analysis of portal frame building

36
Analysis of portal frame building In accordance to EN 1993-1-1(2005) 1 description A/ The portal frame is the main structural element of the building. The frame is designed for the following loads Wind loads can be positive as on AB or negative (suction)as on BC,CD and DE. Roof loads are positive and up to down direction B/ If The joints at B,C and D are not rigid,they will open up and the frame will be unstable Roof loads such as workmen, snow or hail Wind loads

Upload: taofik-kay-lawal

Post on 26-Dec-2014

857 views

Category:

Documents


18 download

TRANSCRIPT

Page 1: Analysis of portal frame building

Analysis of portal frame building

In accordance to EN 1993-1-1(2005)

1 description

A/ The portal frame is the main structural element of the

building.

The frame is designed for the following loads

Wind loads can be positive as on AB or negative (suction)as on BC,CD and DE. Roof loads are

positive and up to down direction

B/ If The joints at B,C and D are not rigid,they will open up and the frame will be unstable

Roof loads such as workmen, snow or hail

Wind loads

Page 2: Analysis of portal frame building

C/ 1) Vertical loading on the frame results in A and E tending to be pushed outwards.if the foundation

cannot resist this horizontal push,outward movement will occur,and the frame will loose structural

strength

2) Wind subjects the portal frame to uplift forces(the roof tends to fly-off)like an plane wing,to

overturning forces on the sides and ends of the building,

These destabilizing forces are resisted essentially by the weight of the building,and in this regard,the

foundations contribute significantly to this weight. Generally speaking it is a fact that portal frame

buildings of this kind are light weight structures, and as such they tend to collapse “sideward” and

“upwards” rather than downwards”. The effect of wind on a light building cannot be overemphasized.

The destabilization it causes is a major design consideration, and in this context, foundations can be

regarded as the building’s “anchors

D/ the rafter of the portal frame is a slender structural element,and it is restrained it will buckled when

loaded.

Page 3: Analysis of portal frame building

In a braced roof this restraint is provided by the purlins acting together with a braced bay.The purlins

provide the restraining force for the rafters,and the braced bay acts as a “buttress” wich absorbs these

purlin restraining forces.

While this system is effective in restraining the top flange of the rafter I -beam,the bottom flange

remains relatively unrestrained, and to achieve the requisite restraint,short lengths of angle iron are

connected at intervals between the bottom flange of the I-beam and the purlins.This simple and

necessary anti-buckling feature is sometimes neglected in the design of the portal frames.

E/

Page 4: Analysis of portal frame building

A building frame subjected to wind forces along its length will tend to collapse as shown above ,while a

building with a braced side bay as shown below will be stable,since the braced bay will functions as a

“buttress” to resist the wind forces, and transform them to the foundations

2 portal frame design

2.1 Basic data

Total length b= 70 m

Bay width d= 25 m

Spacing s= 7 m

Height h= 7.5 m

Roof slope α= 5°

Purlin spacing

sp=1.5 m

Cladding rail

spacing Sp’=2.0m

E=210000N/mm2 G=80770N/mm2 Steel:S235

Page 5: Analysis of portal frame building

Articulated purlin purlin

cladding rail

column Internal portal frame

door 4*5m

α= 5°

7.5m

6.41m

25.0m

Internal portal frame

2.2 Loads

2.2.1 Permanent loads

Self-weight of the beam

Roofing with purlins G= 0.35 KN/m2

For an internal frame G=0.35*7=2.45 KN/m

G=-2.45 KN/m

α=5°

6.406 m 7.5 m

25.0 m

Page 6: Analysis of portal frame building

2.2.2 Construction loads

Q=0.5 KN/m2 EN 1991-1-6 clause 4.11(2005)

For an internal portal frame Q=0.5*7=3.5 KN/m

2.2.3 Wind loads

Take from the document treated “ wind actions to EN 1991-1-4(2005) as a values described below

2.2.4 Approximation calculations

1/ wind forces applied to duopitch roofs and partial variables live loads

These actions are very small in ccomparison with the wind actions on vertical walls(0.5% to 1.3%). In

this case they will be neglected for calculations.

1.5

w1

-6.55 (G)

-8.88(F)

92.0 (F1 etF2)

11 11 1.5

-2.34 (E)

-3.74 (I)

-3.74 (H)

+2.34(D)

-3.74 (J)

Page 7: Analysis of portal frame building

2/ wind forces (up-to fly)

The actions applied to duopitch roofs are oriented as described above (perpendicular to rafters).For

simplifications we admit that these forces will be oriented vertically as gravity forces.

3/ Forces transmitted by purlins

The forces transmitted to rafters by purlins, (are ponctual forces and must be applied in calculations

of rafters),will be converted to linear forces.The error caused by this simplification is ≈0.5%,and

conduct to increase the moments at B and D

4/ Stiffness at B and D

To conduct manually calculations we consider that the inertia of the column and the rafter are equals

Ic=IR

The coefficient of stiffness R

C

I hk

S I will be

hk

s

This simplification ,justified by the presence of the haunchs ,conduct to increase the moment at C and

decrease moments at B and D.It will be compensated by the simplification applied to purlin

calculations,wich act in opposite sens.

2.3 Simple cases

1/Case 1 Vertical actions

dead (G) variable (Q) loads

Page 8: Analysis of portal frame building

Y

C

s IR f=1.09

- + + -

B D

- h=6.41 -

HA A E HE x

VA VE

Rigidity coefficient at B and D

. .

. .

R

C

Istiffness of rafter hK

stiffness of comumn S I

In application of Castigliano théorem and with the structure symetry

0ABCDE

M dMds

EI dH where H is the horizontal force

Displacement 1 in AB column.

In any ordinate point ,y, of the column AB , the moment is .M H y ,then

dMy

dH and

32

1

0 0

1 1. .

3

h h

R R R

Hy Hhy dy Hy dy

EI EI EI

Displasment 2 in BC rafter

The moment expression at abscissa ,x,is:

2 2cos

sin cos2

xM H h x q Vx

sindM

h xdH

and

2 2

2

0

cossin cos sin

2

sx

H h x q Vx h x dx

Page 9: Analysis of portal frame building

We have cos2

l

s and sin

f

s then

22 2 2

2

1 5 1. . . . . . .

3 96 12R

f sH h s h f s q l f s hl s

EI

Then the equation 1 2 0 give the result

2

3 2 2

2

5 8

323 3R

C R

ql s f hH

I h h s f f

I I h h

and may be reduced if we use the rigidity

hk

s in place of the real expression

R

C

I hk

s I

We obtain the simplified expression

2

2

5 8

32 3 3

ql f hH

h k f h f

Conclusion

B DM M Hh

2

2

5 8

32 3 3A E

ql f hH H H

h k f h f

2

8C

qlM H h f

2A E

qlV V

2/Case 2 Vertical actions( wind up to fly)

B DM M Hh

2

2

5 8

32 3 3A E

ql f hH H H

h k f h f

2

8C

qlM H h f

2A E

qlV V

Page 10: Analysis of portal frame building

Y

q

C

- -

+ B + D

HA A E HE x

VA VE

3/Case 3 Horizontal actions( wind 1 pressure)

2

.2

B E

qhM H h

.D EM H h

2

2

5 6 2

16 3 3E

kh h fqhH

h k f h f

.A EH q h H

Page 11: Analysis of portal frame building

2

4C E

qhM H h f

2

2E A

qhV V

l

Y

C

- -

+

+ B + D

q -

HA A E HE x

VA VE

4/ Case 4 Horizontal actions( wind 1 succions)

2

.2

D A

qhM H h

.B AM H h

2

2

5 6 2

16 3 3A

kh h fqhH

h k f h f

.E AH q h H

2

4C A

qhM H h f

2

2E A

qhV V

l

Y

C

+ -

+ B D

+ q

-

HA A E HE x

VA VE

Page 12: Analysis of portal frame building

Calculation of the rafter in bending

Dead loads G=2.45KN/m

W1 wind in long span (internal surpressure)

Wc,3

Wc,1 Wc,2

,1 2.34 /cw KN m see fig above

,2 2.34 /cw KN m

,3 3.74 /cw KN m

W2 wind in long span (internal depressure)

Wc,3

Wc,1 Wc,2

Take , 0.3p ic EN 1991-1-4(2005) (7.2.9 (6)note 2)

,1 , , 0.7 0.3 0.668*7 4.68 /c p e p i pw c c q s KN m

,2 0 /cw KN m

We have choose the max value of G zone for wind calculation but not the better

,3 , , 1.2 0.3 0.668*7 4.21 /c p e p i pw c c q s KN m

And For the zones H;I,and J this value is

Page 13: Analysis of portal frame building

,3 , , 0.6 0.3 0.668*7 1.4 /c p e p i pw c c q s KN m

W3 wind gear ( with internal surpressure)

Wc,3

Wc,1 W3 Wc,2

We take a middle value of the zones G,H and I as described in wind actions to

EN 1991-1-4(2005)

We take also a middle value of the zones A,B and C then we will have

,1 ,2 0.668*7 4.676 4.68 /c cw w KN m

,3 1.0*7 7 /cw KN m

Calculus actions

It is to determinate:

--the support reactions HA ; HE ;VA and VE

-- the max bending moments MB ;MC and MD

These forces are obtained from the actions mentioned in tables above

Values for calculations: S=12.55; f=1.09 ; h=6.41; k=0.511

2

2

2.45*25 5*1.09 8*6.4116.494

32 6.41 0.511 3 1.09 3*6.41 1.09A EH H KN

2.45*2530.625

2A EV V KN

22.45*25

16.494 6.41 1.09 67.78

CM KNm

16.494*6.41 105.73B DM M KNm

Page 14: Analysis of portal frame building

actions case q(KN/m) HA(KN) HE(KN) VA(KN) VE(KN) MB(KNm) MC(KNm) MD(KNm)

G 1 2.45 16.494 16.494 30.625 30.625 105.73 67.7 105.73

Q 1 3.5 23.31 23.31 43.75 43.75 149.42 98.62 149.42

W1 ;Wc,1 3 2.34 11.39 3.61 1.92 1.92 24.933 3.04 23.14

W1; Wc,2 4 2.34 3.61 11.39 1.92 1.92 23.14 3.04 24.933

W1 Wc,3 2 3.74 24.9 24.9 46.75 46.75 159.61 105.44 159.61

Total 39.90 17.12 50.59 42.91 207.68 105.44 111.54

W2 ;Wc,1 3 4.68 22.69 7.21 3.85 3.85 49.93 6.0 46.22

W2 ;Wc,2 4 0 0 0 0 0 0 0 0

W2 ;Wc,3 2 4.21 28.03 28.03 52.63 52.63

179.67 118.68 179.67

Total 50.72 35.24 56.48 48.78

229.6 124.68 133.45

W3 ;Wc,1 4 4.68 22.79 7.21 3.85 3.85 49.93 6.0 46.22

W3 ;Wc,2 4 4.68 7.21 22.79 3.85 3.85 46.22 6.0 49.93

W3 ;Wc,3 2 7 46.61 46.61 87.5 87.5 298.77 197.3 298.77

Total 31.03 31.03 87.5 87.5 295.06 185.3 295.06

3 Load combinations

Partial factor

max 1.35G permanent loads

min 1.0G permanent loads

1.50Q variable loads

When there is more then one variable action acting,requiring the actions to be combined, the

expression is

ULS : , , , ,

1

0.9g j K j Q i K i

j i

G Q

SLS , ,

1

0.9K j K i

j i

G Q

Page 15: Analysis of portal frame building

These combinations are obtained from the NADF2 (French,national annex )

the coefficient 1.2 applied for wind will be omitted if we use combinations above

ULS combination

combination Reactions (KN) Bending moments (KNm)

HA HE VA VE MB MC MD

1011.35 1.5G Q 57.23

57.23

106.97

106.97

366.87

239.33

366.87

10211.35 1.5G W

useless

10321.35 1.5G W

53.81

30.59

43.38

31.83

201.66

95.63

57.44

10431.35 1.5G W

24.28

24.28

89.91

89.91

299.85

186.56

299.85

10511.5G W

43.36

9.19

45.26

33.74

205.79

90.46

61.58

10621.5G W

59.59

36.37

54.09

42.55

238.67

119.32

94.45

10731.5G W

30.05

30.05

100.63

100.63

336.86

210.25

336.86

10811.35 1.8G W

49.55

8.55

49.72

35.89

231.09

98.4

58.04

10921.35 1.8G W

69.03

41.17

60.32

46.46

270.54

133.03

97.47

11031.35 1.8G W

33.59

33.59

116.17

116.17

388.37

242.15

388.37

The maximum values are collected in the table

Reactions (KN) Bending moments (KNm)

HA HE VA VE MB MC MD

57.23

57.23

106.97

106.97

388.37

239.33

388.37

69.03

41.17

116.17

116.17

366.87

242.15

366.87

4/ Rafter

4.1/Resistance

The maximum moment in:

- Apex connection : MB= MD=-366.87 KNm

- Eave connection : MC=+239.33 KNm

The expression RdM M must be verified for bending

With 0

.pl y

Rd

M

W fM

.We have 0

.pl y

M

W fM

then

0. Mpl

y

MW

f

Page 16: Analysis of portal frame building

For apex connection 366.87

235000plW

eave connection 239.33

235000plW

- In apex connection 31561.1plW cm IPE 360+(1/2) IPE 360

- In eave connection 31018.4plW cm IPE 360

The 1.5 IPE360 section is considered as welded beam . the table below show it’s

characteristics

Caractéristiques du profil P.R.S.

Caractéristiques

géométriques

Caractéristiques

mécaniques

Axe neutre

élastique

Axe neutre

plastique

h = 540 mm

hw = 514,6 mm

tw = 8 mm

bf = 170 mm

tf = 12,7 mm

g = 66,21 kg/m

A = 84,35 cm2

Iy = 39105,7 cm4

Wel.y = 1448,4 cm3

Wpl.y = 1668,1 cm3

iy = 21,53 cm

Iz = 1042,1 cm4

Wel.z = 122,6 cm3

Wpl.z = 191,7 cm3

iz = 3,52 cm

It = 32 cm4

Iw = 722861 cm6

Zane = 270 mm

Yane = 85 mm

Zanp = 270 mm

Yanp = 85 mm

Page 17: Analysis of portal frame building

This choice is preliminary and will be completed by others

4.2/ Vertical deflection

Vertical deflection of the rafter

The vertical deflection will be calculated under G Q

The moment in a section is

2

2 2x B

ql qM M x x

By integration of the equation

2

2

d y M

dx EI

We have

2 22

0 0

1

2 2

l l

B

dy M ql qdx M x x dx

dx EI EI

For 2

lx

we have 0

dy

dx

then

322 3

0

1. .

4 6 2 24

l

B B

ql q l qly M x x x M dx

EI

For x=0 we have y=0 then

4 2

max

15 48 .

384By ql M l

EI

E=210000 MPa=210000N/mm2=2.1x108 KN/m2

I=16270 cm4

q= G Q

=2.45+3.5=5.95KN/m

L=25.1m

MB=105.73+149.42=255.15 KNm

For IPE 360 the vertical deflection is

4 2

max 8 8

5*5.95*25.1 48*255.15*25.10.3119 31.2

384*2.1*10 *16270*10y m cm

In this case we must upgrade to IPE 500 and we obtain a limit value but less

because we haven’t consider the presence of apex

Page 18: Analysis of portal frame building

4 2

max 8 8

5*5.95*25.1 48*255.15*25.10.1052 10.52

384*2.1*10 *48200*10y m cm

251012.55

200 200adm

lf cm

CARACTERISTIQUES GEOMETRIQUES IPE 500

CARACTERISTIQUES MECANIQUES

h = 500 mm

b = 200 mm

tw = 10,2 mm

tf = 16 mm

r = 21 mm

d = 426 mm

g = 90,70 kg/m

A = 116,00 cm2

Iy = 48 200,00 cm4

Wel.y = 1 928,00 cm3

Wpl.y = 2 194,00 cm3

iy = 20,43 cm

Avz = 59,87 cm2

Iz = 2 142,00 cm4

Wel.z = 214,20 cm3

Wpl.z = 335,90 cm3

iz = 4,31 cm

It = 89,29 cm4

We remark that IPE 500 is very suffisant to resist under positif and negative bending moment

4.3/Classification

The section is class 1 as a similar (but not the same) verification for the column (see§5)

4.4/Buckling resistance

This figure shows different Sections categories and buckling modes

Page 19: Analysis of portal frame building

Lateral torsional buckling check using the simplified assessment methods for

beams with restraints in buildings:

8*1.5m

Lateral restraints

(purlins) IPE 500

● 4.19m ● Lateral restraints

(bracing system) 3*4.18m

Page 20: Analysis of portal frame building

Bracing system

In buildings , members with discrete lateral restraint to the compression flange are not susceptible to

lateral-torsional buckling if the length Lc between restraints or the resulting equivalent compression

flange slenderness f

satisfies:

,

,0

,, 1

c Rdccf c

y Edf z

Mk Li M

[6.3.2.4]

Where

My,Ed

is the maximum design value of the bending moment within the restraint spacing

kc

is a slenderness correction factor for moment distribution between restraints, see EN 1993-1-1

Table 6.6;

if,z

is the radius of gyration of the compression flange including 1/3 of the compressed part of the web

area, about the minor axis of the section;

,0c is the slenderness parameter of the above compression element:

,0 ,0 0.10c LT

,0 0.4LT then ,0 0.4 0.10 0.5c

1 93.9y

E

f and

2

235

yNf

mm

[6.3.2.3]

3

,

2* *3 12

2

wz

f z

tdI

I

then

Page 21: Analysis of portal frame building

3

4

,

42.6 1.022142 2* *

3 121069.74

2f zI cm

,

12* *

2 3f z w

dA A t

then

2

,

1 42.6116 2* *1.02 43.52

2 3f zI cm

,

,

,

1069.744.96

43.52

f z

f z

f z

Ii cm

A

3

, 2194y pl yW W cm

1 93.9 93.9y

E

f

3

,

1

2194*235*10515.59

1.0

y y

c Rd

M

W fM KNm

Combination 1.35 1.5G Q

MB=MEd=366.87 KNm

We consider that the coefficient is the same if the rafter is unrestraint then

239.330.65235

366.87

C

B

M

M

Then 1 1

0.6471.33 0.33 1.33 0.33*0.65235

CK

table 6.6

But between restraints in the centre of the rafter where the moment are maximum,

the moment distribution may be considered as constant :KC=1.0 table 6.6

, 1

1.0*1500.322

4.96*93.9

C Cf

f z

K L

i

The maximum bending moment is at the origin B of the rafter then the lateral torsional buckling may

be also in the origin

,366.87

y EdKNmM

Page 22: Analysis of portal frame building

,

,0

,

515.590.5* 0.703

366.59

c Rd

c

y Ed

MM

, 1

1.0*1500.322

4.96*93.9

C Cf

f z

K L

i

0.322 0.703

Combination 31.35 1.8G W

MB=,

388.37y Ed

KNmM

,

,0

,

515.590.5* 0.6637

388.37

c Rd

c

y Ed

MM

, 1

1.0*4180.8975

4.96*93.9

C Cf

f z

K L

i

Not verified

It’s necessary to add other bracing systems each 3m spacing then

LC=3m

,388.37

y EdKNmM

,

,0

,

515.590.5* 0.6637

388.37

c Rd

c

y Ed

MM

, 1

1.0*3000.6441

4.96*93.9

C Cf

f z

K L

i

0.644 0.663

Then the lateral torsional buckling is satisfactory

A detailed procedure to do verification for the rafter is shown below as for column

When the above procedure is not satisfactory.

NOTA

The real comportement of the rafter is shown in the figure

Page 23: Analysis of portal frame building

1 tension flange

2 elastic section

3 plastic stable length

4 plastic stable length

5 elastic section

6 plastic hinge

7 restraints

8 bending moment diagram

9 Compression flange

10 plastic stable length

11 plastic stable length

12 elastic section

Annex A

y

4.5/ the haunch verification

C +

O - D

F S

x

the equation of the bending moment curve is a parabolic form 2Y aX

Page 24: Analysis of portal frame building

the point F is considered the limit of elastic moment

3

0

1928*10 *235453.8

1.0

el y

el

M

W fM KNm

X 0 m S=12.55

Y MC=242.15 MD+MC=388.37+242.15=630.52

Then 2

630.524

157.5

Ya

X

The bending moment curve equation will be 24Y X

For 12.55X F then 3

0

1928*10 *235453.8

1.0

el y

el

M

W fY M KNm

Then 2

454 4 12.55 F then 2 100.4 176 0F F

Conclusion 1.78F m

Length of the rafter F=2m

The same verification for buckling 1/about yy

2/about zz

3/lateral torsional buckling

as for column in section 5 may be used

5/COLUMN

The verification of the column is carried out for the combination 1011.35 1.5G Q

106.97EdN KN (assumed to be constant along the column)

57.23EdV KN

(assumed to be constant along the column)

366.87EdM KNm (at the top of the column)

5.1/Classification of the section

Web: the web slenderness is 437.6

42.910.2w

c

t §5.5 (tab5.2)

10697044.63

10.2*235

EdN

w y

Nd

t f

426 44.630.552 0.50

2 2*426

w N

w

d d

d

Then the limit for the class is

Page 25: Analysis of portal frame building

396 396*164.119

13 1 13*0.552 1

Until 42.9 ≤ 64.119 the web is class 1

Flange: the flange slenderness is

273.92 4.61816

w

f f

b t rc

t t

§5.5 (tab5.2)

The limit of the class is

9 9*1.0 9

Until 4.618 ≤ 9.0 the flange is class 1

So the section is Class 1. The verification of the member will be based on the plastic

resistance of the cross-section. 5.2 /Resistance

Verification for shear force

Shear area

max 2 2 ;V f w f w wA A bt t r t h t §.6.2.6

max 11600 2*200*16 10.2 2*21 *16;1.0*426*10.2VA

max 6035.2;4345.2VA

26035.2VA mm

3

,

0

2356035.23 3

*10 818.841.0

yV

pl Rd

M

fA

V KN

,

57.230.07 0.5

818.84

Ed

pl Rd

V

V § 6.2.8(2)

The effect of the shear force on the moment resistance may be neglected

Verification to axial force

3

,

0

11600*235*10 2726

1.0

y

Pl Rd

M

AfN KN

§6.2.4

106.97EdN KN

,0.25 0.25*2726 681.5Pl RdN KN 6.2.9.1(4)equ 6.33

Page 26: Analysis of portal frame building

0

0.5 0.5*426*10.2*235510.56

1.0*1000

w w y

M

h t fKN

6.2.9.1(4)equ 6.34

Since 106.97 ≤ 681.5 and 106.97 ≤ 510.56

The effect of the axial force on the moment resistance may be neglected

Verification to bending moment

,

,

0

2194*235515.59

1.0*1000

Pl Rd y

pl Rd

M

W fM KNm

,

366.870.711 1.0

515.59

Ed

pl Rd

M

M Ok! §6.2.5

5.3 serviability limit state

Horizontal Deflection

Horizontal Deflection at the top of the column must be verified for two combinations

and

Combination 201: G+Q combination 202:G+W1

Combination 201 G+Q

The moment at a point x in the column is .x AM H x

G+Q

M

x

HA

Page 27: Analysis of portal frame building

By introducing a virtual force P at the summit of the column AB

This effort generate the following forces

R

C

I h hk

s I s

f

h

23 3 3k

3 211

2

3 21

2 2A

PR

BM Ph

3 211

2

E AR P R

CM Ph

1 3 21

2 2

A E

PhV V

l DM Ph

For an IPE 500 column we obtain :

0.17004 0.511k 4.10786 0.56913 0.43087 0.04458

Then we have the results

0.534AR P 0.466ER P

The moment in the point M is

0.534XM Px

The resultant moment under the two actions is

0.534X AM H x Px

the internal potential energy of the column is:

2

0

10.534

2

h

AW H x Px dxEI

Page 28: Analysis of portal frame building

2 2

0

10.534

2

h

AW H P x dxEI

23

0

1 10.534

2 3

h

AW x H PEI

3

20.534

6A

hW H P

EI

31.070

6A

C

dWP h H

dP EI

3

6

1.07*6.41 *3980.41.847

6*2.1*10 *48200cm

6412.137

300 300

lcm

Since 1.847 ≤ 2.137 OK!

Combination 202 G+W

16.494 39.9 23.406AH KN

By application a similar resolution as the above

2

0.5342

X A

xM H x q Px

the internal potential energy of the column is:

22

0

10.534

2 2

h

A

xW H x q Px dx

EI

Using a similar calculation we have

22

0

10.534

2 2

h

A

xW H x q Px dx

EI

23 2 21 1 1

0.134 0.534 0.052 4 3

A AW x qx H P H P q xEI

23 2 21 1 1

0.134 0.534 0.052 4 3

A AW h qh H P H P q hEI

Page 29: Analysis of portal frame building

0dW

PdP

4 310.067 0.178 Aqh H h

EI

4 2 3

6

0.067*234*641 *10 0.178*2340.6*6411.345

2.1*10 *48200cm

P B

M

qx2/2 x

q

HA A

RA

5.4 Buckling Resistance

The buckling resistance of the column is sufficient if the following conditions are fulfilled

(no bending about the weak axis, MZ,Ed=0): §6.3.3

,

1 1

1Ed Edyy

y RK LT y RK

M M

N Mk

N M

equation 6.61

,

1 1

1Ed Edzy

y RK LT y RK

M M

N Mk

N M

equation 6.62

Buckling about yy

, 6.41CR yL m

5002.5 1.2

200

h

b 16 40ft mm mm buckling curve :a(αy=0.21) table 6.2

42 2

, 2 2 3

,

210000*48200*1024313.64

6410 *10

y

cr y

cr y

EIN KN

L

3

,

11600*2350.335

24313.64*10

y

y

cr y

Af

N §6.3.1.2

Page 30: Analysis of portal frame building

2

20.5 1 0.2 0.5 1 0.21 0.335 0.2 0.335 0.5703yy y

2 22 2

1 10.9691

0.5703 0.5703 0.335y

y y y

Buckling about zz

Buckling curve :b (αz=0.34)

2 2 4

, 2 2

,

*210000*2142*101080.5

6410

zcr z

cr z

EIN KN

L

3

,

11600*2351.5883

1080.5*10

yz

cr z

Af

N

2

0.5 1 0.2z zz z

20.5 1 0.34 1.5883 0.2 1.5883 1.9973z

2 22 2

1 10.3117

1.9973 1.9973 1.5883z

z z z

Page 31: Analysis of portal frame building

1 tension flange

2 plastic stable length

3 elastic section

4 plastic hinge

5 restraints

6 bending moment diagram

7 compression flange

8 plastic with tension flange restraint,

9 elastic with tension flange

Column with restraints by cladding rail

along long span

Annex A

Lateral torsional Buckling Annex A

5002.5 2

200

h

b then buckling curve c(αLT=0.49)

Moment diagram with linear variation : 0 then 1 1.77C

The simplification of critical moment may be used:

22,

1 2 2

,

cr LT twzcr

cr LT z z

L GIIEIM C

L I EI

2 4 6 2 4

2 6 4 2 4

210000*2142*10 1249000*10 6410 *80770*89.29 *101.77

6410 *10 2142*10 210000*2142*10crM

2 5 2

2 2

2.1*21420 1249*10 641 *8077*89.291.77 676.32

641 2142 21*21420crM KNm

Page 32: Analysis of portal frame building

3,

6

2194*10 *2350.8731

676.32*10

pl y yLT

cr

W f

M

2

,00.5 1 yLT LT LT LT

20.5 1 0.49 0.8731 0.4 0.75*0.8731 0.9663LT

With a values of ,0 0.4LT and 0.75

2 22 2

1 10.6377

0.9663 0.9663 0.75*0.8731LT

LT LT LT

For 0 then

10.7519

1.33 0.33cK

6.3.2.3 table 6.6

Bending moment diagram and the

coefficient

2

1 0.5 1 1 2 0.8LTcf K

2

1 0.5 1 0.7519 1 2 0.8731 0.8 0.8773 1f

,mod

0.63770.7269 1

0.8773

LTLT

f

Calculation of the factor Kyy

,

1

1

y

yy my mLTEd yy

cr y

K C CN C

N

annex A

,0 ,01

1

y LT

my my my

y LT

aC C C

a

annex A

2

,

, ,

1

1 1

LTm LT my

Ed Ed

cr z cr T

aC C

N N

N N

annex A

Page 33: Analysis of portal frame building

,

,

1

1

Ed

cr y

yEd

y

cr y

N

N

N

N

annex A

2 ,2 2

max max

,

1.6 1.61 1 2

el y

yy y my my pl LT

y y pl y

WC w C C n b

w w W

Calculation of y

106.971

24313.64 0.9998106.97

1 0.969124313.64

y

,

,

21941.138 1.5

1928

pl y

y

el y

Ww

W

Critical axial force in the torsional buckling mode

2

, 2

0 ,

wcr T t

cr T

EIAN GI

I L

For a doubly symmetrical section

2 2 4

0 0 0 48200 2142 50342y zI I I y z cm

2 5 4 64

, 4 3 2

11600 *2.1*10 *124.9*10 *1080770*89.29*10

50342*10 *10 6410cr TN

, 3113.56cr TN KN

22,

,0 1 2 2

,

cr LT twzcr

cr LT z z

L GIIEIM C

L I EI

,0crM is the critical moment foe the calculation of 0 for uniform bending moment as specified in

annex A . Then we have C1=1

2 4 6 2 4

,0 2 6 4 2 4

210000*2142*10 1249000*10 6410 *80770*89.29*101* 382.1

6410 *10 2142*10 210000*2142*10crM KNm

Page 34: Analysis of portal frame building

3,

06

,0

2194*10 *2351.162

382.1*10

pl y y

cr

W f

M

40,lim 1

, ,

0.2 1 1Ed Ed

cr z cr TF

N NC

N N

For doubly symmetrical section , ,cr TF cr TN N

40,lim

106.97 106.970.2 1.77 1 1 0.2569

1080.5 3113.56

Then 0 0,lim

Calculation of myC

,0 ,011

y LT

my my my

y LT

aC C C

a

3,

3

,

366.87*10 1160020.635

106.97 1928*10

y Ed

y

Ed el y

M A

N W

89.291 1 0.928

1249

tLT

w

Ia

I

Calculation of Cmy,0

,0

,

0.79 0.21 0.36 0.33 Edmy y y

cr y

NC

N table A2

With a value 0y then

,0

106.970.79 01188 0.7895

24313.64myC

20.635 *0.928

0.7895 1 0.7895 0.95961 20.635 *0.928

myC

2

,

, ,

1

1 1

LTm LT my

Ed Ed

cr z cr T

aC C

N N

N N

Page 35: Analysis of portal frame building

2

,

0.9280.9596 0.9457 1

106.97 106.971 1

1080.5 3113.56

m LTC

Then , 1m LTC

Calculation of Cyy

2 ,2 2

max max

,

1.6 1.61 1 2

el y

yy y my my pl LT

y y pl y

WC w C C n b

w w W

max max ;y z z

, 0 0z Ed LTM b

1

1069700.03924

11600*235

1.0

Edpl

Rk

M

Nn

N

2 2 21.6 1.61 1.138 1 2 *0.9596 *1.5883 *0.9596 *1.5883 *0.03924 0.978

1.138 1.138yyC

,

,

19280.8787

2194

el y

pl y

W

W

Since 0.978 ≥ 0.8787 Ok!

Calculation of Kyy

,

1

1

y

yy my mLTEd yy

cr y

K C CN C

N

0.9998 10.9596*1* 0.9853

106.97 0.9781

24313.64

yyK

Verification with interaction formula

,

1 1

1Ed Edyy

y RK LT y RK

M M

N Mk

N M

Page 36: Analysis of portal frame building

6

3

106970 366.87*100.9853* 0.766 1

0.9691*11600*235 2194*10 *2350.9663*

1.0 1.0

OK!

The buckling resistance of the section is satisfactory

This figure illustrate different categories of buckling modes

A similar method of calculation of the factor yzK in the equation 6.62 mentioned above

May be used for the verification of the second formula(not treated for this sheet)

http://www.arab-eng.org/vb/u355867.html ibnmessaoud10