h = desplazamiento del émbolo menor

F = Fuerza que actúa sobre el embolo mayor

A = área del émbolo mayor

D = diámetro del émbolo mayor

H = desplazamiento del émbolo mayor

1.18 RESOLUCION DE PROBLEMAS

Page 19: Apuntes de Maquinas de Desplazamiento Positivo

Problema 1.1: Se requiere mover una carga de 637 kilogramos fuerza de manera horizontal en ambos sentidos utilizando un cilindro hidráulico de 4 pulg. de diámetro y un vástago de 1.5 pulg. de diámetro. Se pidea).- Elaborar esquema del sistemab).- Cuál será la presión requerida para empujar la cargac).- Cuál será la presión requerida para jalar la carga.

Problema 1.2: Un actuador rotacional ejecuta un trabajo específico, para ello requiere 26.7 galones por minuto de aceite hidráulico a 1 475 Psi y 1 750 rpm. Se pidea).- Elaborar esquema del sistemab).- Cuál será el desplazamiento volumétrico de la bombac).- Cuál sería la potencia generada por el sistema hidráulicod).- Cuál será el par que genera el actuador.

Problema 1.3: Un compresor suministra 250 pies cúbicos por minuto y el sistema requiere 350 pies cúbicos por minuto durante 30 seg. La presión de trabajo inicial es 100 Psig. Y no debe caer por debajo de 80 psig. Se pidea).- Elaborar esquema del sistema neumáticob).- Calcular la capacidad teórica del depósitoc).- Calcular la capacidad real del depósito para k = 2.5

Problema 1.4: Un compresor proporciona 500 pies cúbicos por minuto a una presión de trabajo de 100 Psig. Se pidea).- Elaborar esquema del sistema neumáticob).- Calcular la capacidad teórica del depósito para 1.5 min.c).- Calcular la capacidad real del depósito con k = 3.0 para 90 seg. Problema 1.5: En una prensa hidráulica sobre el émbolo menor de de área se aplican y se desplaza . Se pidea) Elaborar esquema del sistemab) Cuál sería el volumen de aceite hidráulico desplazadoc) Cuánto se desplazaría otro émbolo de d) Cuál sería la energía transmitida por el aceite hidráulico.e) Cuál sería la fuerza que se obtiene sobre el émbolo mayorf) Cuál sería el empuje ejercido por el aceite hidráulico en el émbolo menor.

Problema 1.6: En una prensa hidráulica sobre el émbolo menor de de área se aplican y se desplaza . Se pidea) Elaborar esquema del sistemab) Cuál sería el volumen de líquido desplazadoc) Cuánto se desplazaría otro émbolo de d) Cuál sería la energía transmitida por el aceite hidráulicoe) Cuál sería la fuerza que reobtiene sobre el émbolo mayorf) Cuál sería el empuje ejercido por el aceite hidráulico en el émbolo menor.

Problema 1.7: El pistón de un actuador neumático longitudinal de doble acción recibe a través de la válvula de carga . El diámetro del pistón es 80 mm, la carrera 120 mm. Se pidea).- Elaborar esquema del actuadorb).- Calcular el trabajo que realiza el vástago del pistón

Page 20: Apuntes de Maquinas de Desplazamiento Positivo

c).- Cuál será la fuerza de empujed).- Cuál sería la potencia si el vástago viaja a

Problema 1.8: El pistón de un actuador neumático longitudinal de doble efecto trabaja con una presión de 100 Psi. El diámetro interior del cilindro es 3 pulg. y la carrera útil 5 pulg. Se pidea).- Elaborar esquema del actuadorb).- Calcular la fuerza de empuje del vástagoc).- Cuál será el trabajo que el aire ejerce sobre el émbolod).- Cuál será la potencia que el aire suministra al pistón, si éste se desplaza a

Problema 1.9: Una bomba de engranes suministra 30 galones por minuto de aceite hidráulico por una tubería de 2 pulg. de diámetro nominal, ced. 40 a 1 500 Psi a un actuador longitudinal. Se pidea).- Elaborar esquema del sistemab).- Calcular la velocidad con que se transporta el aceite al actuadorc).- Calcular la potencia del aceited).- Calcular la fuerza que lleva el aceite por la tubería.

Problema 1.10: Elaborar diagrama espacio – tiempo para un actuador longitudinal cuyo vástago tarda 8 seg. En salir , 12 seg. Permanece fuera y 4 seg en retroceder. Cuanto tiempo tarda en realizar el ciclo de trabajo.

Problema 1.11: Elaborar diagrama espacio – tiempo para un actuador lineal cuyo vástago tarda 12 seg. En salir, 8 seg. Permanece extendido y 10 seg en retroceder. Cuál fue el tiempo del ciclo de trabajo.

U N I D A D D O S

2.1 CLASIFICACION DE LAS MAQUINAS

Page 21: Apuntes de Maquinas de Desplazamiento Positivo

Maquina: conjunto de sistemas mecánicos ó termodinámicos capaz de transformar energía

Sistema mecánico: Conjunto de uno ó de varios mecanismos con movimiento longitudinal ó rotacional ó ambos generando trabajo.

Sistema termodinámico: Recipiente sometido a presión y volumen constante ó sometido a variaciones de presión y volumen generando contracciones y dilataciones ó bien empujes de fluidos incompresibles (líquidos) ó compresibles (gases).

Entre las máquinas hidráulicas se citan

1.- Ventiladores con presión menor a 100 mbar

2.- Bombas manejan fluidos incompresibles con densidad y volumen específico Constantes.

Entre las máquinas térmicas se citan

1.- Compresores con presión mayor a 100 mbar

2.- Turbina de vapor

3.- Turbo reactor manejan fluidos compresibles con densidad y volumen específico no Constantes

2.2 CLASIFICACION DE LAS MAQUINAS HIDRÁULICAS

Turbo máquinas: Son máquinas de corriente, obedecen la ecuación de Euler.

Máquinas de desplazamiento positivo: Son máquinas volumétricas, obedecen el principio de desplazamiento positivo.

2.3 FUNCIONAMIENTO DE LAS MAQUINAS DE DESPLAZAMIENTO POSITIVO

En éste grupo pertenecen las máquinas alternativas con émbolo (pistón) en dónde el mecanismo como órgano intercambiador de energía tiene movimiento alternativo y rotacional, éste cede energía al fluido ó el fluido cede energía al órgano intercambiador en forma de energía depresión generada por la variación de volumen del fluido contenido en un recipiente. Los cambios en dirección y magnitud de la velocidad del fluido no son importantes.

Page 22: Apuntes de Maquinas de Desplazamiento Positivo

El principio de desplazamiento positivo consiste en analizar el movimiento del embolo en el interior de un cilindro que almacena un fluido a una presión determinada. Las variables de mayor importancia son:

1.- Área transversal del émbolo, A

2.- Volumen del cilindro, V

3.- Recorrido del émbolo, L

4.- Densidad del fluido,

5.- Caudal volumétrico, Q, G

6.- Caudal másico,

7.- Presión, P

8.- Fuerza, F

9.- Trabajo, W10.- Potencia,

Área transversal del émbolo Volumen del cilindro Recorrido del embolo

Densidad del fluido Caudal másico Fuerza dinámica

Page 23: Apuntes de Maquinas de Desplazamiento Positivo

Trabajo del pistón Presión

Potencia del pistón

Define potencia mecánica

Define potencia hidráulica

Define potencia comunicada al fluido

Define potencia eléctrica

El principio de desplazamiento positivo (PDP) puede enunciarse diciendo.

El movimiento de un fluido se origina por la disminución del volumen de una cámara ó espacio volumétrico.

Page 24: Apuntes de Maquinas de Desplazamiento Positivo

Volumen de la cámara de compresión

Volumen de cilindrada

Volumen total de cilindrada

Punto muerto superior

Punto muerto inferior

Válvula de admisión ó de cargaVálvula de escape ó de descarga

Carrera del pistón

VOLUMEN DE LA CÁMARA = VOLUMEN DE CILINDRADA

VOLUMEN DE CILINDRADA TOTAL

Page 25: Apuntes de Maquinas de Desplazamiento Positivo

RELACION DE COMPRESION

De dónde

VOLUMEN DE CILINDRADA PARA VARIOS CILINDROS

Número de cilindros

VELOCIDAD MEDIA DEL PISTON

PRESION MEDIA EFECTIVA

TRABAJO EJERCIDO POR EL PISTON SOBRE EL FLUIDO

= Exponente isoentrópico

Page 26: Apuntes de Maquinas de Desplazamiento Positivo

ECUACION DE LA ALTURA UTIL DE UNA BOMBA

POTENCIA ABSORBIDA POR LA BOMBA

CAUDAL VOLUMETRICO TEORICO

FUERZA RENDIMIENTO VOLUMETRICO

Oscila entre 0.85 a 0.95

2.4 C O M P R E S O R E S

Máquinas térmicas con capacidad de transformar energía mecánica en energía neumática.

Máquinas térmicas capaces de elevar la presión del aire desde la presión atmosférica local hasta otra presión mayor que ésta.

CLASIFICACION DE COMPRESORES

Page 27: Apuntes de Maquinas de Desplazamiento Positivo

COMPRESOR ALTERNATIVO DE UNA ETAPA SIN ESPACIO MUERTO

Máquina térmica que utiliza el mecanismo corredera – biela – manivela, el cual para su análisis se considera como un sistema adiabático ó isoentrópico.

Proceso 0 – 1 Isobárico

Proceso 1 – 2 Isoentrópico ó adiabático

Proceso 2 – 3 Isobárico

Proceso 3 – 0 Isométrico

Para ambos ciclos son válidas las relaciones siguientes

Page 28: Apuntes de Maquinas de Desplazamiento Positivo

TRABAJO ISOENTROPICO DE UN COMPRESOR CON UN ESCALONAMIENTO

EFICIENCIA VOLUMETRICA DE UN COMPRESOR

Volumen real de aire aspirado

Volumen de desplazamiento

RENDIMIENTO VOLUMETRICO EN FUNCION DEL ESPACIO MUERTO

Page 29: Apuntes de Maquinas de Desplazamiento Positivo

=

TRABAJO DE UN COMPRESOR CON ESPACIO MUERTO

2.5 COMPRESOR IDEAL DE DOS ESCALONAMIENTOS

El compresor de dos etapas ó dos escalonamientos está constituido de dos cilindros distribuidos en V de los cuales el de la primera etapa las dimensiones son mayores comparados con los de la segunda etapa. Ambos cilindros están interconectados con un serpentín enfriador cuya misión es disminuir la temperatura del aire que se descarga de la primera etapa.Con éste tipo de arreglo se incrementa el trabajo y la potencia de la máquina

Page 30: Apuntes de Maquinas de Desplazamiento Positivo

0 – 1 corresponde admisión de aire atmosférico

1 – 2 corresponde compresión del aire 1ª. Etapa

2 – 3 corresponde a enfriamiento del aire en el serpentín después de la descarga en 1ª. Etapa

3 – 4 corresponde admisión de aire comprimido en 2ª. Etapa

4 – 5 corresponde compresión del aire en 2ª. Etapa

5 – 6 corresponde descarga del aire comprimido de 2ª. Etapa

0 – 1 – 2 – 3 – 0 corresponde al ciclo de baja presión

3 – 4 – 5 – 6 – 3 corresponde al ciclo de alta presión

2 – 4 – 5 – 7 – 2 corresponde a reducción de trabajo por enfriamiento.

TRABAJO TOTAL DEL COMPRESOR DE DOS ESCALONAMIENTOS

Page 31: Apuntes de Maquinas de Desplazamiento Positivo

Como el volumen de descarga en 1ª. Etapa es igual al volumen de admisión en 2ª. Etapa, entonces se establece la condición siguiente.

Trabajo en baja presión = Trabajo en alta presión

Define la presión óptimaComo el trabajo realizado es el mismo tanto en etapa de baja como en alta, entonces el trabajo total es el doble para dos escalonamientos.

ó

Trabajo total para tres escalonamientos

COMPRESOR DE TIPO ROTATIVO

Compresor centrífugo: Máquina de elevada velocidad (3 000 a 40 000 rpm) accionado por turbinas de vapor, consta de un eje sobre el cual se ensambla una ó varias ruedas denominadas rotores con características especiales, se utilizan para suministrar aire comprimido a altas presiones con una succión de y en la descarga

Page 32: Apuntes de Maquinas de Desplazamiento Positivo

Velocidad del fluido sobre la paleta

Velocidad periférica = velocidad tangencial

Velocidad absoluta de entrada ó de suministro = Velocidad resultante de entrada

Velocidad absoluta de salida ó de descarga = velocidad resultante de salida

Velocidad angular del impulsor.

Page 33: Apuntes de Maquinas de Desplazamiento Positivo

PAR TEORICO PARA HACER GIRAR EL IMPULSOR

Se determina aplicando la expresión

TRABAJO TEORICO DEL IMPULSOR

Page 34: Apuntes de Maquinas de Desplazamiento Positivo

Radio del borde del impulsor ,

Velocidad tangencial del aire al abandonar el rotor.

Velocidad angular del rotor

Velocidad absoluta en el borde del impulsor

Velocidad tangencial del fluido sobre el álabe

Se calcula aplicando la igualdad

D E S L I Z A M I EN T O

Fenómeno que se origina por la inercia del aire, éste hace que se resista a la aceleración radial, provocando turbulencia sobre la cara delantera del álabe. Se calcula aplicando el factor de deslizamiento dada por la relación.

Sustituyendo en

Page 35: Apuntes de Maquinas de Desplazamiento Positivo

Como el par real es mayor que el teórico debido a las pérdidas generadas por el rozamiento entre el rotor y la carcasa, se introduce el factor de potencia absorbida, f y la ecuación de trabajo teórico de modifica

Para casos prácticos

ENTALPIA TOTAL = ENTALPIA DE ESTANCAMIENTO

Esta magnitud se expresa por tres tipos de energía, interna, de flujo y cinética.

De la ecuación de conservación de la energía aplicada a un compresor

Para un sistema de flujo constante é isoentrópico, no hay adición de energía calorífica, esto es, Q = 0

Temperatura de estancamiento

Temperatura total ó absoluta

Define potencia absorbida por kg de caudal de aire

EFICIENCIA ISOENTROPICA Y RELACION DEPRESION DE ESTANCAMIENTO

Estas magnitudes se obtienen analizando los procesos a partir de diagramas P – V, T – S

Page 36: Apuntes de Maquinas de Desplazamiento Positivo

Isoentrópico, obedece la ecuación

Real. Obedece la ecuación

EFICIENCIA ISOENTROPICA O ADIABATICA

Por

De la relación de presiones vista en termodinámica, se tiene

Para el proceso real

Por lo tanto

Page 37: Apuntes de Maquinas de Desplazamiento Positivo

COMPRESOR DE FLUJO AXIAL

Con éste tipo de máquinas se alcanzan rendimientos isoentrópico del orden de 85% a 90 % el impulsor es de álabes aerodinámicas de tal manera que al girar, el aire se mueve hacia el borde saliente de los álabes, tal como se muestra.

TRABAJO EFECTUADO POR KILOGRAMO DE AIRE

Se obtiene aplicando la igualdad

Variación generada por el rotor

Si no se usan deflectores de entrada para dirigir el aire tangencialmente hacia el rotor, entonces

La ecuación de trabajo se reduce

Aplicando la segunda condición

Page 38: Apuntes de Maquinas de Desplazamiento Positivo

EFICIENCIA DE COMPRESION

CARACTERISTICAS DE UN COMPRESOR

Son cualidades que hacen distinguir un compresor de otro para medir su capacidad de suministro. Las mas sobresalientes son.

1.- Diámetro interior del cilindro, , mm, in

2.- Diámetro exterior del pistón, , mm, in

3.- Carrera del pistón, , mm, in

4.- Volumen de cilindrada, . , , ,

5.- Presión de trabajo efectiva, normal y máxima, , , , ,

6.- Volumen entregado de aire libre, , , , ,

7.- Relación de compresión,

RESOLUCION DE EJERCICIOS

Ejercicio 2.1: Una bomba de pistón de doble efecto tieneDiámetro de pistón = 250 mmCarrera d pistón = 375 mmAltura de succión = 4.5 mcaAltura de descarga = 18.0 mcaDiámetro d biela = 50.0 mmRevoluciones por minuto del cigüeñal = 60Despreciando las pérdidas y el rozamiento. Se pidea).- Esquema del sistemab).- Calcular fuerza de succión y descargac).- Cual será la fuerza total de idad).- Cual será la fuerza total de retornoe).- Cual será el caudal que suministra la bombaf).- Cual será la altura útil de la bombag).- Cual será la potencia absorbida por la bomba.

Page 39: Apuntes de Maquinas de Desplazamiento Positivo

Ejercicio 2.2: Una bomba de émbolo accionada manualmente tiene.Altura de aspiración = 4 mAltura de elevación = 30 mDiámetro del émbolo = 250 mmDiámetro del vástago = 75 mmCarrera del émbolo = 600 mmSe pide.a).- Elaborar esquema del sistemab).- Calcular presión de succión y de elevación c).- Cual será la fuerza para la succión en la elevación del émbolod).- Cual será la fuerza para la impulsión en la elevación del émboloe).- Cual será la fuerza requerida para elevar el émbolof).- Cual será la fuerza para bajar el émbolog).- Cuales serán los volúmenes suministrados en las carreras de subida y bajada

Ejercicio 2.3: Un compresor de émbolo admite y comprime de aire libre desde una presión de abs. Y 15.6 ºC hasta abs. Se pidea).- Elaborar esquema del sistema y trazar diagrama P – V b).- Cual será la relación de volúmenesc).- Cual será la temperatura máxima de compresiónd).- Cual será el trabajo para comprimir el airee).- Cual será la presión media del airef).- Cual será la potencia requerida para comprimir el aire.

Ejercicio 2.4: Un compresor de émbolo de simple efecto , un escalonamiento y espacio muerto tiene.Diámetro del cilindro = 305 mmCarrera del émbolo = 457 mmVolumen de espacio muerto = 6 %Presión absoluta de descarga =

Presión de aspiración = Temperatura de aspiración = 26.7 ªCSe pide.a).- Elaborar esquema del sistema y trazar diagrama de procesos en el plano P – V.b).- Calcular el rendimiento volumétricoc).- Cual será la cantidad de aire libre aspirado a 200 rpmd).- Cual será el trabajo requerido para comprimir el airee).- Cual será la presión mediaf).- Cual será la potencia en el eje si el rendimiento global es del 85 % Ejercicio 2.5: En un compresor de un escalonamiento se desea comprimir de aire desde ABS. Y 15.6 ºC hasta ABS. Se pidea).- Elaborar esquema del sistema y trazar procesos en plano P – V b).- Calcular la relación compresiónc).- Cual será la temperatura de descargad).- Cual será el trabajo por minuto del compresor para comprimir el airee).- Cual será la potencia requerida para comprimir el aire.

Ejercicio 2.6: Con los mismos datos del ejercicio 2.5 y utilizando un compresor de dos escalonamientos. Se pide

Page 40: Apuntes de Maquinas de Desplazamiento Positivo

a).- Elaborar esquema del sistema y trazar procesos en plano P – V b).- Cual será el trabajo por minuto del compresor para comprimir el airec).- Cual será la potencia requerida para comprimir el aired).- Cual será la reducción de potencia por el enfriador.

Ejercicio 2.7: Un compresor centrífugo descarga de aire con una velocidad periférica de . Utilice factor de deslizamiento 0.9 y factor de potencia absorbida de 1.04. Se pidea).- Elaborar esquema del impulsor con diagrama vectorial de velocidadesb).- Cual será el trabajo teórico por kilogramos de airec).- Cual será la potencia que se comunica al aired).- Cual será la velocidad tangencial del aire con la que abandona el rotore).- Cual será el par generado en el rotor si el radio de borde es 200 mm.f).- Cual será el ángulo de la velocidad periféricag).- Cual será la velocidad del fluido sobre el álabe.

Ejercicio 2.8: En un compresor centrífugo, la temperatura de estancamiento a la entrada es 288.6 ºC y en la salida del mismo 475.6 ºC. Si se desean comprimir 2.27 kg por seg.de aire. Se pidea).- Elaborar esquema del sistemab).- Cual será el trabajo requerido para comprimir el airec).- Cual será la potencia requerida para comprimir el aire d).- Cual será el par generado en el eje a 1800 rpm.

Ejercicio 2.9: Un compresor centrífugo con radio de impulsor de0.75 m en el borde del mismo, descarga 0.454 kg de aire por segundo con una velocidad periférica de 365. 75 metros por segundo. Los factores de deslizamiento y de potencia absorbida son 0.9 y 1.04. Se pidea).- Elaborar esquema del rotor con diagrama vectorial de velocidadesb).- Cual será el trabajo teórico por kg de airec).- Cual será la potencia que se comunica al aired).- Cual será la velocidad tangencial del aire con la que abandona el rotore).- Cual será el torque generado en eje del rotor

Ejercicio 2.10: El impulsor de un compresor centrífugo de un escalonamiento trabaja con una velocidad periférica de 427.7 metros por segundo proporcionando un rendimiento de 83 %. Los factores de deslizamiento y potencia absorbida son 0.9 y 1.04. La temperatura de estancamiento a la entrada es 288.6 ºC ABS. El calor específico del aire es 0.24 Kcal por kg ºC y la presión absoluta de estancamiento en la entrada es 1.029 kg f por cm2. Se pide a).- Elaborar esquema del rotorb).- Calcular la relación de presionesc).- Cual será la presión de estancamiento a la salidad).- Cual será la temperatura absoluta de estancamiento a la salidae).- Cual será la velocidad tangencial del aire al abandonar el impulsor.

Ejercicio 2.11: SE desean comprimir 0.427 kgf por seg. De aire atmosférico en un compresor de flujo axial descargando con una rapidez periférica de 427.7 metros por segundo sin deflectores de entrada. Se pidea).- Elaborar esquema del rotor y canalizaciónb).- Cual será la potencia requerida para realizar el trabajoc).- Cual será el trabajo real si la eficiencia del compresor es del 85 %

Page 41: Apuntes de Maquinas de Desplazamiento Positivo

d).- Cual será la potencia real

Ejercicio 2.12: En un compresor se comprimen 0.2 kg por seg. De aire desde 100 KPa. Y 12 ºC hasta 800 KPa. Con una eficiencia de máquina del 80 %. Se pidea).- Elaborar esquema del compresor y trazar procesos en los planos T – S, h – S b).- Cual será el trabajo isoentrópico del compresorc).- Cual será la temperatura real de descargad).-Cual será el trabajo real del compresore).- Cual será la potencia real de máquina

Ejercicio 2.13: En un compresor se comprime aire desde100 KPa. Y 300 ºK hasta 900 KPa. Se pidea).- Elaborar esquema del compresor y trazar diagrama de proceso en el plano T – S, h – S. b).- Cual será el trabajo mínimo desarrolladoc).- Cual será el trabajo máximo desarrolladod).- Cual será la temperatura de descarga del aire

Ejercicio 2.14: Utilizando el modelo de flujo estacionario en un compresor absorbe aire a 17 ºC y se comprime con una relación de presión de 8.6 : 1. Se pidea).- Elaborar esquema de máquina y trazar proceso en plano T – S b).- Cual será la temperatura y entalpia de descargac).- Cual será el trabajo en la flecha

Page 42: Apuntes de Maquinas de Desplazamiento Positivo

U N I D AD T R E S

3.-1 B O M B A S Y V E N T I L A D O R E S

Bomba: Máquina capaz de transformar energía mecánica en energía hidráulica, comunicando presión y velocidad a fluidos incompresibles, la densidad y el volumen específico no sufren variaciones. La capacidad de una bomba se mide por la cantidad de

fluido descargado expresado en: , , ,

Para resolver problemas con bombas se retoman conceptos vistos en dinámica de fluidos en la introducción a la turbo maquinaria.

1.- Carcasa ó envolvente

2.- Rodete ó impulsor

3.- Eje ó flecha del rodete

4.- Boca de succión

5.- Boca de descarga

6.- Contratapa de carcasa

Page 43: Apuntes de Maquinas de Desplazamiento Positivo

7.- Tuerca fijadora del rodete

8.- Brida = acoplamiento

9.- Base de la bomba

Page 44: Apuntes de Maquinas de Desplazamiento Positivo

Ventilador: Turbo máquina que absorbe energía mecánica y la transforma a energía de flujo a un fluido compresible creando una diferencia de presiones. Para producir la corriente de un gas, un ventilador está constituido de una cubierta que envuelve a una rueda con aspas ó paletas montada sobre un eje ó flecha.

Page 45: Apuntes de Maquinas de Desplazamiento Positivo

1.- Motor eléctrico

2.- Carcasa = envolvente = cubierta

3.- Flecha ó eje

4.- Aspa = paleta

5.- Banda de transmisión ó acoplamiento

6.- Soporte de motor eléctrico

7.- Cimentación

Ventilador de flujo axial: Se caracteriza por el flujo ó corriente de fluido gaseoso es paralelo al eje longitudinal de la hélice ó rodete.

Ventilador centrífugo: Se caracteriza porque el flujo ó corriente de fluido se impulsa a lo largo del eje del ventilador y se descarga en forma radial al eje.

APLICACIONES DE LOS VENTILADORES

1.- Sistemas de secado

2.- Sistemas de calefacción

3.- Sistemas de ventilación

4.- Sistemas de enfriamiento

5.- Sistemas de aire acondicionado

Page 46: Apuntes de Maquinas de Desplazamiento Positivo

6.- Sistemas de vaporizado

7.- Sistemas de extracción de gases, etc.

VELOCIDADES DEL ROTOR DE UN VENTILADOR

Velocidad del aire sobre las paletas

Velocidad periférica = Velocidad tangencial

Page 47: Apuntes de Maquinas de Desplazamiento Positivo

Velocidad resultante del aire = velocidad absoluta del aire

PRESIONES PARA VENTILADORES

Altura de presión total Altura de presión estática, se utiliza para vencer los Rozamientos al paso del aire ó gas por el conducto.

Altura de presión dinámica, se utiliza para crear y Mantener la velocidad del aire ó gas en el conducto.

Son positivos cuando la presión del aire en el interior del ducto es mayor

Page 48: Apuntes de Maquinas de Desplazamiento Positivo

Que el aire del exterior, es decir

Son negativos cuando la presión del aire en el interior del ducto es menor Que el aire del exterior, es decir

Presión totalPresión estáticaPresión dinámica

Cuando hay variaciones de presión, se aplica la expresión siguiente

VELOCIDAD DEL FLUIDO COMPRESIBLE

De dónde

ó

NOTA: Las mediciones de presión deben realizarse entramos de canalización de longitud igual a 20 diámetros del conducto como máximo y 10 diámetros en cada extremo.

NOTA: El diseño de ventiladores y en general para cualquier máquina se realiza para que trabajen al nivel del mar, sin embargo para la potencia se hace un ajuste apropiado para la zona donde se instalará el equipo.

CAPACIDAD DE UN VENTILADOR

Velocidad media del aire

Área de la sección recta de la canalización

Page 49: Apuntes de Maquinas de Desplazamiento Positivo

INCREMENTO DE PRESION AL COMPRIMIRSE EL AIRE

Factor de velocidad en aumento de presión oscila de 0.8 a 0.96

Velocidad periférica

Velocidad reducida de la corriente de aire a la salida del ventilador

EFICIENCIA DE UN VENTILADOR

POTENCIA DE UN VENTILADOR

Caudal de aire

Altitud s.n.m .en km

PARAMETROS PARA SELECCIONAR UN VENTILADOR

1.- Caudal de descarga = caudal entregado

2.- Presión total y estática

3.- Potencia al freno = caballos efectivos

4.- Velocidad angular = velocidad de rotación

5.- Velocidad de descarga

6.- Modelo

Page 50: Apuntes de Maquinas de Desplazamiento Positivo

7.- Rendimiento total y estático

BOMBA DE PALETAS DESLIZANTES = BOMBA ROTATIVA

Máquinas que se adaptan a grandes caudales, están constituidas de.

1.- Un estator con boquilla de admisión y descarga

2.- Un rotor excéntrico respecto al estator

3.- Varias paletas deslizantes incrustadas en el rotor

Radio del rotor Espesor de la paleta

Diámetro del rotor Número de paletas

Radio del estator Longitud del rotor

Diámetro del estator r p m

Excentricidad

SECCION TRNASVERSAL VELOCIDAD MEDIAMAXIMA ENTRE ROTOR Y ESTATOR DE LA PALETA

Page 51: Apuntes de Maquinas de Desplazamiento Positivo

CAUDAL TEORICO DESPRECIANDO CAUDAL TEORICO CONSIDERANDOESPESOR DE PALETAS Y FUGAS ESPESOR Y NUMERO DE PALETAS

CAUDAL REAL DE UNA BOMBACON PALETAS DESLIZANTES

B O M B A D E E N G R A N E S

Máquina de desplazamiento positivo con capacidad de suministrar fluidos viscosos, como los aceites y similares. Están constituidos de

1.- Un estator

2.- Dos rotores, de los cuales uno es motriz

DESPLAZAMIENTO POR REVOLUCIONIGUAL VOLUMEN DESPLAZADO POR REVOLUCION

Área del espacio ocupado por un diente

Altura del diente

Page 52: Apuntes de Maquinas de Desplazamiento Positivo

Número de dientes

CAUDAL UTIL DE UNA BOMBA DE ENGRANES

Oscila de 0.4 a 0.8

CAUDAL TEORICO DE UNA BOMBA DE ENGRANES

Diámetro primitivo de los engranes

Longitud de los dientes

Módulo de los dientes

r p m

PASO CIRCULAR = PASO CIRCUNFERENCIAL

Es la distancia de un diente al diente siguiente sobre la circunferencia primitiva.

PASO DIAMETRAL

Número de dientes existentes en cada pulgada ó cada 25.4 mm sobre el diámetro primitivo (= diámetro de paso).

MODULO MÉTRICO ESPESOR DEL DIENTE

Page 53: Apuntes de Maquinas de Desplazamiento Positivo

RANGO DEL ANCHO DE LA CARA DEL DIENTE

Factor de longitud del diente, utilizar el promedio

DISTANCIA ENTRE CENTROS

RESOLUCION DE EJERCICIOS

Ejercicio 3.1: El rodete de una bomba centrífuga mide 700 mm y gira a 1800 rpm. El agua se descarga con ángulo de 60º y una rapidez de 6 metros por segundo. Si la carga real desarrollada por la bomba es 17 m y el ancho del álabe curvado hacia atrás en la descarga es 7 octavos de pulgada. Se pidea).- Elaborar esquema del rodete con diagrama vectorial de velocidadesb).- Cual será la carga teóricac).- Cual será la eficiencia hidráulicad). Cual será el par hidráulicoe).- Cual será la potencia hidráulica

Ejercicio 3.2: El impulsor de una bomba centrifuga que suministra agua tiene las medidas siguientes.

4 in 12 in20º 10º2 in 0.75 in90º

Gira a 1 800 rpm, despreciando las pérdidas interiores y el espesor de los álabes. Se pidea).- Elaborar esquema del impulsor b).- Calcular velocidades periféricas a la entrada y a la salida de los álabesc).- Calcular velocidad absoluta de entradad).- Calcular el caudal de entradae).- Cual será la velocidad radial en la salidaf).- Trazar los triángulos vectoriales de velocidades de entrada y salidag).- Cual será la carga teórica del impulsorh).- Cual será la potencia requerida para operar la bombai).- Cual sería el incremento de presión en la descarga.

Page 54: Apuntes de Maquinas de Desplazamiento Positivo

Ejercicio 3.3: Una bomba opera a 2 520 rpm y suministra 16 litros por segundo de agua a una altura útil de 16 m con un rendimiento total de 81 %. Se pidea).- Elaborar esquema de la bombab).- Calcular la potencia de accionamientoc).- Cual será la presión de descargad).- Cual será el par hidráulicoe).- Cual será la velocidad de descargaf).- Cual será la fuerza del aguaEjercicio 3.4: Una bomba centrífuga suministra 1 200 000 litros por hora de agua a 5 ºC. Los diámetros de las tuberías de succión y descarga son 400 mm y 375 mm. El vacuo metro está conectado a 80 mm por debajo del eje de la bomba registrando una altura de presión de 2 m. El manómetro está conectado en la tubería de descarga a 500 mm por encima del eje de la bomba registrando una carga de presión de 12 m. Despreciando las pérdidas por rozamiento en las tuberías. Se pidea).- Elaborar esquema del sistemab).- Calcular la velocidad del fluido en tubería de succiónc).- Calcular la velocidad del fluido en tubería de descargad).- Cual será la carga de presióne).- Cual será la carga dinámicaf).- Cual será la carga geodésicag).- Cual será la carga útilh).- Cual será la potencia de accionamientoi).- Cual será la fuerza del agua en la descarga j).- Cual será el par requerido para mover el impulsor a 1 650 rpm Ejercicio 3.5: Una bomba centrífuga con diámetro de tubería en la succión de 152.4 mm y en la descarga de 101.6 mm. Suministra 946. 25 litros por minuto de agua a 15.6 ºC. El vacuo metro se ubica a 0.61 m por debajo del eje de la bomba, registra una carga de aspiración de 305 mm Hg. El manómetro se ubica a 0.915 m sobre el eje de la bomba, registra una presión de 13.3 kilogramos fuerza por centímetro cuadrado, considerando que las pérdidas totales por rozamiento es 0. 67 m. Se pidea).- Elaborar esquema del sistemab).- Cual será el NPSHRc).- Cual será el NPSHDd).- Cual será la velocidad del agua en la tubería de succióne).- Cual será la velocidad del agua en la tubería de descargaf).- Cual sería la variación de carga dinámicag).- Cual sería la carga útilh).- Cual sería la potencia hidráulicai).- Cual sería el par generado en la flecha a 1 800 rpmj).- Cual sería la eficiencia mecánica si la bomba es accionada por un motor eléctrico que Suministra en la flecha 36 HP

Ejercicio 3.5: Una bomba centrífuga con impulsor 13 in de diámetro, suministra 1 500 galones por minuto de agua a 1 750 rpm. Se pidea).- Elaborar esquema del sistemab).- Utiliza figura 15 – 16. Cuál será la útilc).- Cual será la potencia para alimentar la bombad).- Cual será la eficiencia mecánica de la bombae).- Cual será el par que genera el rodete sobre el aguaf).- Cual será la velocidad del agua en la descargag).- Cual será la fuerza del agua en la descarga

Page 55: Apuntes de Maquinas de Desplazamiento Positivo

Ejercicio 3.6: Un ventilador mantiene en la descarga una presión estática de 3.2 cm de agua y una presión dinámica de 0.89 cm de agua. En la canalización de aspiración y cerca del ventilador la presión estática es – 3.2 cm de agua y la dinámica de 0.64 cm de agua. Se pidea).- Elaborar esquema del sistema canalización – ventilador b).- Calcular la diferencia de presión total creada por el ventilador

Ejercicio 3.7: Un ventilador recibe gases de combustión a una presión estática de 0.64 cm de columna de agua y una presión dinámica de 0.89 cm c. a. en la canalización de entrada. La presión estática de salida es 38.1 cm c. a y la dinámica de 1.9 cm c. a . Se pide.a).- Elaborar esquema de canalización – ventiladorb).- Calcular la diferencia de presión total

Ejercicio 3.8: Un ventilador descarga 680 m3 por minuto de aire a través de una superficie de canalización de 1.2 m2 manteniendo una presión estática de 14.7 cm c. a a una temperatura de 21.1 ºC y la presión barométrica 760 mm Hg. Se pidea).- Elaborar esquema del sistema canalización – ventiladorb).- Calcular velocidad teórica del airec).- Cual será la altura depresión dinámicad).- Cual será la altura de presión totale).- Cual será la potencia desarrollada por el ventilador Ejercicio 3.9: Un ventilador con diámetro de rodete 21 in gira a 600 rpm con paletas curvadas hacia adelante. El peso específico del aire es 0.075 libras fuerza por píe cúbico y la velocidad absoluta de descarga es 1.3 veces la velocidad periférica. El factor de velocidad por incremento de presión es 0. 75 y la velocidad del aire a la salida del ventilador es 1 800 pies por minuto. Se pidea).- Elaborar esquema del impulsor con diagrama vectorial de velocidadesb).- Cual será la velocidad periféricac).- Cual será la velocidad absoluta de descargad).- Cual será el incremento de presión estática.

Ejercicio 3.10: El impulsor de un ventilador con paletas curvadas hacia adelante entrega 17 500 pies cúbicos por minuto con una presión estática de 1 in de agua. El impulsor gira a 256 rpm y consume 4.54 HP. Si la velocidad del ventilador cambia a 300 rpm. Se pidea).- Elaborar esquema del impulsorb).- Cual será el nuevo caudal suministradoc).- Cual será la nueva presión estáticad).- Cual será la nueva potencia

Ejercicio 3.11: El impulsor de un ventilador con paletas curvadas hacia atrás suministra 20 500 pies cúbicos por minuto a 70 ºF, la presión estática es 1.37 in c.a, requiere una potencia de 7.31 HP. El peso específico del aire es 0.075 libras fuerza por pie cúbico. Si la temperatura del aire se incrementa a 150 ºF. Se pidea).- Elaborar esquema del impulsorb).- Cual será el peso especifico del aire a la condición finalc).- Cual será la nueva presión estática. d).- Cual será la nueva potencia

Page 56: Apuntes de Maquinas de Desplazamiento Positivo

Ejercicio 3.12: Un ventilador descarga 680 m3 por minuto a 21.1 ºC dentro de una canalización de 1.172 m2 manteniendo una carga estática de 12.7 cm de agua. Se pidea).- Elaborar esquema ventilador – canalización b).- Calcular la velocidad de descargac).- Cual será la carga dinámicad).- Cual será la carga totale).- Cual será la potencia que desarrolla el ventilador

Ejercicio 3.13: Un ventilador gira a 2 800 rpm , jala aire con una presión estática de 0.7 cm de agua, carga dinámica de 0.9 cm de agua y la descarga con una rapidez de 13 metros por segundo en una canalización de .80 cm de diámetro a una carga estática de 40 cm de agua y carga dinámica de 2 cm de agua. Se pidea).- Elaborar esquema ventilador – canalización b).- Cual será la descarga de airec).- Cual será la carga totald).- Cual será la potencia que desarrolla el ventilador e).- Cual será el par que genera el ventilador

Ejercicio 3.14: Un ventilador entrega 20 000 ft3 por minuto de aire con una carga de velocidad de 0.75 in de agua. Se pidea).- Elaborar esquema del sistemaCon ayuda de la figura 10.7. b).- Calcula la carga estáticac).- Calcula la potencia al frenod).- Cual será la eficiencia mecánicae).- Cual será la velocidad de descargaf).- Cual será la fuerza dinámica del aire

Ejercicio 3.15: Un contratista desea verificar el flujo de aire a través de un ducto de 28 in por 16 in, para ello utiliza un tubo de Pitot y determina la carga de velocidad a 0.8 in de agua. Se pidea).- Elaborar esquema del sistemab).- Cual será la velocidad del airec).- Calcular la cantidad por minuto de aire que fluye por ductod).- Cual será la potencia con la que fluye el airee).- Cual será la carga total medida en inf).- Cual será la carga estática medida en in

Ejercicio 3.16: En una bomba con paletas deslizantes, el estator tiene un diámetro interior de 130 mm, el rotor un diámetro exterior de 80 mm y gira a 2 500 rpm. Se pidea).- Elaborar esquema de la bombab).- Cual será la velocidad media de las paletasc).- Cual será el caudal teórico despreciando el espesor de la paletad).- Cual será el volumen de líquido desplazado e).- Cual será la fuerza dinámicaf).- Cual será la potencia de flujog).- Cual será la presión de descarga del agua Ejercicio 3.17: Una bomba de engranes suministra 20 gal por minuto de aceite lubricante medio a 65 ºC a una presión de 1 500 Psig a 2 000 rpm en un ducto de 2 in. Se pidea).- Elaborar esquema del sistemab).- Cual será el volumen desplazado por revolución

Page 57: Apuntes de Maquinas de Desplazamiento Positivo

c).- Cual será la potencia que requiere la bomba para mover el aceited).- Cual será la velocidad de descargae).- Cual será la fuerza con la que se desplaza el aceitef).- Cual será el par que desarrolla la bomba

Ejercicio 3.18: Una bomba de engranes con paso diametral de 2.5, 16 dientes, diámetro primitivo 9.6 in y eficiencia volumétrica de 65 %, gira a 2 500 rpm, presión de descarga 120 Psi. Se pidea).- Elaborar esquema del sistemab).- Cual será el caudal teóricoc).- Cual será el caudal reald).- Cual será el volumen desplazado por revolucióne).- Cual será el par que desarrolla la bombaf).- Cual será el flujo másico para un aceite con densidad relativa 0.842 a 40 ºC si se Descarga en 222.2 in2 de sección transversalg).- Cual será la carga dinámica

Ejercicio 3.19: Una bomba de engranes capaz de suministrar 100 cm3 por revolución de un aceite a 2 500 rpm y genera un incremento de presión de 10 bar. Se pidea).- Elaborar esquema del sistemab).- Cual será el caudal ideal c).- Cual será la potencia de accionamiento ideal d).- Cual será el par motor ideal