appendix vibration analysis report - 'virginia avenue … · virginia avenue tunnel...

47
Appendix F Vibration Analysis Report

Upload: buique

Post on 26-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Appendix F Vibration Analysis Report

Page 2: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,
Page 3: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

June 2013

Page 4: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

 

Page 5: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

   

VIRGINIA AVENUE TUNNEL RECONSTRUCTION PROJECT

WASHINGTON, DC

VIBRATION ANALYSIS REPORT

June 2013

Prepared by CLARK/PARSONS, JOINT VENTURE

100 M Street, SE, Suite 1200 Washington, DC 20003

Phone: 202-775-3300. Fax: 202-775-3420  

Page 6: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

   

Page 7: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

i  

TABLE OF CONTENTS

 

Table of Contents ..................................................................................................................... i

ACRONYMS AND ABBREVIATIONS .......................................................................................... iii

STANDARDS ........................................................................................................................... iv

EXECUTIVE SUMMARY ............................................................................................................. v

1 INTRODUCTION .................................................................................................................... 11.1 PurposeofVibrationStudy...................................................................................................................................11.2 ProjectDescription...................................................................................................................................................1

2 VIBRATION BACKGROUND .................................................................................................... 42.1 VibrationBackground.............................................................................................................................................4

3 IMPACT CRITERIA .................................................................................................................. 63.1 OperationVibrationImpactCriteria.................................................................................................................63.2 ConstructionImpactCriteria................................................................................................................................7

4 EXISTING SETTING................................................................................................................. 84.1 ExistingLandUse......................................................................................................................................................84.2 VibrationMeasurements.......................................................................................................................................9

5 IMPACT ASSESSMENT ......................................................................................................... 215.1 ConstructionVibration.........................................................................................................................................215.2 Post‐ConstructionOperationVibration.........................................................................................................23

6 MITIGATION ....................................................................................................................... 276.1 ConstructionVibrationMitigation...................................................................................................................276.2 Post‐ConstructionoperationVibrationMitigation...................................................................................28

APPENDIX A FIGURES ............................................................................................................ 29

Page 8: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

ii  

 

 

LIST OF TABLES 

Table ES‐1.   Impact Distances for Existing and Future Ground‐Born Vibration Train Pass 

By in the Tunnel 

Table ES‐2.   Construction Equipment Vibration Impact Distances 

Table 3‐1.   Land Use Categories and Metrics for Rail Noise Impact Criteria 

Table 3‐2.   Ground‐Born Vibration Criteria for Special Buildings 

Table 3 3.   Construction Vibration Building Damage Criteria 

Table 4 1.  Existing Train Pass‐by Vibration Measurements 

Table 4 2.  Existing baseline Vibration Measurements 

Table 4 3.  Existing Nighttime Baseline and Train Pass‐by Vibration Measurements 

Table 4 4.  Soil Factor Derived from Existing Train Pass By Measurements at the East 

Portal 

Table 5‐1.  Measured Vibrations Levels verses Calculated Vibrations for Building Sites 

near the Tunnel 

Table 5‐2.  Impact Distances for existing and future Ground‐Born Vibration Train Pass 

By 

Table 5‐3.  Highest Construction Equipment Vibration Levels 

Table 5‐4.  Ground‐Born Vibration Source Levels for Construction Equipment 

Table 5‐5.  Construction Equipment Vibration Impact Distances 

 

LIST OF FIGURES 

Figure 1‐1.  Project Location Map 

Figure 2 1.  Typical Levels of Ground‐Borne Vibration 

Figure 4 1.  Existing Train Pass‐by Longitudinal Vibration Measurements 

Figure 4 2.  Existing Train Pass‐by Transverse Vibration Measurements 

Figure 4 3.  Existing Train Pass‐by Vertical Vibration Measurements 

Figure 4 4.  Existing Night Time Train Pass‐by Vertical Vibration Measurements 

Page 9: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

iii  

ACRONYMS AND ABBREVIATIONS  

CSX  CSX Transportation, Inc. 

DDOT  District of Columbia Department of Transportation 

FHWA  Federal Highway Administration 

FTA  Federal Transit Administration 

HVAC  Heating, Ventilation, and Air Conditioning 

Lmax  Maximum level for a single vibration event 

MTA  Maryland Transit Administration  

PPV  Peak Particle Velocity 

RMS  Root Means Square 

USDOT  United States Department of Transportation 

VAT  Virginia Avenue Tunnel 

VdB  Vibration decibel 

VRE  Virginia Railway Express 

 

Page 10: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

iv  

STANDARDS The following guidelines are utilized for the vibration impact and mitigation assessment:  

FTA Noise and Vibration Impact Assessment, May 2006. 

Page 11: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

v  

EXECUTIVE SUMMARY A study was conducted to assess potential vibration conditions during and after the expansion 

of Virginia Avenue Tunnel (VAT) on the surrounding community. CSX intends to expand the 

existing one track tunnel to two tracks and increase the tunnel minimum vertical clearance to 21 

feet above top of rail. This study was conducted in accordance to the procedures outlined in the 

Federal Transit Administration Noise and Vibration Impact Manual. Three proposed VAT 

alignment alternatives were assessed for vibration impacts in both construction and post‐

construction phases. All three of the proposed alternatives run under Virginia Avenue, SE near 

vibration sensitive land use areas and buildings along a 3,800 feet stretch of tunnel within 

Washington, DC. Vibration measurements were conducted at three locations near the proposed 

VAT expansion. Results of these measurements were used to determine vibration levels from 

existing train pass bys and calculate vibration transferability characteristics of the soil which 

could then be used for predicting the vibration levels from construction activities and post‐

construction train operations. 

Vibration impacts were evaluated for human annoyance and building damage. The distance 

between vibration sensitive receptors and the new track alignments were obtain from the 

concept design files. The train source used for calculating impact distances was derived from 

the measured vibration levels. Table ES‐1 shows impact distances from the edge of track for the 

potential of projected building damage and human annoyance due to the existing and future 

train operations, as well as during construction. As indicated in Table ES‐1, any structures 

farther than 20 feet away from the edge of track would not have vibration building damage 

impacts and human annoyance impacts would not occur at more than 36 feet away from the 

edge of track even when there are two trains traveling through the tunnel or tunnels at the same 

time. Vibration impacts are not anticipated due to future, post‐construction train operations 

because the closest building to any of the project alignment alternatives is 44 feet from edge of 

track. 

The potential for vibration annoyance and building damage was also analyzed for major 

vibration producing construction equipment that would be used on this project. Vibration levels 

produced by construction equipment were obtained from the Federal Transit Administration 

Noise and Vibration Impact Assessment Manual. These vibration levels were used to calculate 

the distances at which vibration impacts would occur. As shown in Table ES‐2, mitigation 

measures would need to be considered, if construction equipment were to operate near 

residential or institutional buildings within these distances. Because detailed construction 

activities and types of equipment that will be utilized for each phase are not available at this 

time, overall vibration levels from each construction phase cannot be predicted. Once detailed 

construction schedule for various phases of the construction is developed during the final 

design, these predicted vibration levels need to be confirmed and expanded as needed. 

Page 12: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

vi  

Table ES‐1. Impact Distances for Existing and Future Ground‐Born Vibration Train 

Pass By in the Tunnel 

Alternatives

Distance to Potential Vibration

Building Damage feet

Distance to Potential Vibration Human Annoyance

feet

Existing/ No Build 10 17

Alternative 2 (during construction) 10 17

Alternative 2 20 36

Alternative 3 20 36

Alternative 4 20 36

Table ES‐2. Construction Equipment Vibration Impact Distances 

Equipment

Distance to Potential Vibration

Building Damage2 feet

Distance to Potential Vibration Human

Annoyance1 feet

Large bulldozer 21  38 

Loaded trucks 20  35 

Hoe Ram 21  38 

Caisson drilling 21  38 

Vibratory compactor/roller 33  59 

Sheet Driver (Sonic) 30  53 

Jackhammer 13  23 

Notes: 1. This is the distance at which the PPV is 0.04 in/sec or less at the inside of the building structure. 2. This is the distance at which the peak particle velocity is 0.20 in/sec or less.

While ground‐borne vibrations are not expected to exceed FTA building damage and human 

annoyance impact criteria for the train operations on proposed alignment alternatives, 

construction activities such as earth moving with bulldozers, the use of vibratory compaction 

rollers, and sheet piling would have the most likely potential to cause some human annoyance 

impacts. There are cases where it may be necessary to use this type of equipment in close 

proximity to residential buildings near vibration sensitive area; however, there are mitigation 

measures that can be used to minimize human annoyance. 

 

Page 13: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

Vibration Analysis Report  1 

1 INTRODUCTION    

1.1 PURPOSE OF VIBRATION STUDY The purpose of this study is to assess future vibration conditions at vibration sensitive locations 

along  the  Virginia Avenue  Tunnel  Project.  The  Virginia Avenue  Tunnel  Vibration  Study  is 

divided  into  six  sections.  Section  1  presents  the  overall  Virginia  Avenue  Tunnel  project 

description.  Section  2  explains  the  general  vibration  terminology.  Section  3  presents  the 

guidelines  and  criteria  used  to  assess  the  impact  of  the  proposed  Virginia  Avenue  Tunnel 

project. Section 4 presents the results of baseline vibration measurements. Section 5 analyzes the 

future impacts of construction, operation, and supporting facilities. Section 6 discusses possible 

mitigation measures that may be required to reduce the impact of the Virginia Avenue Tunnel 

Project. 

1.2 PROJECT DESCRIPTION CSX Transportation,  Inc.  (CSX)  is proposing  to  reconstruct  the Virginia Avenue Tunnel. The 

tunnel  is  located  in  the  Capitol  Hill  neighborhood  of  the  District  of  Columbia  beneath 

eastbound Virginia Avenue SE from 2nd Street SE to 9th Street SE, Virginia Avenue Park and 

the 11th Street Bridge  right‐of‐way between 9th and 11th Streets SE, and  is aligned on  south 

side of Interstate 695 (I‐695). The tunnel portals are located a short distance west of 2nd Street 

SE and a short distance east of 11th Street SE. CSX also owns or has easements of the rail lines 

immediately east and west of the tunnel. The tunnel and rail lines running through the District 

are  part  of  CSX’s  eastern  seaboard  freight  rail  corridor,  which  connects  Mid‐Atlantic  and 

Midwest states. 

The CSX proposal includes the complete reconstruction of the tunnel, which was built over 100 

years ago. In addition to its age, the tunnel is also a bottleneck to the freight rail network with 

its single‐track configuration and with a vertical clearance that does not allow for double‐stack 

intermodal  container  freight  trains.  The  Project  will  transform  the  tunnel  to  a  two‐track 

configuration, matching  the  number  of  tracks  immediately  east  and west  of  the  tunnel,  and 

provide  the minimum 21  feet of vertical clearance  to allow double‐stack  intermodal container 

freight train operations. This will allow more efficient freight movement, especially  in  light of 

expected  increases  in  freight  volume.  Reconstructing  the  tunnel  to  allow  double‐stack 

intermodal container freight trains would require lowering the grade below the rail line’s New 

Jersey Avenue SE Overpass to provide the 21‐foot minimum clearance. 

The following alternatives are being considered for the Project: 

Alternative  1  ‐  No  Build:  The  No  Build  alternative,  which  is  automatically  carried 

forward  into  the  Draft  EIS.  The  tunnel would  not  be  rebuilt  under  this  alternative. 

However, the railroad would continue to operate trains through the tunnel and at some 

point, emergency or unplanned major repairs or rehabilitation could be required to this 

Page 14: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  2 

critical,  aging  infrastructure  that might prove  equally  or  even more disruptive  to  the 

community than the Build Alternatives. 

Alternative  2  ‐  Rebuilt  Tunnel  /  Temporary  Runaround  Track:  This  alternative 

involves rebuilding  the existing Virginia Avenue Tunnel.  It would be rebuilt with  two 

tracks and enough vertical clearance to accommodate double‐stack intermodal container 

freight  trains.  It  would  be  rebuilt  in  generally  the  same  location,  except  aligned 

approximately  seven  feet  to  the  south  of  the  existing  tunnel  center  line.  It would  be 

rebuilt using protected open  trench construction methods. During construction, freight 

trains would be temporarily routed through a protected open trench outside the existing 

tunnel  (runaround  track). The  runaround  track would  be  aligned  to  the  south  of  the 

existing  tunnel.  It would be parallel  to  the existing  tunnel and would be below  street 

level. Due to new columns associated with the rebuilt 11th Street Bridge, the runaround 

track would  slightly  separate  from  the  tunnel  alignment on  the  east  end  starting  just 

west of Virginia Avenue Park. Safety measures such as securing fencing would be used 

to prevent pedestrians and cyclists from accessing the runaround track. 

Alternative  3  ‐  Two  New  Tunnels:  This  alternative  involves  replacing  the  existing 

Virginia  Avenue  Tunnel with  two  new  permanent  tunnels  constructed  sequentially. 

Each  new  tunnel would  have  a  single  track with  enough  vertical  clearance  to  allow 

double‐stack intermodal container freight trains. A new parallel south side tunnel would 

be built first as trains continue operating in the existing Virginia Avenue Tunnel. After 

the south side tunnel is completed, train operations would switch over to the new tunnel 

and  the  existing Virginia Avenue Tunnel would be demolished  and  rebuilt. With  the 

exception  of  operating  in  a  protected  open  trench  for  approximately  230  feet 

immediately  east  of  the  2nd  Street  portal  (within  the  Virginia  Avenue  SE  segment 

between  2nd  and  3rd  Streets  SE),  trains would  operate  in  enclosed  tunnels  throughout 

construction under Alternative 3. Throughout most of the length, the two tunnels would 

be separated by a center wall. This center wall would be the new centerline of the two 

tunnels,  and  it would  be  aligned  approximately  25  feet  south  of  the  existing  tunnel 

centerline,  between  2nd  and  9th  Streets  SE.  Due  to  new  columns  associated with  the 

rebuilt 11th Street Bridge,  the  tunnels would be separated on  the east end starting  just 

west  of  Virginia  Avenue  Park,  resulting  in  two  separate  single‐track  tunnels  and 

openings at the east portal. 

Alternative 4 ‐ New Partitioned Tunnel / Online Rebuild: Alternative 4 would result in 

a  new  tunnel  with  a  center  partition  wall  separating  two  permanent  single  tracks. 

Similar  to Alternative  3,  the  new  partitioned  tunnel would  be  partitioned  and  have 

enough vertical  clearance  to  allow double‐stack  intermodal  container  freight  trains.  It 

would be  aligned  approximately  17  feet  south of  the  existing  tunnel’s  centerline. The 

new  partitioned  tunnel  would  be  built  using  protected  open  trench  construction 

methods. Safety measures such as secure fencing would be used to prevent pedestrians 

and bikers from accessing  the protected open  trench. The rebuild would occur  ‘online’ 

meaning  that  during  the  period  of  construction,  the  protected  open  trench  would 

accommodate  both  construction  activities  and  train  operations. Maintaining  safe  and 

Page 15: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  3 

reliable temporary train operations is a more complicated endeavor under Alternative 4 

than under the other two Build Alternatives because of the online rebuild approach. 

Regardless of Build Alternative, the Project would extend the east portal by approximately 330 

feet to a location northeast of the 12th Street and M Street T‐intersection. 

The anticipated limits of work are estimated to be 1,500 feet south of the West Portal of the VAT 

to 1,200 feet north of the East Portal of the VAT, a total of 6,500 feet. Figure 1‐1 shows the project 

location. 

 

 

Figure 1-1. Project Location Map

 

New Jersey Ave. SE Overpass 

Page 16: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

Vibration Analysis Report  4 

2 VIBRATION BACKGROUND    

This  section  describes  the  basic  concepts  of  vibration methodology  used  in  this  study.  This 

information  will  provide  background  for  the  assessment  procedures  described  in  the  later 

sections. 

2.1 VIBRATION BACKGROUND Vibration is an oscillatory motion, which can be described in terms of displacement, velocity, or 

acceleration. Displacement, in the case of a vibrating floor, is simply the distance that a point on 

the floor moves away from its static position. The velocity represents the instantaneous speed of 

the  floor movement,  and  acceleration  is  the  rate  of  change  of  the  speed.  The  response  of 

humans,  buildings,  and  equipment  to  vibration  is  normally  described  using  velocity  or 

acceleration. In this report, velocity will be used in describing ground‐borne vibration. 

Vibration amplitudes are usually expressed as either peak particle velocity  (PPV) or  the  root 

mean  square  (RMS) velocity. The PPV  is defined as  the maximum  instantaneous peak of  the 

vibration  signal  in  inches  per  second.  The  RMS  of  a  signal  is  the  average  of  the  squared 

amplitude of  the signal  in  inches per second. Although PPV  is appropriate  for evaluating  the 

potential of building damage,  it  is not  suitable  for evaluating human  response. Since  it  takes 

some  time  for  the  human  body  to  respond  to  vibration  signals,  RMS  amplitude  is  more 

appropriate to evaluate human response to vibration than PPV. 

The Federal Transit Administration (FTA) a division of the U.S. Department of Transportation 

(USDOT) uses the abbreviation “VdB” for vibration decibels (FTA, 2006) to reduce the potential 

for confusion with sound decibel and the reference value to covert PPV and RMS into VdB is 1 

micro‐inch per second. For sources such as trains, PPV VdB  levels are higher than RMS  levels 

and conversion  factor of 4  is applied  to PPV measurements when determining  the VdB RMS 

level this conversion number is known as the crest factor. 

Figure  2‐1  illustrates  common  vibration  sources  and  the  human  and  structural  responses  to 

ground‐borne  vibration.  As  shown  in  Figure  2‐1,  the  threshold  of  perception  for  human 

response  is  approximately  65  VdB;  however,  human  response  to  vibration  is  not  usually 

significant  unless  the  vibration  exceeds  70 VdB,  unless  it’s  a  concert  hall  or  other  fine  arts 

performance  venues.  Vibration  tolerance  limits  for  sensitive  instruments  such  as  MRI  or 

electron microscopes could be much lower than the human vibration perception threshold. 

Page 17: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  5 

Source: FTA (2006) 

Figure 2-1. Typical Levels of Ground-Borne Vibration

 

Page 18: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

Vibration Analysis Report  6 

3 IMPACT CRITERIA    

This section presents the guidelines, criteria, and regulations used to assess noise and vibration 

impacts associated with the proposed project. 

3.1 OPERATION VIBRATION IMPACT CRITERIA The District of Columbia Department of Transportation (DDOT) environmental regulations do 

not  address  potential  vibration  impacts;  therefore,  the  criteria  in  the  FTA  Transit Noise  and 

Vibration  Impact  Assessment  (FTA,  2006) were  used  to  evaluate  vibration  impacts  from  train 

operations. The evaluation of vibration  impacts can be divided  into two categories: (1) human 

annoyance and (2) building damage. 

HUMAN ANNOYANCE CRITERIA Table 3‐1 presents the criteria for various land use categories as well as the frequency of events. 

The criteria are related to ground‐borne vibration causing human annoyance or interfering with 

the use of vibration sensitive equipment. The criteria for acceptable ground‐borne vibration are 

expressed  in terms of RMS velocity  levels  in VdB and are based on the maximum  levels for a 

single  event  (Lmax).  PPV  has  been  added  to  this  table  to make  an  easier  comparison  to  the 

measured data for this project. 

Table 3‐1. Land Use Categories and Metrics for Rail Vibration Impact Criteria 

Land Use Category 

Ground‐Borne Vibration Impact Levels (dB re 1 micro‐inch/sec) 

and PPV (in/sec) 

Frequent1 Events  Occasional Events2  Infrequent3 Events 

Category 1: Buildings where vibration 

would interfere with interior 

operations. 

65 VdB4 0.007 

in/sec 65 VdB4 

0.007 

in/sec 65 VdB4 

0.007 

in/sec 

Category 2: Residences and buildings 

where people normally sleep. 72 VdB 

0.016 

in/sec 75 VdB 

0.023 

in/sec 80 VdB 

0.040 

in/sec 

Category 3: Institutional land uses 

with primarily daytime use. 75 VdB 

0.023 

in/sec 78 VdB 

0.032 

in/sec 83 VdB 

0.056 

in/sec 

Source: FTA, 2006. 

Notes:  

1. “Frequent Events” is defined as more than 70 vibration events per day. 

2. “Occasional Events” is defined as between 30 and 70 vibration events of the same source per day. 

3. “Infrequent Events” is defined as fewer than 30 vibration events per day. 

4. This criterion limit is based on levels that are acceptable for most moderately sensitive equipment 

such as optical microscopes. Vibration‐sensitive manufacturing or research will require detailed 

evaluation to define the acceptable vibration levels. Ensuring lower vibration levels in a building 

often requires special design of the HVAC systems and stiffened floors. 

Page 19: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  7 

There are some buildings, such as concert or band halls, TV and recording studios, as well as 

theaters  that  can  be  sensitive  to  vibration  and  noise  but  do  not  fit  into  any  of  the  three 

categories. Because of the sensitivity of these buildings, they usually warrant special attention. 

Table  3‐2  gives  criteria  for  acceptable  levels  of  ground‐borne  vibration  for  various  types  of 

special buildings. 

Table 3‐2. Ground‐Born Vibration Criteria for Special Buildings 

Type of Building or Room 

Ground‐Borne Vibration Impact Levels (dB re 1 micro‐

inch/sec) and PPV (in/sec) 

Frequent1 Events Occasional or Infrequent 

Events2 

Concert or Band Halls, TV Studios, 

Recording Studios 65 VdB  0.007 in/sec  65 VdB  0.007 in/sec 

Auditoriums, Theaters  72 VdB  0.016 in/sec  80 VdB  0.040 in/sec 

Source: FTA, 2006. 

Notes:  

1. “Frequent Events” is defined as more than 70 vibration events per day. 

2. "Occasional or Infrequent Events" is defined as fewer than 70 vibration events per day. 

BUILDING DAMAGE CRITERIA Normally, vibration resulting from a train pass by would not cause building damage. However, 

the potential for damage to fragile historic buildings located very near to or within the right‐of‐

way can be a concern. The FTA provides a vibration damage threshold criterion of 0.50 in/sec 

PPV for fragile buildings and 0.12 in/sec PPV for extremely fragile historic buildings, for typical 

train operations (FTA, 2006). The FTA recommends these criteria be used as a damage threshold 

for the fragile structures located near the right‐of‐way of a rail project. 

3.2 CONSTRUCTION IMPACT CRITERIA Construction  activities  can  result  in  varying  degrees  of  ground  vibration,  depending  on  the 

equipment  and  method  employed.  The  vibration  associated  with  this  transit  construction 

project  involves demolition, excavation, and shoring of a  tunnel and  there  is  the potential  for 

building damage and it needs to be assessed. The construction vibration is generally assessed in 

terms of PPV. Table 3‐3 summarizes the construction vibration limits shown in FTA guidelines. 

Table 3‐3. Construction Vibration Building Damage Criteria 

Building Category PPV (in/sec)

I. Reinforced-concrete, steel, or timber (no plaster) 0.5

II. Engineered concrete and masonry (no plaster) 0.3

III. Non-engineered timber and masonry buildings 0.2

IV. Buildings extremely susceptible to vibration damage 0.12

               Source: FTA, 2006. 

Page 20: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

Vibration Analysis Report  8 

4 EXISTING SETTING    

4.1 EXISTING LAND USE The  VAT  Project  alternatives  use  an  alignment  that  runs  under  Virginia  Avenue,  SE  near 

vibration  sensitive  land  use  areas  and  buildings  along  a  3,800  feet  stretch  of  tunnel within 

Washington, DC. For  the purpose of  this study, vibration sensitive receptors were selected by 

their proximity  to  the  three build alternative alignments and by  future and existing  land use, 

and are describe in the following paragraphs: 

HISTORIC

The Project Area  is  located  in proximity  to various  federal buildings  and  facilities; however, 

these buildings  are not  in  close vicinity of  the  tunnel. The St. Paul African Union Methodist 

Church, located at 401 I Street SE is listed on the National Register of Historic Places. Another 

historic site is the Marine Barracks, oldest active post in the U.S. Marine Corps, is located at 8th 

and I Streets SE. The Marine Barracks was placed on the National Register of Historic Places by 

the U.S. Department of the Interior in 1976. 

RESIDENTIAL 

Category 2 residential land uses dominant on the west side of Eleventh Street and the north side 

of M Street. South of the Southeast/Southwest Freeway (I‐695) there is a large area of residential 

development,  and  in  the  area  surrounding  (and  including)  the Marine Barracks. The  closest 

residential  development  to  the  tunnel  are  Capitol  Quarter  Townhouses  and  Capper  Senior 

Building, which are located on the blocks between Third and Fifth Streets, SE, south of Virginia 

Avenue SE. The new enlisted men’s quarters within the grounds of the Marine Barracks are also 

close to the tunnel. 

INSTITUTIONAL

These  are  the  Category  3  land  uses  and  facilities  occupied  by  schools,  hospitals,  religious 

organizations  and  similar  institutions with  primarily  daytime  use.  The  project  area  contains 

Tyler Elementary School, Eagle Academy (two locations). The project area also includes St. Paul 

African Union Methodist Church. There are no hospitals or public libraries in the project area. 

MARINE BAND PRACTICE HALL The Marine  Band  Practice Hall  is  located  near  7th  Street,  SE  and Virginia Avenue,  SE.  The 

practice hall is considered as a Special Building land use. 

COMMERCIAL

There are no  commercial buildings  that are  classified as Category 1, 2, or 3  land uses or are 

considered as Special Building land use. 

Page 21: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  9 

4.2 VIBRATION MEASUREMENTS Vibration measurements were  conducted  to determine baseline vibration  levels  from existing 

train pass bys, and to calculate vibration transferability characteristics of the soil for the purpose 

of  projecting  expected  vibration  levels  during  construction  and  post‐construction  train 

operation  phases. On May  22  to  23,  2012  vibration measurements  from  passing  trains were 

conducted at three separate sites. The first measurement site is  just outside East Portal, east of 

Eleventh  Street.  The  other  two  sites  were  selected  as  measurement  sites  near  to  the  two 

vibration  sensitive  structures  closest  to  the project,  the Capitol Quarter Townhouses  and  the 

Marine Building/Band Practice Hall. 

Vibration levels attributed to passing trains were measured at outside locations for each of the 

three  sites,  and  also  at  one  additional  inside  site within  the Marine Band Practice Hall. The 

vibration measurements were  conducted  using GeoSonic  3000EZ  plus  and  3000LC  portable 

seismographs.  Vibration  levels were measured  on  the  vertical,  transverse,  and  longitudinal 

axes. The seismograph has an internal calibration sequence and was operated according to the 

manufacturer’s  specifications  and  recorded  PPV  vibrations  (in  inches  per  second). Vibration 

measurements were conducted by Parsons staff. 

At each measurement site, two probes were set up perpendicular to the tunnel. Measurements 

close to the East Portal were at 19 and 74 feet from the edge of the track. These measurements 

were the closest sites to the tracks where the strongest vibration signal can be measured and the 

results can be used for calculating the soil vibration transferability characteristics. 

Vibration probes at EYA Capitol Quarter townhouses were located in the grassy area between 

Virginia Avenue, SE and side walk. The first probe was at 40 feet from the edge of track and the 

second one at 73 feet which was the same distance as the closest building to the edge of track, 

but still in public space. 

The  two outside measurement  locations near Marine Building were  located at 61 and 127 feet 

distances from the edge of the track. The probe at 127 feet was next to the closest point of the 

building  to  the  track. The  third probe was  located  inside a closet across  the hallway  from  the 

Band Practice Hall. This location was chosen instead of a location inside Band Practice Hall to 

avoid interference from the vibration levels created by the activities in the Marine Band Practice 

Hall. Figures 1 through 3 in Appendix A shows the measurement locations. 

Vibration levels at each location were measured for at least five train pass by on May 22nd, 2012. 

During each measurement, speed of  the  train was recorded near  the east portal using a radar 

gun and numbers of the locomotives as well as number of the cars were recorded for each train. 

Three measurement probes were left overnight at the Marine Band Practice Hall location due to 

the access  issues. Four additional train pass by were also recorded by these three probes until 

they were pickup on morning of May 23rd, 2012. 

 Baseline vibration  levels without any  trains present were also recorded at each measurement 

site. The  locations of the measurements are shown  in Figures 1 through 3  in Appendix A and 

the train pass by vibration measurements results are listed in Table 4‐1 for site locations along 

with  the  time of  the  train pass by,  the  speed of  the  train,  and  the number of  cars. Table  4‐2 

contains the baseline vibration data collected just before and after each train pass by during the 

Page 22: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  10 

day  at  each  site.  Table  4‐3  contains  the  baseline  and  train  pass  by  vibration  data  collected 

overnight at the Marine Band Practice Hall. 

These measurements establish the basis to predict vibration levels at the study area using FTA 

procedures  and  to  determine  the  soil  propagation  characteristics  that  were  used  to  assess 

potential  building  damage  and  human  annoyance  impacts  based  on  FTA  procedures  and 

guidelines. 

The soil vibration propagation characteristic was calculated by comparing the PPV at different 

distances from the track. The East Portal Site was the most suitable location within the project 

area to measure the train tunnel pass bys within 20 feet of the track which is crucial in order to 

calculate  the  soil  propagation  characteristic.  The  vibration  wave  from  the  train  pass  by 

dissipates as the wave transfers through the soil between two distances. This dissipation rate is 

dependent  on  the  local  soil  composition  and  is  called  the  soil  factor  in  this  report.  The  soil 

factors at the East Portal vibration measurement site were calculated using recorded vibration 

levels at 30 second  intervals for each  train pass by event. These values were  then averaged  to 

calculate the soil factor for the surrounding area of the project and are shown in Table 4‐4. 

The vertical‐axis results were used for this analysis as recommended in the FTA manual (FTA, 

2006)  because  the  vertical  vibration  is  usually  transmitted  more  efficiently  into  building 

foundations  than  transverse or  longitudinal vibration. This  can  clearly be  seen  in Figures 4‐1 

through 4‐3  for Site 7 and Site 6. The PPV measurements  for all of  the axes at Site 7,  the site 

closest to the train pass by, are comparable, where as longitudinal and transverse measurements 

levels at Site 6 are much lower than the vertical measurement level which demonstrates that the 

vertical waves are being transmitted more efficiently than the other waves from the train pass 

by.  

The overnight vibration measurements revealed that the building’s HVAC system had notable 

affect on the vertical vibration measurements as shown in Figure 4‐4. Between 21:45 and 04:30 

baseline measurements at Site 3 are much lower than baseline measurements outside this time 

range when apparently HVAC system was off. 

 

Page 23: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report                                                                                 11 

Table 4‐1. Existing Train Pass‐by Vibration Measurements 

   

Site 7 Site 6 Site 5 Site 4 Site 3 Site 2 Site 1

19 ft from edge of track 74 ft from edge of track 61 ft from edge of track 127 ft from edge of track 147 ft from edge of track 40 ft from edge of track 73 ft from edge of track

Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert.

11:44:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

11:44:30 0.005 0.005 0.005 0.005 0.005 0.005 0.008 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

11:45:00 0.088 0.053 0.083 0.018 0.020 0.050 0.013 0.010 0.013 0.005 0.005 0.005 0.005 0.005 0.013 0.008 0.008 0.013 0.010 0.008 0.010

11:45:30 0.053 0.040 0.048 0.013 0.013 0.025 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.008 0.005 0.010

11:46:00 0.038 0.035 0.043 0.010 0.010 0.023 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.005 0.005 0.008

11:46:30 0.050 0.030 0.048 0.013 0.013 0.023 0.008 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.005 0.005 0.008

11:47:00 0.075 0.038 0.065 0.013 0.013 0.030 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.008 0.005 0.008

11:47:30 0.038 0.030 0.050 0.010 0.010 0.023 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

11:48:00 0.048 0.028 0.068 0.010 0.013 0.028 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.005 0.005 0.008

11:48:30 0.053 0.033 0.053 0.010 0.013 0.030 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.008 0.008 0.005 0.008

11:49:00 0.038 0.033 0.055 0.008 0.010 0.020 0.003 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

11:49:30 0.005 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.008

11:50:00 0.005 0.005 0.008 0.005 0.005 0.008 0.008 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

12:39:00 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.018 0.005 0.005 0.005 0.005 0.005 0.008

12:39:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.018 0.005 0.005 0.005 0.005 0.005 0.008

12:40:00 0.053 0.050 0.065 0.018 0.018 0.030 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.005 0.015 0.005 0.008 0.013 0.008 0.008 0.010

12:40:30 0.043 0.033 0.050 0.013 0.013 0.028 0.008 0.008 0.010 0.005 0.005 0.008 0.005 0.005 0.015 0.008 0.008 0.015 0.008 0.005 0.013

12:41:00 0.038 0.028 0.058 0.010 0.010 0.023 0.008 0.008 0.010 0.008 0.005 0.008 0.005 0.005 0.013 0.008 0.008 0.013 0.008 0.008 0.010

12:41:30 0.040 0.023 0.075 0.018 0.013 0.028 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.008 0.005 0.013 0.008 0.005 0.010

12:42:00 0.055 0.035 0.058 0.010 0.013 0.023 0.008 0.008 0.010 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

12:42:30 0.015 0.020 0.015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

12:43:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

12:43:30 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.003 0.005 0.005 0.005 0.005 0.008

ppv, (in/sec) ppv, (in/sec) ppv, (in/sec) ppv, (in/sec)

Near 3rd StreetNear East Portal Marine  Band Practice Hall

Vibration 

Source Time

ppv, (in/sec)

Train with 

120 Cars 

traveling at 

19 mph

Train with 70 

Cars traveling 

at 12 mph

ppv, (in/sec) ppv, (in/sec)

Note: 

Red text denotes that the measured train pass by data is greater than the baseline vibration levels 

Page 24: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report                                                                                    12 

Table 4‐1. Existing Train Pass‐by Vibration Measurements (Cont.) 

    

Site 7 Site 6 Site 5 Site 4 Site 3 Site 2 Site 1

19 ft from edge of track 74 ft from edge of track 61 ft from edge of track 127 ft from edge of track 147 ft from edge of track 40 ft from edge of track 73 ft from edge of track

Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert.

13:46:30 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:47:00 0.005 0.005 0.008 0.005 0.005 0.005 0.003 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

13:47:30 0.080 0.040 0.070 0.015 0.015 0.048 0.005 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:48:00 0.050 0.030 0.063 0.010 0.010 0.030 0.013 0.010 0.010 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.008

13:48:30 0.050 0.025 0.065 0.013 0.010 0.028 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.008

13:49:00 0.053 0.033 0.063 0.015 0.013 0.028 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:49:30 0.060 0.038 0.083 0.013 0.010 0.023 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:50:00 0.055 0.025 0.065 0.010 0.010 0.025 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:50:30 0.070 0.025 0.050 0.013 0.010 0.028 0.005 0.008 0.008 0.005 0.005 0.003 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

13:51:00 0.058 0.033 0.060 0.018 0.013 0.030 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.008 0.005 0.008

13:51:30 0.063 0.033 0.055 0.015 0.013 0.030 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.010 0.010 0.005 0.008

13:52:00 0.063 0.033 0.055 0.013 0.013 0.025 0.008 0.005 0.010 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

13:52:30 0.043 0.020 0.040 0.005 0.005 0.005 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.005 0.005 0.008

13:53:00 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.013 0.008 0.008 0.008 0.008 0.008 0.010

13:53:30 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.010 0.008 0.008

13:59:30 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.008 0.005 0.005 0.008

14:00:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.008 0.005 0.008

14:00:30 0.063 0.050 0.088 0.015 0.018 0.050 0.013 0.010 0.013 0.008 0.005 0.008 0.005 0.005 0.013 0.008 0.008 0.010 0.005 0.005 0.010

14:01:00 0.040 0.045 0.033 0.010 0.013 0.028 0.008 0.005 0.010 0.008 0.005 0.005 0.005 0.005 0.015 0.008 0.008 0.015 0.008 0.005 0.010

14:01:30 0.048 0.043 0.050 0.013 0.015 0.030 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.008 0.005 0.008

14:02:00 0.038 0.030 0.070 0.013 0.013 0.035 0.008 0.005 0.010 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

14:02:30 0.033 0.023 0.035 0.005 0.008 0.015 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

14:03:00 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.015 0.003 0.005 0.005 0.005 0.005 0.010

14:03:30 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.005

14:15:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

14:15:30 0.013 0.018 0.010 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.010 0.008 0.010

14:16:00 0.068 0.063 0.080 0.015 0.020 0.043 0.015 0.015 0.015 0.005 0.005 0.005 0.005 0.005 0.013 0.008 0.008 0.013 0.008 0.008 0.013

14:16:30 0.035 0.028 0.038 0.013 0.013 0.033 0.010 0.008 0.010 0.005 0.005 0.008 0.005 0.005 0.010 0.005 0.005 0.010 0.005 0.005 0.010

14:17:00 0.023 0.018 0.025 0.013 0.010 0.030 0.008 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.005 0.005 0.008

14:17:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.015 0.003 0.005 0.005 0.005 0.005 0.008

14:18:00 0.003 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

ppv, (in/sec) ppv, (in/sec) ppv, (in/sec) ppv, (in/sec)

Near 3rd StreetNear East Portal Marine  Band Practice Hall

Vibration 

Source Time

Train with 28 

Cars traveling 

at 20 mph

ppv, (in/sec)

Train with 

143 Cars 

traveling at 

14 mph

Train with 47 

Cars traveling 

at 20 mph

ppv, (in/sec) ppv, (in/sec)

Note: 

Red text denotes that the measured train pass by data is greater than the baseline vibration levels 

Page 25: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report                                                                                    13 

Table 4‐2. Existing Baseline Vibration Measurements 

  

   

Site 7 Site 6 Site 5 Site 4 Site 3 Site 2 Site 1

19 ft from edge of track 74 ft from edge of track 61 ft from edge of track 127 ft from edge of track 147 ft from edge of track 40 ft from edge of track 73 ft from edge of track

Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert.

11:42:00 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.003 0.005 0.005 0.005 0.005 0.010

11:42:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

11:43:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

11:43:30 0.005 0.005 0.008 0.005 0.005 0.005 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

11:44:00 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.010

11:44:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

11:49:30 0.005 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

11:50:00 0.005 0.005 0.008 0.005 0.005 0.008 0.008 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.008

11:50:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

11:51:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.005

11:51:30 0.005 0.008 0.008 0.005 0.005 0.008 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.005 0.005 0.008

11:52:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.003 0.005 0.005 0.008

12:37:00 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.010

12:37:30 0.005 0.005 0.008 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

12:38:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

12:38:30 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

12:39:00 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

12:39:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.018 0.005 0.005 0.005 0.005 0.005 0.008

12:42:30 0.015 0.020 0.015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

12:43:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.008

12:43:30 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

12:44:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

12:44:30 0.005 0.005 0.005 0.005 0.008 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

12:45:00 0.005 0.008 0.005 0.005 0.005 0.008 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:44:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

13:45:00 0.005 0.008 0.008 0.005 0.005 0.005 0.013 0.010 0.010 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:45:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:46:00 0.005 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.008 0.008 0.005 0.005 0.008

13:46:30 0.005 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.005 0.005 0.008

13:47:00 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.008 0.005 0.008

13:53:00 0.005 0.005 0.008 0.005 0.005 0.005 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:53:30 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

13:54:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.005

13:54:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.005 0.005 0.003 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.010

13:55:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.018 0.005 0.005 0.005 0.005 0.005 0.010

13:55:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

Vibration 

Source Time

ppv, (in/sec)

Baseline 

vibration 

level before 

and after the 

11:45 train 

pass by event

Baseline 

vibration 

level before 

and after the 

12:40 train 

pass by event

Baseline 

vibration 

level before 

and after the 

13:48 train 

pass by event

ppv, (in/sec) ppv, (in/sec)ppv, (in/sec) ppv, (in/sec) ppv, (in/sec) ppv, (in/sec)

Near 3rd StreetNear East Portal Marine  Band Practice Hall

Page 26: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report                                                                                    14 

Table 4‐2. Existing Baseline Vibration Measurements (Cont) 

 

Site 7 Site 6 Site 5 Site 4 Site 3 Site 2 Site 1

19 ft from edge of track 74 ft from edge of track 61 ft from edge of track 127 ft from edge of track 147 ft from edge of track 40 ft from edge of track 73 ft from edge of track

Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert. Long. Trans. Vert.

13:57:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

13:58:00 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.020 0.005 0.005 0.005 0.005 0.005 0.008

13:58:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

13:59:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.008 0.008 0.005 0.005 0.008

13:59:30 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.008 0.005 0.005 0.008

14:00:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.008 0.008 0.005 0.008

14:03:00 0.005 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.008 0.005 0.008

14:03:30 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

14:04:00 0.005 0.005 0.008 0.005 0.005 0.008 0.003 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

14:04:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.010

14:05:00 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.005

14:05:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

14:13:00 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.003 0.005 0.005 0.005 0.005 0.008

14:13:30 0.005 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.010 0.003 0.005 0.005 0.005 0.005 0.008

14:14:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.008

14:14:30 0.005 0.008 0.005 0.005 0.005 0.008 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.010

14:15:00 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

14:15:30 0.013 0.018 0.010 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.010 0.008 0.010

14:17:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.008

14:18:00 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.015 0.005 0.005 0.005 0.005 0.005 0.008

14:18:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.008

14:19:00 0.005 0.008 0.008 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.010

14:19:30 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.003 0.005 0.005 0.005 0.005 0.008

14:20:00 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

Vibration 

Source Time

Baseline 

vibration 

level before 

and after the 

14:16 train 

pass by event

ppv, (in/sec)

Baseline 

vibration 

level before 

and after the 

14:00 train 

pass by event

ppv, (in/sec) ppv, (in/sec)ppv, (in/sec) ppv, (in/sec) ppv, (in/sec) ppv, (in/sec)

Near 3rd StreetNear East Portal Marine  Band Practice Hall

Page 27: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  15 

Table 4‐3. Existing Nighttime Baseline and Train Pass‐by Vibration Measurements 

    

Site 5 Site 4 Site 3

Long. Trans. Vert. Long. Trans. Vert. Long. Trans Vert.

22:22:00 0.008 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.018

22:22:30 0.015 0.010 0.010 0.008 0.005 0.008 0.005 0.003 0.010

22:23:00 0.015 0.015 0.015 0.008 0.005 0.008 0.005 0.005 0.010

22:23:30 0.008 0.008 0.010 0.005 0.005 0.005 0.005 0.005 0.010

22:24:00 0.010 0.008 0.013 0.005 0.005 0.005 0.005 0.005 0.008

22:24:30 0.010 0.005 0.013 0.005 0.005 0.005 0.005 0.005 0.008

22:25:00 0.008 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.008

22:25:30 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.008

22:26:00 0.008 0.008 0.008 0.005 0.005 0.005 0.005 0.005 0.008

22:26:30 0.008 0.008 0.008 0.005 0.005 0.003 0.003 0.005 0.008

22:27:00 0.005 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.008

22:27:30 0.003 0.003 0.003 0.005 0.005 0.003 0.005 0.005 0.008

00:15:30 0.003 0.003 0.003 0.005 0.005 0.003 0.005 0.005 0.008

00:16:00 0.003 0.003 0.005 0.005 0.005 0.003 0.005 0.005 0.008

00:16:30 0.010 0.008 0.010 0.005 0.005 0.003 0.005 0.005 0.008

00:17:00 0.008 0.010 0.010 0.005 0.005 0.003 0.005 0.005 0.010

00:17:30 0.008 0.008 0.008 0.005 0.005 0.003 0.005 0.005 0.010

00:18:00 0.010 0.008 0.010 0.005 0.005 0.005 0.005 0.005 0.010

00:18:30 0.005 0.003 0.003 0.005 0.005 0.005 0.005 0.003 0.008

00:19:00 0.003 0.003 0.005 0.005 0.005 0.005 0.003 0.005 0.008

00:19:30 0.003 0.003 0.005 0.008 0.005 0.005 0.005 0.005 0.008

02:21:30 0.003 0.003 0.005 0.005 0.005 0.003 0.005 0.005 0.008

02:22:00 0.003 0.003 0.005 0.005 0.005 0.003 0.005 0.005 0.008

02:22:30 0.015 0.013 0.013 0.005 0.005 0.005 0.005 0.005 0.010

02:23:00 0.008 0.005 0.010 0.005 0.005 0.003 0.005 0.005 0.010

02:23:30 0.010 0.008 0.010 0.005 0.005 0.005 0.005 0.005 0.008

02:24:00 0.008 0.005 0.008 0.005 0.005 0.005 0.005 0.005 0.010

02:24:30 0.008 0.005 0.010 0.005 0.005 0.008 0.005 0.005 0.010

02:25:00 0.008 0.005 0.010 0.005 0.005 0.005 0.005 0.005 0.008

02:25:30 0.008 0.008 0.010 0.005 0.005 0.005 0.005 0.005 0.013

02:26:00 0.008 0.008 0.010 0.005 0.005 0.005 0.005 0.005 0.013

02:26:30 0.010 0.008 0.010 0.005 0.005 0.005 0.005 0.005 0.018

02:27:00 0.008 0.008 0.013 0.008 0.005 0.008 0.005 0.005 0.020

02:27:30 0.008 0.005 0.010 0.005 0.005 0.008 0.005 0.005 0.020

02:28:00 0.008 0.005 0.008 0.008 0.005 0.008 0.005 0.005 0.008

02:28:30 0.003 0.003 0.005 0.008 0.005 0.008 0.005 0.005 0.008

03:50:30 0.003 0.003 0.003 0.005 0.005 0.003 0.005 0.005 0.008

03:51:00 0.005 0.005 0.005 0.005 0.005 0.003 0.005 0.005 0.008

03:51:30 0.010 0.010 0.013 0.005 0.005 0.003 0.005 0.005 0.013

03:52:00 0.010 0.013 0.013 0.005 0.005 0.003 0.005 0.005 0.015

03:52:30 0.008 0.008 0.010 0.005 0.005 0.005 0.005 0.005 0.018

03:53:00 0.005 0.005 0.010 0.005 0.005 0.008 0.005 0.005 0.015

03:53:30 0.010 0.008 0.010 0.008 0.005 0.008 0.005 0.005 0.015

03:54:00 0.010 0.008 0.013 0.005 0.005 0.008 0.005 0.005 0.013

03:54:30 0.010 0.008 0.010 0.005 0.005 0.008 0.005 0.005 0.015

03:55:00 0.003 0.003 0.003 0.005 0.005 0.008 0.005 0.005 0.010

03:55:30 0.003 0.003 0.003 0.005 0.005 0.008 0.005 0.005 0.008

Train 

Time

Train, 

Speed and 

number of 

cars 

unknown

Train, 

Speed and 

number of 

cars 

unknown

Train, 

Speed and 

number of 

cars 

unknown

Train, 

Speed and 

number of 

cars 

unknown

Marine  Band Practice Hall

ppv, (in/sec) ppv, (in/sec) ppv, (in/sec)

Vibration 

Source

Note: 

Red text denotes that the measured train pass by data is greater than the baseline vibration 

levels 

Page 28: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report                                                                           16  

Figure 4-1. Existing Train Pass-by Longitudinal Vibration Measurements

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

Site 7

Site 6

Site 5

Site 4

Site 3

Site 2

Site 1

Long. Vibration

PPV( in/sec)

Time

Page 29: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report                                                                                    17 

 

 

Figure 4-2. Existing Train Pass-by Transverse Vibration Measurements

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

Site 7

Site 6

Site 5

Site 4

Site 3

Site 2

Site 1

Trans. Vibration

Time

PPV( in/sec)

Page 30: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report                                                                                    18 

Figure 4-3. Existing Train Pass-by Vertical Vibration Measurements    

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

Site 7

Site 6

Site 5

Site 4

Site 3

Site 2

Site 1

Trans. Vibration

Time

PPV( in/sec)

Page 31: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report                                                                                    19 

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

18:00:00

18:19:30

18:39:00

18:58:30

19:18:00

19:37:30

19:57:00

20:16:30

20:36:00

20:55:30

21:15:00

21:34:30

21:54:00

22:13:30

22:33:00

22:52:30

23:12:00

23:31:30

23:51:00

00:10:30

00:30:00

00:49:30

01:09:00

01:28:30

01:48:00

02:07:30

02:27:00

02:46:30

03:06:00

03:25:30

03:45:00

04:04:30

04:24:00

04:43:30

05:03:00

05:22:30

05:42:00

06:01:30

06:21:00

06:40:30

07:00:00

07:19:30

07:39:00

07:58:30

Site 3

Site 4

Site 5

Vert. Vibration

PPV( in/sec)

Time

Figure 4-4. Existing Night Time Train Pass-by Vertical Vibration Measurements

 

Page 32: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  20 

Table 4‐4. Soil Factor Derived from Existing Train Pass By Measurements  

at the East Portal 

 

 

 

RMS VdB1

PPV 

(in/sec)

RMS 

VdB1

PPV 

(in/sec)

11:45:00 86 0.083 82 0.050 0.372762

11:45:30 82 0.048 76 0.025 0.479783

11:46:00 81 0.043 75 0.023 0.460204

11:46:30 82 0.048 75 0.023 0.54111

11:47:00 84 0.065 78 0.030 0.568678

11:47:30 82 0.050 75 0.023 0.571134

11:48:00 85 0.068 77 0.028 0.652608

11:48:30 82 0.053 78 0.030 0.418567

11:49:00 83 0.055 74 0.020 0.744029

12:40:00 84 0.065 78 0.030 0.568678

12:40:30 82 0.050 77 0.028 0.426454

12:41:00 83 0.058 75 0.023 0.680296

12:41:30 85 0.075 77 0.028 0.724672

12:42:00 83 0.058 75 0.023 0.680296

13:47:30 85 0.070 82 0.048 0.277499

13:48:00 84 0.063 78 0.030 0.545692

13:48:30 84 0.065 77 0.028 0.619422

13:49:00 84 0.063 77 0.028 0.596436

13:50:00 84 0.065 76 0.025 0.702775

13:50:30 82 0.050 77 0.028 0.426454

13:51:00 84 0.060 78 0.030 0.509807

13:51:30 83 0.055 78 0.030 0.445811

13:52:00 83 0.055 76 0.025 0.579907

14:00:30 87 0.088 82 0.050 0.415786

14:01:30 82 0.050 78 0.030 0.37571

14:02:00 85 0.070 79 0.035 0.509807

14:02:30 79 0.035 71 0.015 0.623184

14:16:00 86 0.080 81 0.043 0.456616

Avg. 84 0.060 77 0.030 0.522996

Soil         

FactorTime  Vert Vert.

 Peak Measurements  

Site 7 (Near) Site 6 (Far)

Note: 

1 ‐ Levels in VdB (re: 10‐6 in/sec.) 

Page 33: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

Vibration Analysis Report  21 

5 IMPACT ASSESSMENT    

Construction  of  the  Virginia  Avenue  Tunnel  could  potentially  cause  vibration  impacts  on 

nearby building from construction and operation activities. The impact assessment and results 

are presented in this section. 

Construction  related  vibration  predictions  are  preliminary  because  detailed  construction 

activities  for  various  phase  are  not  available  yet.  Construction  vibration  levels  will  be 

recalculated during  the  final design when more details  about  construction  activities  become 

available. Train pass by vibration levels may also need to be finalized if there are changes to the 

project design that could affect the vibration levels. 

5.1 CONSTRUCTION VIBRATION Two types of potential construction vibration impacts were analyzed: (1) human annoyance and 

(2) building damage. The potential  for human annoyance occurs when construction vibration 

rises  significantly  above  the  threshold  of  human  perception  for  extended  periods  of  time. 

Building damage can be cosmetic or structural. As a general matter,  fragile buildings such as 

historical structures have a greater potential to be susceptible to damage from ground vibration 

than buildings that are not particularly fragile. 

Vibration levels produced by construction equipment were obtained from the FTA Transit Noise 

and Vibration Impact Assessment (FTA, 2006). Based on the typical vibration levels listed in Table 

5‐1, calculations were performed to determine the distances at which vibration impacts would 

occur  according  to  the  criteria discussed  in  Section  3.2. Table  5‐2  shows  the  results  of  those 

calculations. The distances shown in Table 5‐2 are the maximum distances at which short‐term 

construction vibration impacts may occur. Mitigation measures would need to be considered if 

construction equipment were to operate closer to residential or institutional buildings than the 

distances shown  in Table 5‐2. However, using the distance information  in Table 5‐2 as well as 

knowing that the closest building to the alignment edge of track is 44 feet, as shown in Figures 1 

through  3  in Appendix A,  and  that  the  two  strongest  construction  vibration  sources  (sheet 

driver and vibratory compactor operations), there should be no structural vibration impacts due 

to construction operations under any of the alternatives. But there still remains the potential for 

human annoyance impacts due to construction operation. 

Table 5‐3 shows predicted vibration levels at nearby sensitive receivers from some of the major 

construction  equipment  items  that would  create  high  vibration  levels.  In  accordance  to  the 

results  presented  in  Table  5‐3,  it  is  anticipated  that  certain  major  vibration  producing 

construction  activities  would  cause  annoyance  to  the  closest  units  of  Capitol  Quarter 

Townhouses and Capper Senior Building as well as occupancies of other close by buildings.  

 

Page 34: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  22 

Table 5‐1. Ground‐Born Vibration Source Levels for Construction Equipment 

Equipment PPV at 25 feet (in/sec)

Large bulldozer 0.089

Loaded trucks 0.076

Hoe Ram 0.089

Caisson drilling 0.089

Vibratory compactor/roller 0.210

Sheet Driver (Sonic) 0.170

Jackhammer 0.035

Source: FTA, 2006

Table 5‐2. Construction Equipment Vibration Impact Distances 

Equipment

Distance to Potential Vibration Building

Damage1 feet

Distance to Potential Vibration Human

Annoyance2 feet

Large bulldozer 21 38

Dump trucks 20 35

Hoe Ram 21 38

Caisson drilling 21 38

Vibratory compactor/roller 33 59

Sheet Driver (Sonic) 30 53

Jackhammer 13  23 

Notes: 1. This is the distance at which the PPV is 0.20 inch/sec or less. 2. This is the distance at which the PPV is 0.04 inch/sec or less at the inside of the building structure.

Source: FTA

   

Page 35: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  23 

Table 5‐3. Highest Construction Equipment Vibration Levels 

Equipment

PPV (in/sec)

Capitol Quarter Townhouses and Capper Senior

Building (closest units)

St. Paul African Union Methodist

Church

Marine Band Practice Hall

Large bulldozer 0.036 0.004 0.010

Dump trucks 0.031 0.003 0.008

Hoe Ram 0.036 0.004 0.010

Caisson drilling 0.024 0.003 0.008

Vibratory compactor/roller 0.086 0.008 0.023

Sheet Driver (Sonic) 0.045 0.006 0.015

Jackhammer 0.014 0.001 0.004

Note: PPV are for single equipment but if more than one equipment is operating at the same time, PPV would be higher.

Base  on  the  preliminary  calculations  and  available  project  information;  there would  not  be 

construction  vibration  related  building  damages  (e.g.,  plaster  cracks)  from  individual 

equipment items because there would not be buildings within the distances identified in Table 

5‐2. However,  this  distance  can  vary  depending  on  the  soil  composition  and  underground 

geological  layer between vibration source and receiver.  In addition, not all buildings respond 

similarly to vibration generated by construction equipment. Preliminary predictions presented 

in Table 5‐3  indicate  that  certain  construction  activities  could  cause annoyance at  the nearby 

buildings. 

Because detailed  construction activities and  types of equipment  that will be utilized  for each 

phase are not available at this time, overall vibration levels from each construction phase cannot 

be  predicted. Once  detailed  construction  schedule  for  various  phases  of  the  construction  is 

developed  during  the  final  design,  the  predicted  vibration  levels  need  to  be  confirmed  and 

expanded as needed. 

Vibration from the train pass‐bys in the trench during the construction period for Alternative 2 

was also considered. 

5.2 POST-CONSTRUCTION OPERATION VIBRATION Train operational vibration assessment was conducted using  the FTA procedures and  impact 

criteria along with the measured data at nearby vibration sensitive sites within the project area. 

The  three  final  design Alternatives  include  using  one  tunnel with  two  tracks  or  using  two 

tunnels with one track in each tunnel. 

Page 36: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  24 

Vibration  levels  associated  with  train  pass  bys  were  calculated  using  four  parameters:  the 

distance between  the  receptor and  the edge of  track  recorded vibration measurements as  the 

vibration  source  reference  for  the  train,  soil  factor  calculated  from  the  train  pass  by 

measurements, and an adjustment factor to account for the train passing through the tunnel. 

The distance between vibration sensitive receptors and  the new  track alignments were obtain 

from the concept design files. The measured vibration levels from Site 7, the closest site to the 

tracks, were used as the train source for calculating impact distances for the existing/ no build, 

temporary trench route for Alternative 2, and the three future build alternatives. In the case of 

temporary  trench  alternative  and  the  three  future  design  concepts,  the  highest  recorded 

vibration  level was used as  the  train  source  to ensure  that  future  impacts distances were not 

under predicted; furthermore,  the  train source was doubled  to  take  in account  that  two  trains 

can use the new tunnel simultaneously. 

The  soil  factor  calculated  in  Section  4 was  used  as  a  parameter  to  adjust  the  rate  that  the 

vibration  wave  would  decline  in  strength  as  it  propagates  away  from  the  train.  Also,  the 

vibration waves generated by a  train moving along at grade rail  travel more effectively along 

the ground surface than when a train is moving through a tunnel. Because vibration waves do 

not propagated as effectively from  tunnel  to  the surface,  the calculated  impact distances must 

include  a  tunnel  adjustment  factor.  Table  5‐4  shows  this  factor  for  various  pass  by  and  the 

averaged value which was used for calculating impact distances. 

After  all  four  parameters  were  taken  into  account;  the  distances  to  vibration  impact  were 

calculated.  These  impact  distances  for  building  damage  and  human  annoyance  due  to  the 

existing and future alternatives are shown Table 5‐5. As  indicated  in Table 5‐5, any structures 

greater  than  20  feet  away  from  the  edge  of  track  would  not  have  significant  operational 

vibration  impacts and human annoyance  impacts would not occur at more  than 36  feet away 

from the edge of track even when there are two trains using one tunnel with two tracks or using 

two tunnels with one track in each tunnel at the same time. 

Using the distance information in Table 5‐5 and knowing the closest building to the alignment 

edge of track is 44 feet as shown in Figures 1 through 3 in Appendix A; therefore, there should 

be no vibration impacts due to train operations under any of the alternatives. 

 

Page 37: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report                                                                            25 

Site 5 Site 4 Site 2

61 ft from nearest track 127 ft from nearest track 40 ft from nearest track 73 ft from nearest track

Meas Calc. Diff. Meas Calc. Diff. Meas Calc. Diff. Meas Calc. Diff.

11:45:00 0.013 0.054 0.041 0.005 0.041 0.036 0.013 0.063 0.050 0.01 0.050 0.040

11:45:30 0.005 0.027 0.022 0.005 0.019 0.014 0.005 0.034 0.029 0.01 0.025 0.015

11:46:00 0.005 0.025 0.020 0.005 0.018 0.013 0.008 0.031 0.023 0.008 0.023 0.015

11:46:30 0.008 0.026 0.018 0.005 0.017 0.012 0.008 0.032 0.024 0.008 0.023 0.015

11:47:00 0.005 0.033 0.028 0.005 0.022 0.017 0.008 0.043 0.035 0.008 0.030 0.022

11:47:30 0.005 0.026 0.021 0.005 0.017 0.012 0.005 0.033 0.028 0.008 0.023 0.015

11:48:00 0.008 0.032 0.024 0.005 0.020 0.015 0.008 0.042 0.034 0.008 0.028 0.020

11:48:30 0.005 0.033 0.028 0.005 0.024 0.019 0.008 0.039 0.031 0.008 0.030 0.022

11:49:00 0.003 0.023 0.020 0.005 0.013 0.008 0.005 0.032 0.027 0.01 0.020 0.010

12:40:00 0.005 0.033 0.028 0.005 0.022 0.017 0.013 0.043 0.030 0.01 0.030 0.020

12:40:30 0.01 0.030 0.020 0.005 0.022 0.017 0.015 0.036 0.021 0.013 0.028 0.015

12:41:00 0.01 0.026 0.016 0.008 0.016 0.008 0.013 0.035 0.022 0.01 0.023 0.013

12:41:30 0.008 0.032 0.024 0.005 0.019 0.014 0.013 0.044 0.031 0.01 0.028 0.018

12:42:00 0.01 0.026 0.016 0.005 0.016 0.011 0.005 0.035 0.030 0.008 0.023 0.015

13:47:30 0.008 0.051 0.043 0.005 0.041 0.036 0.005 0.057 0.052 0.008 0.048 0.040

13:48:00 0.01 0.033 0.023 0.005 0.022 0.017 0.005 0.042 0.037 0.008 0.030 0.022

13:48:30 0.005 0.032 0.027 0.005 0.020 0.015 0.005 0.041 0.036 0.008 0.028 0.020

13:49:00 0.005 0.031 0.026 0.005 0.020 0.015 0.005 0.040 0.035 0.008 0.028 0.020

13:50:00 0.008 0.029 0.021 0.005 0.017 0.012 0.005 0.039 0.034 0.008 0.025 0.017

13:50:30 0.008 0.030 0.022 0.005 0.022 0.017 0.005 0.036 0.031 0.008 0.028 0.020

13:51:00 0.005 0.033 0.028 0.005 0.023 0.018 0.005 0.041 0.036 0.008 0.030 0.022

13:51:30 0.008 0.033 0.025 0.005 0.024 0.019 0.01 0.039 0.029 0.008 0.030 0.022

13:52:00 0.01 0.028 0.018 0.005 0.018 0.013 0.005 0.036 0.031 0.01 0.025 0.015

14:00:30 0.013 0.054 0.041 0.008 0.040 0.032 0.01 0.065 0.055 0.01 0.050 0.040

14:01:30 0.008 0.032 0.024 0.005 0.024 0.019 0.005 0.038 0.033 0.008 0.030 0.022

14:02:00 0.01 0.039 0.029 0.005 0.027 0.022 0.005 0.048 0.043 0.008 0.035 0.027

14:02:30 0.008 0.017 0.009 0.005 0.011 0.006 0.005 0.022 0.017 0.008 0.015 0.007

Train with 28 

Cars traveling at 

20 mph

14:16:00 0.015 0.047 0.032 0.005 0.034 0.029 0.013 0.057 0.044 0.013 0.043 0.030

0.008 0.033 0.025 0.005 0.022 0.017 0.008 0.041 0.033 0.009 0.030 0.021Average

Near 3rd Street

ppv, (in/sec) ppv, (in/sec)

Marine  Band Practice Hall

Site 1

Vibration Source Time

ppv, (in/sec)

Train with 120 

Cars traveling at 

19 mph

Train with 70 

Cars traveling at 

12 mph

Train with 143 

Cars traveling at 

14 mph

Train with 47 

Cars traveling at 

20 mph

ppv, (in/sec)

Table 5‐4. Measured Vibrations Levels verses Calculated Vibrations for Building Sites near the Tunnel 

 

Page 38: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

Virginia Avenue Tunnel Reconstruction Project  

Vibration Analysis Report  26 

Table 5‐5. Impact Distances for existing and future Ground‐Born Vibration Train Pass By 

Alternatives

Distance to Vibration Potential Building

Damage feet

Distance to Vibration Potential Human

Annoyance feet

Train At Grade

Train in Tunnel

Train At Grade

Train in Tunnel

Existing/ No Build 13 10 24 17

Alternative 2 (during construction when there is a Temporary Trench Route)

13 10 24 17

Alternative 2 23 20 41 36

Alternative 3 23 20 41 36

Alternative 4 23 20 41 36

 

Page 39: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

Vibration Analysis Report  27 

6 MITIGATION    

This  section  discusses  the  possible mitigation measures  that  can  be  implemented  to  either 

reduce  or mitigate  the vibration  impacts generated by  the  construction  and  operation  of  the 

proposed project. 

6.1 CONSTRUCTION VIBRATION MITIGATION It is possible that certain construction activities could cause intermittent localized concern from 

vibration  in  the  Project  Area.  Processes  such  as  earth moving  with  bulldozers,  the  use  of 

vibratory  compaction  rollers,  and  sheet piling  could  cause  some  human  annoyance  impacts. 

There are cases where  it may be necessary to use this type of equipment  in close proximity to 

residential buildings.  

A vibration monitoring and mitigation plan will be prepared by a qualified vibration engineer, 

which would  include  vibration monitoring  procedures  at  predetermined  vibration  sensitive 

sites,  revised  calculation  of  vibration  levels  for  various  construction  phases,  and  revised 

mitigation measures  based  on  the  re‐calculations. No  construction work  or  the  operation  of 

vibration generating equipment at the construction site would start until DDOT has approved 

the plan. The plan would be updated if there are any major changes to the planned construction 

activities. 

The  following are some procedures  that can be used  to minimize  the potential  for annoyance 

from construction vibration: 

Provide  to  the  owners  of  buildings  that  are  close  enough  to  a  construction  vibration 

source  that may cause vibration  impacts  the option of  the pre‐construction  survey  for 

documenting the pre‐construction condition of that structure; 

Conduct vibration monitoring during vibration‐intensive activities; 

Properly maintain  all motorized  equipment  in  a  state  of  good  repair  to  limit  wear 

induced vibration. 

Where feasible, avoid the use of pile driving near residences, and instead use drilled 

piles or the use of a sonic or vibratory pile driver, which cause lower vibration levels, 

where the geological conditions permit their use; 

When there is possibility of annoyance from construction activities such as the operation 

of vibratory rollers, absent urgent and unexpected circumstances, conduct such activity 

only during weekday daytime hours when many residents are away from their homes; 

Develop a phasing plan so that high vibration generating activities do not occur within 

the same time period, to the extent practicable; 

Avoid  routing  heavily‐loaded  trucks  through  densely  concentrated  residences,  if 

reasonably possible; 

Page 40: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

CSX Virginia Avenue Tunnel Clearance Improvement Project  

Vibration Analysis Report  28 

Where feasible, use demolition methods that do not involve impact; and 

Avoid the use of vibratory rollers and packers near sensitive areas, if possible. 

A  combination  of  the  mitigation  techniques  for  equipment  vibration  control  as  well  as 

administrative measures, when  properly  implemented,  can  be  selected  to  provide  the most 

effective means  to minimize  the effects of  construction activity. Application of  the mitigation 

measures  will  reduce  the  construction  impacts;  however,  temporary  increases  in  vibration 

would  likely  occur  at  some  locations. The  extent  of  potential  impacts  cannot  be determined 

until detail  construction workplans  for  each  phase  of  the  construction  operations  have  been 

developed. 

6.2 POST-CONSTRUCTION OPERATION VIBRATION MITIGATION According to vibration impact analysis, ground‐borne vibrations are not expected to exceed 

FTA criteria for the train operations under any of the Project “Buildʺ alternatives; therefore, 

vibration mitigation is not necessary. 

s

Page 41: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

 

A FIGURES    

Page 42: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

 

 

 

Page 43: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,
Page 44: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,
Page 45: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,
Page 46: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,

 

 

 

 

Page 47: Appendix Vibration Analysis Report - 'Virginia Avenue … · virginia avenue tunnel reconstruction project washington, dc vibration analysis report june 2013 prepared by clark/parsons,