amphibian visual ecology symposium...amphibian visual ecology symposium 16 & 17 april 2015...

7
AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM 16 & 17 April 2015 Synpunkten Biology building B – 3rd floor Sponsored by

Upload: others

Post on 13-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM...AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM 16 & 17 April 2015 Synpunkten Biology building B – 3rd floor Sponsored by PROGRAM’ !! Thursday16,April)!

 

 

AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM

16 & 17 April 2015 Synpunkten Biology building B – 3rd floor

Sponsored by

Page 2: AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM...AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM 16 & 17 April 2015 Synpunkten Biology building B – 3rd floor Sponsored by PROGRAM’ !! Thursday16,April)!

PROGRAM    

 

Thursday  16-­‐April  

 13.30  |  Symposium  opening  

13.30-­‐15.30  |  Session  I:  Nocturnal  environments  and  constraints  on  colour  vision  

Almut  Kelber:  Nocturnal  colour  vision:  Adaptations  and  limits  

Jochen  Smolka:  Essential  properties  of  visual  environments  from  an  animal's  point  of  view  

Daniel  Pessoa:  Influence  of  luminosity  on  visual  performance  and  colour  discrimination  

 15.30-­‐16.00  |  Coffee  break  

 16.00-­‐17.30   |   Session   II:   Current   progress   in   the   study   of   colour   vision   thresholds   in  

anurans  

Carola  Yovanovich:  Behavioural  evidence  of  scotopic  colour  vision  in  amphibians  

Sanna   Koskela:   Measuring   the   absolute   sensitivity   of   frog   color   discrimination   using  phototactic  behavior  

   Friday  17-­‐April  

 09.30-­‐11.30  |  Session  III:  Ecological  and  evolutionary  aspects  of  Amphibian  vision  

Julián  Faivovich:  Amphibian  diversity  and  the  evolution  of  diurnal  habits  

Taran  Grant:  Amphibian  diversity  and  vision  

Bibiana   Rojas:   Differences   in   detectability   and   behaviour   among   dyeing   poison   frogs  (Dendrobates  tinctorius)  bearing  different  colour  patterns  

 11.30  |  Round  table:  Coffee  &  open  discussions  

 

Page 3: AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM...AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM 16 & 17 April 2015 Synpunkten Biology building B – 3rd floor Sponsored by PROGRAM’ !! Thursday16,April)!

  1  

ABSTRACTS    

 

 

Nocturnal  colour  vision  -­‐  adaptations  and  limits    

Almut  Kelber  

Vision  Group  |  Lund  University  |  Sweden  

[email protected]  

When  night  falls,  colours  fade  away,  and  with  less  than  a  half  moon,  humans  are  left  colour-­‐blind.   Our   visual   system,   instead   of   comparing   signals   from   our   three   cones   types,   sums  signals   from   large  pools  of   rods   to  be  able  and  still  make   sense  of   the  visual   scene.  Most  vertebrates,   and   probably  many   other   animals,   also   turn   colour-­‐blind   in   dim   light.   Some  animals,  however,   including   large  moths,  geckos,  and  rare  nocturnal  bees,  are  still  able   to  see  colours  under   these  dim-­‐light  conditions.   I  will  discuss   the  adaptations   that  make   this  possible,  and  the  limits  of  colour  vision  in  dim  light.  

   Essential  properties  of  visual  environments  from  an  animal's  point  of  view  

 

Jochen  Smolka  &  Dan-­‐Eric  Nilsson  

Vision  Group  |  Lund  University  |  Sweden  

[email protected]  

Different  animal  species  are  adapted  to  live  in  different  habitats.  These  adaptations  include  the   eyes   and   visual   system,  which   are   tailored   by   evolution   to   extract   useful   information  from   the   visual   environment.   Differences   between   the   visual   systems   of   different   animal  species  can  thus  be  expected  to  depend  much  on  the  different  habitats  they  evolved  in.  To  assess   these   relationships,   we   need   standards   for   measuring   and   characterising   visual  environments.   The   current   trend   of   environmental   analysis   with   multispectral   imaging  generates   huge   amounts   of   data   for   any   single   scene,   but   it   is   not   obvious   how   relevant  scene   characteristics   should   be   extracted.   Here,  we   instead   use   a   calibrated   RGB   camera  with   a   180°   fish-­‐eye   lens.   By   taking   many   exposures   from   different   locations   in   an  environment,  we  can  sample  characteristic  features  of  the  environment.  

Page 4: AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM...AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM 16 & 17 April 2015 Synpunkten Biology building B – 3rd floor Sponsored by PROGRAM’ !! Thursday16,April)!

  2  

A   large   set   of   images   is   then   used   for   extracting   essential   features   such   as   the   average  luminance  gradient,   its  variation  and  total  span  in  3-­‐4  spectral  bands.   In  five  sectors  along  the   vertical,  we   also   characterise   the   luminance   and   colour   contrast   at   high   (1°)   and   low  (10°)   spatial   frequencies.   Initial   trials   reveal   surprisingly   consistent   features   for   different  natural  and  man-­‐made  environments.  

 

 

Influence  of  luminosity  on  visual  performance  and  color  discrimination    

Daniel  Marques  de  Almeida  Pessoa  

Laboratory  of  Sensory  Ecology  |  Federal  University  of  Rio  Grande  do  Norte  |  Brazil  

[email protected]  

The   number   of   photoreceptor   classes   found   in   the   retina   usually   correlate   with   the  dimensionality  of  color  vision.  A  greater  number  of  photoreceptor  types,  exhibiting  different  spectral   sensitivities,   will   allow   a   higher   number   of   comparisons,   improving   color  discrimination.   Although   the   majority   of   mammal   species   studied   to   date   have   been  diagnosed   as   carrying   dichromacy,   also   found   in   human   colorblindness,   behavioral  experiments  have  shown  that  monkeys  with  three  types  of  cones  show  trichromacy,  as  do  humans   with   normal   color   vision.   However,   several   phenomena   have   been   shown   to  influence   human   color   perception   in   response   to   changes   in   light   intensities,   stimuli  eccentricity   and   stimuli   size.   Indeed,   psychophysical   studies   have   shown   that   human  monocromats   and   dichromats  may   improve   color   discrimination   under   lower   light   levels,  and   have   established   that   rod-­‐cone   interaction   can   influence   our   color   perception.   Rod-­‐cone  interaction  is  apparently  not  restricted  to  humans  and  also  has  been  described  in  non-­‐human   primates.   Here   I   will   discuss   how   luminosity   might   influence   mammalian   color  discrimination,  presenting  data  on  feeding  behavior  of  bats  and  primates.    

 

Behavioural  evidence  of  scotopic  colour  vision  in  amphibians    

Carola  Yovanovich  &  Almut  Kelber  

Vision  Group  |  Lund  University  |  Sweden  

[email protected]  

The   existence   of   two   different   spectral   kinds   of   rods   in   anurans   has   long   ago   raised   the  question  of  whether  these  animals  could  use  them  for  seeing  colour  at  night,  even  at  light  levels   that   are   too   low   to   allow   for   reliable   cones   signals   and   cone-­‐based   colour  

Page 5: AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM...AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM 16 & 17 April 2015 Synpunkten Biology building B – 3rd floor Sponsored by PROGRAM’ !! Thursday16,April)!

  3  

discrimination.  However,   no   confirmation  of   this   ability   has   been   reported   in   behavioural  tests   with   a   proper   control   of   achromatic   cues.  We   are   tackling   this   question   by   testing  colour  vision  at  photopic,  mesopic  and  scotopic  light  levels  using  two  European  anurans  as  model   species.  We   use   a   two-­‐choice   test,   in  which   the   animals   are   shown  moving,   prey-­‐sized   stimuli,   one   green   and   one   blue   in   each   trial;   snapping   at   the   green   stimulus   is  rewarded  with  a  real  prey   item.  Several  combinations  of  blue  and  green  shades  varying   in  intensities,  contrasts  and  position  are  used  to  exclude  achromatic  cues  and  ensure  that  the  choice   is   based   solely   on   colour.   I   will   discuss   our   findings   regarding   behavioural  performance   of   frogs   and   toads,   the   relevance   of   chromatic   and   achromatic   cues,   the  thresholds   for   colour   discrimination   and   how   to   complement   this   study   with   other  behavioural   and  morphological   approaches   to  elucidate   the   relevance  of  nocturnal   colour  vision  in  amphibians.  

 

 

Measuring   the   absolute   sensitivity   of   frog   color   discrimination   using  phototactic  behavior  

 

Sanna  Koskela,  Noora  Nevala  &  Kristian  Donner  

Division  of  Physiology  and  Neuroscience  |  University  of  Helsinki  |  Finland  

[email protected]  

Unlike  most   vertebrates,   amphibians  have   two   spectrally  distinct   classes  of   rods   for  night  vision:  the  "red"  rods  with  peak  sensitivity  at  500  nm  and  "green"  rods  with  peak  sensitivity  at   430   nm.   Thus,   these   animals   are   potential   dichromats   in   dim   light.  We   have   set   up   a  behavioral   test  based  on   innate  phototactic  behavior   to   investigate  whether   the  common  frog  (Rana  temporaria)  can  distinguish  two  spectrally  different  stimuli  at  low  light  levels.    

When  put   in  a  dark   container,   frogs   interpret  a   light   cue  as  an  opening   through  which   to  escape   and  will   jump   towards   it   (Aho   et   al.   1993).   In   the   current   experiment,   a   frog   can  jump  towards  one  of  four  equal  sectors  in  the  ceiling  of  a  container,  two  of  which  are  dark,  while  each  of  the  two  others  holds  a  homogeneously  lit  circular  window.  The  two  windows,  ”blue”   and   “non-­‐blue”,   both   stimulate   the   red   rods   equally,   but   only   the   “blue”  window  provides  significant  stimulation  of  the  green  rods.  As  reported  in  the  literature  (Hailman  &  Jaeger  1974),  we  have  found  that  the  frogs  show  a  consistent  preference  for  the  blue  light  stimulus  (“blue  response”).  This  preference  holds  even  at   light   levels  close  to  the  absolute  visual   threshold,   thus   demonstrating   that   green   rods   do   support   scotopic   color  discrimination.   By   lowering   the   general   light   intensity,   we   have   determined   the   absolute  threshold   for   "blue"   discrimination,   quantitatively   expressed   as   a   minimum   ratio   of  photoisomerizations  in  green  vs.  red  rods.    

Page 6: AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM...AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM 16 & 17 April 2015 Synpunkten Biology building B – 3rd floor Sponsored by PROGRAM’ !! Thursday16,April)!

  4  

References:  

Aho,   AC,   Donner,   K,   Reuter,   T   (1993)   Retinal   origins   of   the   temperature   effect   on   absolute   visual  sensitivity  in  frogs.  J  Physiol,  463:501–521.  

Hailman,   JP,   Jaeger,   RG   (1974)   Phototactic   responses   to   spectrally   dominant   stimuli   and   use   of  colour  vision  by  adult  anuran  amphibians:  A  comparative  survey.  Anim  Behav,  22:757–795.  

 

 

Amphibian  diversity  and  the  evolution  of  diurnal  habits    

Julián  Faivovich  

Herpetology  Division  |  Argentine  Museum  of  Natural  Sciences  |  Argentina  

[email protected]  

In   this   presentation   I   will   briefly   introduce   the   state   of   the   art   of   our   knowledge   on  amphibian   phylogenetic   relationships.   This  will   serve   as   a   historical   framework   to   discuss  the  origin  of  diurnal  habits  and  the  evolution  of  a   few  character  systems  related  to  vision  during  the  evolutionary  history  of  amphibians.  

 

 

Amphibian  diversity  and  vision    

Taran  Grant  

Zoology  Department  |  Sao  Paulo  University  |  Brazil  

[email protected]  

For  a  very  long  time,  amphibians  were  considered  little  more  than  a  footnote  in  the  grand  history  of  tetrapod  diversification,  even  by  amphibian  specialists.  For  example,  in  a  technical  paper   on   the   clasping   organs   of   amphibians,   Moodie   (1908:   257)   summarized   that   “The  Amphibia  on  the  whole  have  played  but  a  small  part   in  the  history  of  animal  life  on  earth.  They   have   never   become   the   dominant   type   in   any   age   as   did   the   fishes,   reptiles   and  mammals.  They  have  always,  so  to  speak,  filled  in  the  corners,  left  by  their  more  aggressive  contemporaries.  Their  chief  interest  lies  in  that  they  were  the  ancestors  of  the  higher  forms  of   life.”  That  view  of  amphibians  as  a  primitive,   transitional   grade  between  aquatic   fishes  and   fully   terrestrial   "higher   vertebrates"   fit   nicely   with   the   narrative   of   the   Modern  Synthesis,  and  even  now  many  biologists  continue  to  see  amphibians  in  that   light.  For  this  reason,  many   fundamental   questions   that   have   been   studied   in   detail   in   other   tetrapods  have   been   all   but   ignored   in   amphibians.   However,   over   the   past   50   years   or   so,   it   has  

Page 7: AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM...AMPHIBIAN VISUAL ECOLOGY SYMPOSIUM 16 & 17 April 2015 Synpunkten Biology building B – 3rd floor Sponsored by PROGRAM’ !! Thursday16,April)!

  5  

become  clear  that  amphibians  are  a  diverse  and  unique  evolutionary  lineage  of  more  than  7000  extant  species  characterized  by  evolutionary  novelties  that  make  them  fascinating   in  their  own  right.  The  role  vision  played  in  amphibian  evolution  is  poorly  understood.  In  this  talk,   I   will   draw   attention   to   some   of   the   diverse,   vision-­‐related   questions   that   can   be  studied   in   amphibians,   focusing   on   their   distribution,   communication,   predation,   and  development.    

 

 

Differences   in   detectability   and   behaviour   among   dyeing   poison   frogs  (Dendrobates  tinctorius)  bearing  different  colour  patterns  

 

Bibiana  Rojas  

Centre  of  Excellence  in  Biological  Interactions  |  University  of  Jyväskylä  |  Finland  

[email protected]  

The  enormous   color  pattern   variation   in   some  aposematic   species   is  paradoxical  because  the   stabilising   selection   exerted   by   predators   is   expected   to   favour   one   signal   rather   tan  several,   especially   within   the   same   population.   The   mechanisms   maintaining   such  unexpected  variation  are  still  poorly  understood,  although  it  has  been  suggested  that  both  non  adaptive  (e.g.  gene  flow,  drift)  as  well  as  adaptive  processes  (i.e.  a  trade-­‐off  between  natural   and   sexual   selection,   a   link   between   fitness-­‐related   traits   and   phenotype,   spatio-­‐temporal   variation   in   selection   pressures)  may   have   a   relevant   role.  We   tested  whether  polymorphic   warning   signals,   such   as   those   observed   in   the   dyeing   poison   frog  (Dendrobates  tinctorius)  could  be  maintained  as  a  result  of  differences  in  detectability  and  behaviour  among  the  morphs.  In  order  to  do  this  we  followed  frogs  in  the  wild  and  studied  their  movement  trajectories;  and  also  exposed  paraffin  wax  models  bearing  different  colour  patterns   to   wild   predators   in   a   tropical   rainforest   in   French   Guiana.   Additionally,   we  examined  how  easy  it  was  for  ‘human  predators’  to  find  frog  models  of  different  morphs  in  two  different   light  environments   (closed   forest   and   forest   gap).  We   found   that   real   frogs  with   elongated   patterns   moved   in   one   direction   and   at   higher   speeds   than   frogs   with  interrupted   patterns,   suggesting   a   possible   dazzle   effect.   In   the   experiment   with   wax  models,   ‘cryptic’   models   were   attacked   more   often   than   those   resembling   aposematic  frogs,   but   the   two   aposematic   morphs   tested   did   not   different   in   the   rate   at   which  predators   attacked   them.   However,   the   detectability   of   different   aposematic   morphs  seemed   to  depend  both  on  predator   experience   and   light   environment.  We   suggest   that  behavioural  differences,  as  well  as  differences  in  detectability  among  the  morphs  in  specific  light   environments,   may   provide   novel   explanations   for   the   maintenance   of   within-­‐population  variation  in  warning  signals.