alexander ferling - uni- · pdf filesupersymmetric insights alexander ferling itp mun¨...

42
supersymmetric insights Alexander Ferling ITP M¨ unster June 2, 2008 Alexander Ferling (ITP M¨ unster) supersymmetric insights June 2, 2008 1 / 38

Upload: buiquynh

Post on 24-Mar-2018

235 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

supersymmetric insights

Alexander Ferling

ITP Munster

June 2, 2008

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 1 / 38

Page 2: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

1 Supersymmetric Hotspotsthe raise of supersymmetrythe particle spectrumthe consequencesconstructing a sym-theory

2 PHMC-Algorithmthe path-integralpolynomial approximationevaluating the trajectory

3 Action Improvementsspeed improvementssignal improvements

4 Matrix Inversionsthe reason whyconjugate gradient algorithmkrylov spacesmatrix deflationdomain decomposition

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 2 / 38

Page 3: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots the raise of supersymmetry

why supersymmetry?

aim of investigations: constructing a theory with only onesymmetry-group and delivering the standard model by symmetrybreaking

generators of the Poincare and Lie-Group I:

[Pµ, P ν ] = 0

[Mµν , P ρ] = i (ηνρPµ − ηµρP ν) ↔ [Ta, Tb] = fabcTc

[Mµν ,Mρσ] = i (ηνρMµσ + ηµσMνρ

−ηµρMνσ − ηνσMµσ)

→ non-trivial it is impossible(no-go theorem from Coleman & Mandula ’67)

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 3 / 38

Page 4: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots the raise of supersymmetry

to crack this theorem

extend the algebra by anti-commutating vectors instead ofcommutating ones Golfand & Likhtman (’71)

[even, even] = even

odd, odd = even

[even, odd] = odd

this so called Z2 graded algebra is the only one, consistent withrelQFT

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 4 / 38

Page 5: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots the raise of supersymmetry

the majorana-spinors Qα

anti-commuting values are associated with fermionic degrees offreedom → generators are majorana/weyl-spinors.

self-conjugated complex/real dirac spinors

ψCM = ψM

with commutation- and anticommutation relationsQα, Qβ

= 2σµ

αβPµ

Qα, Qβ =Qα, Qβ

= [Qα, Pµ] =

[Qα, Pµ

]= 0

[Qα,Mµν ] = σβµναQβ

[Qα,Mµν

]= σα

µνβQβ

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 5 / 38

Page 6: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots the particle spectrum

the particle spectrum

defining the Pauli-Lubanski-Vector Wµ

Wµ =1

2εµνρσP

νMρσ, Xµ = QσµQ

Y := Wµ − 1

4Xµ, [Yµ, Yν ] = imεµνσY σ,

(Y

m

)= y (y + 1)

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 6 / 38

Page 7: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots the particle spectrum

the particle spectrum

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 7 / 38

Page 8: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots the consequences

the consequences

solution for the hierarchy-problem

fewer divergencies

local supersymmetry φ′i (x) = U ji φj (x) → U j

i (x)φj (x)→ SUGRA (with ART in the low energy limit)

TOE’s only consistent with space-time supersymmetry

quark confinement

breaking electroweak interaction is a consequenceof supersymmetry breaking

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 8 / 38

Page 9: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots constructing a sym-theory

Wess-Zumino-Model ’74

take the action-functional

S [φ] =

∫d4xL (φ, ∂φ)

calculate the invariance under variation of the Poincare-Group P

δS [φ] =

∫d4xδL

with the extension (x1, x2, x3, x4, θ

1, θ2, θ1, θ2)

and transformations

θ → θ + η, θ → θ + η xµ → xµ + aµ − iησµθ + iθσµη

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 9 / 38

Page 10: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots constructing a sym-theory

the continuums lagrangian

equation of motion should be invariant under supersymmetrictransformations

∂xµ

(∂L

∂ (∂φ/∂xµ)

)− ∂L∂φ

= 0

the simplest supersymmetric Lagrangian for the chiral multiplet

Lchiral = Lscalar + Lfermion = −∂µφ∗∂µφ− iψtσµ∂µψ

the interaction between fermion- and boson-fields should beyukawa-like and renormalisable. the product φ†φ leads to avektor-superfield

Super-Yang-Mills with symmetry breaking term

L = LSY M +mλλ

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 10 / 38

Page 11: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots constructing a sym-theory

on-shell action/Curci-Veneziano lattice action (’87)

...further constructions and restrictions...

leads to the euclidean on-shell continuum-action

SSY M =

∫d4x

1

4F a

µνFaµν +

1

2λaγµ∇µλ

a

putting it on the lattice leads to Slat = Sg + Sf with

Sg [U ] = β∑

x

∑µν

[1− 1

NcReTrUµν

]Sf

[U, λ, λ

]=

1

2

∑x

λ (x)λ (x) +

κ

2

∑x

∑µ

[λ (x+ µ)Vµ (x) (r + γµ)λ (x)

+λ (x)V Tµ (x) (r − γµ)λ (x+ µ)

]Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 11 / 38

Page 12: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Supersymmetric Hotspots constructing a sym-theory

some comments on Q and V -matrix

by defining the Q-Matrix

Qy,x [U ] ≡ δyx − κ∑

µ

[δy,x+µ (1 + γµ)Vµ (x) + δy+µ (1− γµ)V T

µ (y)]

we can write Sf more compactly as

Sf =1

2

∑xy

λ (x)Qx,yλ (y) =1

2

∑xy

λT (x) CQx,yλ (y)

the adoint matrices have the form

[Vµ (x)]ab ≡ 2Tr[U †µ (x)T aUµ (x)T b

]

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 12 / 38

Page 13: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

PHMC-Algorithm

1 Supersymmetric Hotspotsthe raise of supersymmetrythe particle spectrumthe consequencesconstructing a sym-theory

2 PHMC-Algorithmthe path-integralpolynomial approximationevaluating the trajectory

3 Action Improvementsspeed improvementssignal improvements

4 Matrix Inversionsthe reason whyconjugate gradient algorithmkrylov spacesmatrix deflationdomain decomposition

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 13 / 38

Page 14: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

PHMC-Algorithm the path-integral

multi-bosonic representation

it’s not feasible to simulate Grassmann fields directly, becausee−SF = e−φDφ is not positive → poor importance sampling

we therefore integrate out the fermion fields to obtain the fermiondeterminant∫

[dλ] e−Sf =

∫[dλ] e−

12λQλ = ±

√detQ

questions concerning the ±-sign → ask Jaır

now we turn around - that thing is calles ”bosonification”, with√

detQ =[det(Q†Q

)] 14 . In QCD you have

det(Q†Q

)=

∫ [dφ†dφ

]exp

(−∑xy

φ†y

[Q†Q

]−1

yxφx

)

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 14 / 38

Page 15: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

PHMC-Algorithm polynomial approximation

polynomial approximation

use the approximation

limn→∞

Pn (x) =

[1

x

] 14

∀x ∈ [ε, λ]

keep in mind the condition number√λ/ε

choose the polynom

P(Q2)

= c0(Q− ρ1

) (Q− ρ2

). . .(Q− ρn

) (Q− ρ∗n

). . .(Q− ρ∗1

)so in our simulation, we have√

detQ =[det(Q†Q

)] 14 =

∫ [dφ†dφ

]exp

(−∑xy

φ†y(P(Q2))

yxφx

)

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 15 / 38

Page 16: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

PHMC-Algorithm evaluating the trajectory

the hamiltonian

update the field globally

takes large steps through configuration space

we introduce a fictitious Hamiltonian

H [P,U, φ] =1

2

∑xµj

P 2xµj + Sg [U ] + Sf [U, φ]

the action plays the role of a fictitious potential

HMC-Markov-Chain alternates two Markov-Steps:Molecular Dynamics Monte Carlo andMoment Refreshment (together they are ergodic)

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 16 / 38

Page 17: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

PHMC-Algorithm evaluating the trajectory

equations of motion

these are the hamilton equations of motion

dPxµj

dτ= −DxµjS,

dUxµ

dτ= iPxµjUxµ

to update of momenta and fields

U ′xµ = exp

∑j

i2TjPxµj∆τ

Uxµ, P ′xµj = Pxµj −DxµjS [U, φ] ∆τ

you have to derive the fermionic derivative ([DxµjVµ]ab = 2fbjc [Vµ]ac)

DxµjSf [U, φ] =n−1∑k=0

(k)1,a (x)

(DxµjQ

(k)†2,b (y)

)+

n−1∑k=0

(k)2,a (x)

(DxµjQ

(k)†1,b (y)

)

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 17 / 38

Page 18: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

PHMC-Algorithm evaluating the trajectory

integrators

Leapfrog integrator

Ttot (∆τ) = TP

(∆τ

2

)TU (∆τ)TP

(∆τ

2

)Sexton-Weingarten integrator

Tges (∆τ) = TU

(∆τ

6

)TP

(∆τ

2

)TU

(2∆τ

3

)TP

(∆τ

2

)TU

(∆τ

6

)higher order Leapfrog integrator with multiple timescales

Ti (∆τi) = TSi

(∆τi2

)Ti−1 (∆τi−1)Ni TSi

(∆τi2

)higher order Sexton-Weingarten integrator with multiple timescales

Ti (∆τi) = TSi

„∆τi

6

« Ti−1

„∆τi−1

2

«ffNi−1TSi

„2∆τi

3

« Ti−1

„∆τi−1

2

«ffNi−1TSi

„∆τi

6

«

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 18 / 38

Page 19: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Action Improvements

1 Supersymmetric Hotspotsthe raise of supersymmetrythe particle spectrumthe consequencesconstructing a sym-theory

2 PHMC-Algorithmthe path-integralpolynomial approximationevaluating the trajectory

3 Action Improvementsspeed improvementssignal improvements

4 Matrix Inversionsthe reason whyconjugate gradient algorithmkrylov spacesmatrix deflationdomain decomposition

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 19 / 38

Page 20: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Action Improvements speed improvements

speed improvements

two-step polynomial 1x ≡ Pn1,n2 (x) = P ′n1

(x)P ′′n2(x) with noisy

correction

eη†P ′′n2

(Q)η∫D [η] eη†P ′′

n2(Q)η

even-odd preconditioning (Q = Qγ5)

Q =

(γ5 −γ5κMeven−odd

−γ5κModd−even γ5

)→ det Q = det

(1− κ2MoeMeo

)determinant breakup det Q2 =

(det Q2

) 1nB

nB

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 20 / 38

Page 21: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Action Improvements signal improvements

gauge action improvement

both terms can be optimized

S = Sg + Sf

↓ ↓DBW2 STOUT

a possible gauge action is

S = β11

∑plaq

ReTr

(1− 1

3Uplaq

)+ β12

∑plaq

ReTr

(1− 1

3Urect

)

Uplaq = q qq q

-?

6

Urect = q qq q

qq

-?

-

6

Wilson TlSym Iwasaki DBW2β12 = 0 β12 = −1/12 β12 = −0.091 β12 = −1.4088

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 21 / 38

Page 22: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Action Improvements signal improvements

STOUT link smearing

the (n+ 1)th stout smeared ”thick” link obtained iteratively from thenth level

U (n+1)µ (x) = eiQ

(n)µ U (n)

µ (x)

with

Qµ (x) =i

2

(Ω†µ (x)− Ωµ (x)

)− i

2NTr(Ω†µ (x)− Ωµ (x)

)and

Ωµ (x) = Cµ (x)U †µ (x)

the staples Cµ are defined as

Cµ (x) =∑ν 6=µ

ρµν

(Uν (x)Uµ (x+ ν)U †ν (x+ µ)

+U †ν (x− ν)Uµ (x− ν)Uµ (x− ν)Uν (x− ν + µ))

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 22 / 38

Page 23: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Action Improvements signal improvements

some data from the analysis

0.573

0.574

0.575

0.576

0.577

0.578

0.579

0.58

0.581

0 100 200 300 400 500

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

STOUT ρ = 0.15, TlSym, Run 16c32, Nf = 1, β = 4.00 κ = 0.1450

<P>=0.57881(11), τint=7.3 thin plaquettethin eigenvalue

thick eigenvalue

0.535

0.54

0.545

0.55

0.555

0 500 1000 1500 2000 2500 3000 3500 40001e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

TlSym, Run 12c24, Nf = 1, β = 3.80, κ = 0.1710

Plaq./Minimal EV <P>=0.547840(67) τint=7.6

0.612

0.614

0.616

0.618

0.62

0 100 200 300 400 500 600

0.0001

0.001

0.01

0.1

1

10

100

1000

SYM on 24c48, TlSym β = 1.60 κ = 0.1500

<P>=0.617606(34), τint=2.3

thin plaquettethin eigenvalue

thick eigenvalue

0.62

0.622

0.624

0.626

0.628

0.63

0 500 1000 1500 20001e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

SYM on 24c48, TlSym β = 1.60 κ = 0.1570

<P>=0.625979(31), τint=8.5

thin plaquettethin eigenvalue

thick eigenvalue

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 23 / 38

Page 24: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions

1 Supersymmetric Hotspotsthe raise of supersymmetrythe particle spectrumthe consequencesconstructing a sym-theory

2 PHMC-Algorithmthe path-integralpolynomial approximationevaluating the trajectory

3 Action Improvementsspeed improvementssignal improvements

4 Matrix Inversionsthe reason whyconjugate gradient algorithmkrylov spacesmatrix deflationdomain decomposition

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 24 / 38

Page 25: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions the reason why

the purpose of matrix inversions

examine the Gluino-Propagator

⟨Tλ (x) λ (x)

⟩= 〈T λ (x)λ (x)〉 C = 2

[δ2 lnZ [J ]

δJ (x) δJ (y)

]C

with the given partition function Z

Z =

∫D [λ] e−

12λCQλ.

we have to solve ⟨Tλ (x) λ (x)

⟩=

⟨Q−1 [U ]

⟩→ inversion of sparse matrices

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 25 / 38

Page 26: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions conjugate gradient algorithm

conjugate gradient algorithm I

instead of solving z = Q−1ω we solve

Qz = ω

(ω = a given source, Q = the fermion matrix, z = solution vector)

to find z, we use the conjugate gradient algorithm.

the basic idea of CG is, that equivalent to solve Qz = ω is extremising

E (z) := 〈ω, z〉 − 1/2 〈Qz, z〉.

the gradient of E at zk is

gk = ω −Qzk

conjugate gradient means now, to minimize E in a direction pk

instead of gk. This direction is Q-conjugated, which means

〈Qpi, pj〉 = 0

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 26 / 38

Page 27: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions conjugate gradient algorithm

conjugate gradient algorithm II

the algorithm step by step

1 take a source ω and set initially ω = z02 calculate the residuum

p0 = r0 = ω −Qz0

3 for n = 1, 2, . . .

an =|rn|2

〈pn, Qpn〉, zn+1 = zn + anpn, rn+1 = rn − anQpn

4 if |rn+1|2 < δ then the solution is zn+1, else calculate

bn = |rn+1|2 / |rn|2 , pn+1 = rn+1 + bnpn

and proceed with iteration

is valid only for positiv definite hermitian matrices, → extend to B†Ait can be used for any hermitian matrix A

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 27 / 38

Page 28: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions krylov spaces

krylov spaces I

consider a system of linear equations Ax = b and the residual vectorr ≡ b−Axi for an approximate solution xi

rewriting the system as

(I − (I −A))x = b

leads to basic iteration

xi = b+ (I −A)xi−1

= xi−1 + ri−1

= xi−2 + ri−2 + ri−1

...

= x0 + r0 + r1 + . . .+ ri−1.

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 28 / 38

Page 29: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions krylov spaces

krylov spaces II

multiply xi = xi−1 + ri−1 with A from the left

Axi = Axi−1 +Ari−1

and substract from b

b−Axi = b−Axi−1 +Ari−1

ri = ri−1 −Ari−1

= (I −A) ri−1

so finally we get

xi = x0 + r0 + (I −A) r0 + . . .+ (I −A)i−1 r0

= x0 +[r0, Ar0, A

2r0, . . . , Ai−1r0

]Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 29 / 38

Page 30: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions krylov spaces

krylov spaces III

this linear space defines the krylov subspace

Km(A, r) = spanr,Ar, . . . , Am−1r.

convergence is measured by the residual rn = |b−Axn|.more specificially, we seek an approximate solution xn in Kn byimposing the petrov-galerkin condition

rn ≡ b−Axn⊥Ln

where Ln is an n-dimensional subspace

two broad choices:

Ln = Kn (A; r0) ↔ orthognoalisation (Arnoldi, GMRES, CG, GCR...)Ln = Kn

(A†; r0

)↔ bi-orthognoalisation (Lanczos, BCG, BiCGstab...)

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 30 / 38

Page 31: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions matrix deflation

on which circumstances is matrix deflation feasible?

stochastic estimator technique⟨η†iZi

⟩Nest

Nest→∞= Q−1

ii

collect informations about Q in each CG forthe next step

feed CG with a

galerkin-projected vector

x0 = W(W TAW

)−1W T b.

→ convergence will raise

SET

Qz1 = η1α

↓Qz2 = η2α

↓Qzi = ηiα

...QzN = ηNα

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 31 / 38

Page 32: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions matrix deflation

deflation: the stathopoulos-orginos algorithm

InitCG

Algorithm 1: Basisiteration

iterative solution of Ay = c

Initialisation

choose y0;

s0 = c − Ay0;

ω0 = s0;

Iteration

for j = 0, 1, ... until covergence do

γj =`sj , sj

´/

`ωj , Aωj

´;

yj+1 = yj + γjωj ;

sj+1 = sj − γjAωj ;

δj+1 =`sj+1, sj+1

´/

`sj , sj

´;

ωj+1 = sj+1 + δj+1ωj ;

end do

Algorithm 2: InitCG

iterative solution of Ax = b

Initialisation

choose x−1;

r−1 = b − Ax−1;

x0 = x−1 + W“

WT

AW”−1

WT

r−1;

r0 = b − Ax0;

p0 = r0;

Iteration

for j = 0, 1, ... until covergence do

αk = (rk, rk) / (pk, Apk) ;

xk+1 = xk + αkpk ;

rk+1 = rk − αkApk ;

βk+1 =`rk+1, rk+1

´/ (rk, rk) ;

pk+1 = rk+1 + βk+1pk ;

end do

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 32 / 38

Page 33: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions matrix deflation

eigCG

generate an initial V withrestarting-CG

Tm =(W TAW

)−1is the

lanczos-matrix

in 8. and 9. we useraileigh ritz, to computean orthonormal ritz basisfor space [Y, Y ]

return nev ritz vectorsfrom V

1. V = [ ] ;

2. for j = 0, 1, ... until covergence do

3. standard CG iteration

4. update three elements of Tj

5. if (size (V, 2) == m)

6. solve TmY = Y M, for nev lowest eigenpairs

7. solve Tm−1Y = Y M, for nev lowest eigenpairs

8. [Q, R] = qr`ˆ

Y, Y , 0˜´

, and H = QH

TmQ

9. solve HZ = ZM for 2 nev lowest eigenpairs

10. Restart: V = V (QZ) and T2nev = M

11. set the 2nev + 1 column of T2nev+1 as VH

Arj

12. endif

13. V =ˆV, rj/‖rj‖

˜14. end CG

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 33 / 38

Page 34: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions matrix deflation

solver convergence

Figure: convergence of the solvers. the blue ones are the 24 incremental eigCGiterations, red the last 24 init-CG iterations

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 34 / 38

Page 35: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions domain decomposition

deflation: the luscher algorithm

at the beginning of each MD-trajectory, there will be fermion-fieldsφl (x) , l = 1, . . . , Ns stochastically gernerated through a so calledsmoothing procedure

then, they will be projected on non-overlapping Blocks Λ with

φΛl (x) =

φl (x) wenn x ∈ Λ,

0 sonst

Figure: often used blocksize 44

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 35 / 38

Page 36: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions domain decomposition

mode projection I

a given field ψ can be projected with an orthogonal projector P on thespace S, which is spanned by the orthonormalbasis φ1 (x) , . . . , φN (x)

Pψ (x) =N∑

k=1

φk (x) (φk, ψ) .

the complete system is combined by the ”inner” system S and an”outer” complementary System S⊥

ψ (x) = χ (x) +N∑

k,l=1

φk (x)(A−1

)kl

(φl, η)

here we used the so called little Dirac-Operator

Akl = (φk, Dφl) , k, l = 1, . . . , N.

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 36 / 38

Page 37: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions domain decomposition

mode projection II

Figure: deviation of the smallesteigenvalues

Figure: approximation of thelowest modes by a constant

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 37 / 38

Page 38: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions domain decomposition

comparison of the various methods

Morgan/Wilcox Stath./Orginos Luscher

Solver GMRES / BiCGStab CG GCR

Matrix Type non-herm. herm. non-herm.(Algebraic) (Algebraic) (Lattice)

Simultaneous yes yes nosolveEigenvalue every cycle (GMRES) every cycle, everyuse for beginning (BiCGStab) beginning (s ≤ s1) outermultiple rhs’s restart (s > s1) iteration

Algorithm mild large smallacceleration

Table: some points of comparison for the three algorithms considered

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 38 / 38

Page 39: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions domain decomposition

Kapitel1: Supersymmetric Hotspots

D. Talkenberger, Monte-Carlo-Simulationen von Modellen derElementarteilchenphysik mit dynamischen Fermionen, Dissertation,Universitat Munster, Oktober 1997.

K. Spanderen, Monte-Carlo-Simulationen einer SU(2)Yang-Mills-Theorie mit dynamischen Gluinos, Dissertation, UniversitatMunster, Oktober 1998.

C. Gebert, Storungstheoretische Untersuchungen der N = 1supersymmetrischen Yang-Mills-Theorie auf dem Gitter, Dissertation,Universitat Munster, 1999

S. Luckmann, Supersymmetrische Feldtheorien auf dem Gitter,Dissertation, Universitat Munster, 2001

K. Muller, Einfuhrung Supersymmetrie, Primer, Universitat Zurich,Oktober 2002.

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 38 / 38

Page 40: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions domain decomposition

Kapitel2: PHMC-Algorithm

I.Campos et.al. , Monte Carlo simulation of SU(2) Yang-Mills theorywith light gluinos, [arXiv:hep-lat/9903014]

R. Peetz, Spectrum of N = 1 Super Yang Mills Theory on the Latticewith a light gluino, PhD, 2003

M. Luscher, A new approach to the problem of dynamical quarks,Nuc.Phys. B418, S.637-648, 1994

I. Montvay, E.E. Scholz, Updating algorithms with multi-stepstochastic correction, [arXiv:hep-lat/0506006]

B. Gehrmann, The step scaling function of QCD at negative flavornumber, PhD, 2002

E.E. Scholz, Light Quark Fields in QCD: Numerical Simulations andChiral Perturbation Theory, PhD, 2005

E.E. Scholz, I. Montvay, Multi Step stochastic correction in dynamicalfermion updating algorithms, [arXiv:hep-lat/0609042v2]

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 38 / 38

Page 41: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions domain decomposition

Kapitel3: Action Improvements

Ph. Forcrand et.al., Search for Effective Lattice Action of Pure QCD,[arXiv:hep-lat/9608094v1]

K. Jansen, I. Montvay, C. Urbach, et.al., Stout Smearing for TwistedMass Fermions, [arXiv:hep-lat/90709.4434v1]

C. Morningstar, M.J. MPeardon, Analytic smearing of SU(3) linkvariables in lattice QCD, [arXiv:hep-lat/0311018]

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 38 / 38

Page 42: Alexander Ferling - uni- · PDF filesupersymmetric insights Alexander Ferling ITP Mun¨ ster June 2, 2008 Alexander Ferling (ITP Mun¨ ster) supersymmetric insights June 2, 2008 1

Matrix Inversions domain decomposition

Kapitel4: Matrix Inversions

Y. Saad, Iterative Methods for sparse linear systems, SIAMPhiladelphia, PA, USA, 2003

K. Spanderen, Monte-Carlo-Simulationen einer SU(2)Yang-Mills-Theorie mit dynamischen Gluinos, Dissertation, UniversitatMunster, August 1998

G. Munster, I. Montvay, Quantum Fields on a Lattice, CambridgeMonographs on Mathematical Physics

A. Stathopoulos, K. Orginos, hep-lat/0707.131v1

M. Luscher, Local coherence and deflation of the low quark modes inlattice QCD hep-lat/0706.2298v4

R.B. Morgan, W. Wilcox, Deflated Iterative Methods for LinearEquations with Multiple Right-Hand Sides math-ph/0405053v2

U. Wenger, Introduction to Lattice QCD algorithms, Lattice PracticeTalk, 27.11.06, Zeuthen

Alexander Ferling (ITP Munster) supersymmetric insights June 2, 2008 38 / 38