advanced manufacturing: navy/dod...

19
Advanced Manufacturing: Navy/DOD Perspective Khershed P. Cooper, PhD Program Officer, ONR Manufacturing Science Faculty Development Needs for Advanced Manufacturing in the USA National Science Foundation, Arlington, VA, January 9th and 10th, 2014

Upload: duongkien

Post on 12-Apr-2018

225 views

Category:

Documents


2 download

TRANSCRIPT

Advanced Manufacturing: Navy/DOD Perspective

Khershed  P.  Cooper,  PhD  Program  Officer,  ONR  Manufacturing  Science  

Faculty Development Needs for Advanced Manufacturing in the USA National Science Foundation, Arlington, VA, January 9th and 10th, 2014

Outline

§  Advanced  Manufacturing  

§  ONR—Manufacturing  Science  Program  

§  Industry/DOD  Perspec@ve  §  Summary  

2  

Advanced Manufacturing

§  Applica@on  of  innova@ve  technologies  to  accelerate  product  development,  customize  products,  increase  produc3on  efficiency,  increase  produc3vity,  reduce  cost  

§  Rapid  transfer  of  science  and  technology  into  manufacturing  processes  and  products—PCAST,  April  2010  

§  Products—Technologically  complex,  high  level  of  design,  beGer/new/exci@ng,  reliable  and  affordable,  solve  societal  problems  

§  Process  Technologies—CAD/CAM/CAE,  M&S,  Precision,  IT,  Robo@cs,  Intelligent  Systems,  Automa@on,  Monitor  and  Control  Systems,  New  Produc@on  PlaMorms,  Sustainable  and  Green  Manufacturing,  Mass  Customiza@on,  Mass  Produc@on  

§  Broader  Impacts—Educa@on,  Economy,  Society  

3  

Why Advanced Manufacturing?

§  US  innova@on  is  focused  on  the  front-­‐end:  R&D,  it  must  also  focus  on  the  back-­‐end:  test-­‐beds,  demonstra@ons  and  ini@al  produc@on  phases  §  “Innovate  Here,  Produce  There”  

§  Manufacturing  innova@on  needs  to  be  looked  at  from  early-­‐stage  research  through  produc@on  

§  Moving  from  research  à    prototype  à  product  requires  …  §  Solving  engineering  design  problems  

§  Overcoming  produc@on  and  component  cost  problems  

§  Building  produc@on  processes  

§  Crea@ng  an  efficient  produc@on  system  

§  Developing  and  applying  new  produc@on  and  product  business  models  

§  Building  a  supply  chain  

§  Financing  scale-­‐up  and  scaling  up  produc@on  to  adapt  to  evolving  market  condi@ons  

§  Educa3ng  a  workforce  

4  Challenge is to close this gap

Meeting the Challenge

Develop  close  connec@on  between  research,  design  and  produc@on  phases  §  Produc@on  phase  provides  constant  feedback  to  research  and  design  phases  

§  Produc@on  innova@on  is  most  efficient  when  3ed  to  close  understanding  of  manufacturing  processes  

5  

Cul@vate  new  manufacturing  “paradigms”  to  transform  produc@on  §  Network-­‐Centric  Produc@on—embed  IT  advances  throughout  manufacturing  value  

chain  

§  Advanced  Materials—MGI,  bio-­‐manufacturing,  light-­‐weigh@ng,  …  

§  Mass  Customiza3on—addi3ve  manufacturing  /  3D  prin3ng  

§  Nanomanufacturing—embed  nano-­‐features  to  enhance  product  performance  

§  Efficiency—distribu@on,  energy  

Agency Perspective

Navy/DOD  §  Mission  oriented  §  Enhance  warfighter  performance,  augment  plaMorm  capabili@es  §  Shorten  produc@on  @me,  reduce  produc@on  cost  

6  

MRL  1   MRL  2   MRL  3   MRL  4   MRL  5   MRL  6   MRL  7   MRL  8   MRL  9  

Applied  Research    

Basic  Research    

Advanced  Technology  Development    

Component  Development/Prototypes    

TransiIon/MaturaIon    

University   SBIR/STTR   ManTech  

ONR Manufacturing Science Program

7  

Navy  S&T  Focus  Areas  §  Power  and  Energy  §  Opera@onal  Environments  §  Mari@me  Domain  Awareness  §  Asymmetric  and  Irregular  Warfare  §  Informa@on  Superiority  and  

Communica@on  §  Power  Projec@on  §  Assure  Access  and  Hold  at  Risk  §  Distributed  Opera@ons  §  Naval  Warfighter  Performance  §  Survivability  and  Self-­‐defense  §  PlaMorm  Mobility  §  Fleet/Force  Sustainment  §  Total  Ownership  Cost  

Research  Programs  §  Personal  Power  §  Environmental  Sensing  §  Network  Sensing  §  Func@onal  Materials  §  Image  Analysis  §  Communica@ons  and  Networks  §  Intelligent  and  Autonomous  

Systems  §  Informa@on  Processing  §  Manufacturing  Science  

Near   Mid   Far  

Focus  

Broa

d  Narrow   Quick  

ReacIon  S&T  

Discovery  &  InvenIon  (Basic  and  Applied  Science)  

S&T

AcquisiIon  Enablers  (FNCs)  

Leap  Ahead  InnovaIons  (INPs)  

45%  

12%  

30%  

8%  

Time  Frame  

ONR  Investment  PorMolio  

S&T has long-term focus but is responsive to near-term Naval needs

ONR Manufacturing Science Program

8  

Vision  §  Fundamental  principles  for  design,  control  and  manipula@on  of  physical  processes  

at  appropriate  length  scales  to  produce  components  with  specified  proper3es  that  form  part  of  a  useful  engineered  system  

h f

Physical  Model  (dynamics)   Measurement  Model   Observa@on  

Vector  

+ + + +

Z-1

Control  Vector  

Process  Noise  Vector   Measurement  Noise  Vector  

vk xk

uk

Xk+1

yk+1

nk+1

Cyber-­‐enabled  Manufacturing  Systems  

System-­‐level  IntegraIon  

Research  Thrust  Areas  

Direct  Digital  Manufacturing  

(AddiIve)  

Nanomanufacturing  

Novel  manufacturing  approaches  to  …  §  Create  new  products  to  augment  warfighter  capability  §  Improve  product  quality  and  performance  §  Achieve  design  and  produc@on  flexibility  §  Shorten  produc@on  @me,  reduce  produc@on  cost  

Basic  Research  §  Core,  MURI,  YIP,  

DURIP  

High Risk—High Payoff—Long Term

Applied  Research  §  STTR/SBIR,  

ManTech  

Additive Manufacturing—Navy/DOD Benefits

Address  Navy  S&T  focus  area  of  Total  Ownership  Cost  §  PlaMorm  affordability,  life-­‐cycle  and  sustainment  costs  §  The  price  tags  of  Navy  ships  keep  ascending  as  the  number  of  vessels  in  the  fleet  

takes  a  dive        -­‐  “Navy’s  Holy  Grail:  An  ‘Affordable’  Ship,”  Na3onal  Defense  Blog,  Jan  2013  

 

9  

The  obvious  …  §  Produce  new  and  replacement  parts  on-­‐demand  as  needed  §  Timely  repair  and  refurbishment  of  worn  and  broken  components    

Adop@on  is  slow  because  of  …  §  Cer@fica@on  and  accredita@on  for  cri@cal  components  §  Valida@on  and  verifica@on  of  produc@on  processes  

Address  Navy  challenges  …  §  Aging  Systems—reverse  engineering  §  Sea  Basing—remote  produc3on  §  Storage  and  Stockpiling—parts  on-­‐demand  

Basic Research—Additive Manufacturing

10  Control of melt-pool and solidification

Basic  Science  §  Transport  

phenomena  models  

§  Process  dynamics  (disturbance)  models  

§  Closed-­‐loop  process  control  

§  Achieving  precision  and  reliability  

Direct Metal Dep. Sensing and Control

- 0 .5

- 0.4

- 0.3

- 0.2

- 0.1

0

Z(mm)

00 .5 1

1.52 2.5

3

X (mm)0.5

1

Y(mm)

1400

2000

1600

17761800.4

YX

Z

TEMP: 1600 1776 1800.4 2000

1 m/s

3D Model

Turbine Blade Cellular Structure

Basic  Science  §  Controlled  

direc@onal  solidifica@on  

§  Process  maps  for  epitaxial  growth  

§  Achieve  texture  Scanning Laser Epitaxy

Previously fabricated layers

Remelted substrate

Laser beam

Melt pool Epitaxial grains

Powder layer

Motion

Microstructure Growth Melt Pool

Previously Fabricated Layers

Laser Beam Motion Powder Bed Remelted Layer

Single crystal turbine blade restoration

Applied Research—Additive Manufacturing

11  

Ship  Model  

STTR/SBIR  Projects  §  Physical  Scale  Models  for  Signature  Reduc@on  and  

for  Stress  and  EM  Environments  

Capability  §  Direct  manufacturing  instead  of  hand  assembly  

from  full  scale  ship  and  submarine  models   Submarine  Model  

3D  PrinIng  

ManTech  Projects  §  3D  Prin@ng  for  Manufacturing;  Agile  Manufacturing  Center  for  Cas@ng  Technology;  Mobile  

Manufacturing  and  Repair  Cell;  Air  Systems  Maintenance  and  Air-­‐worthiness  

Capability  §  New,  spare  and  replacement  metallic  parts  on-­‐demand;  Small-­‐lot  size  produc@on  of  high-­‐value  

metal  cas@ngs;  Repair  and  restora@on  of  high-­‐value  Naval  components  

Repair  and  Refurbish  Rapid  Cast  

Reduce time, reduce cost, mission readiness

To make AM acceptable, we need advances in …

12  

Design  §  Alloys  designed  for  addi@ve  fabrica@on  §  Design  tools  for  structure  and  component  §  Reverse  engineering  

Post-­‐processing  §  Post  fabrica@on  processes  to  enhance  

mechanical  proper@es    §  Finishing  to  reduce  surface  roughness  

Process  §  Computa@onally  guided  processes  and  

closed  loop  control  §  Integra@on  of  sensors  and  instrumenta@on  

for  real-­‐@me  process  monitoring,  NDE  and  control  

§  Accurate,  predic@ve  process  models  for  microstructure  and  proper@es  

§  Hybrid  processes,  integra@on  of  processes  

Technology  §  Accelerated  qualifica@on  and  cer@fica@on  

methods  

AM  Material  §  Fa@gue  and  other  mechanical  proper@es  

comparable  to  wrought  materials  §  Property  database    §  Func@onally  graded,  locally  controlled  

features  

Machine  §  Part-­‐to-­‐part  and  machine-­‐to-­‐machine  

variability  and  repeatability    

Areas of focus for research and education

Cyber-enabled Manufacturing Systems (CeMS)

Goal:  Integrate  compu@ng  and  communica@on  capabili@es  with  monitoring  and  control  in  manufacturing  -­‐  dependably,  efficiently  and  in  real-­‐3me  

13  Physics-based models, sense, compute, control

AGributes  of  CeMS  §  Cyber-­‐physical  system  methodology  for  co-­‐design  of  control  and  computa3on  systems  §  Customized  computa3on  architecture  for  real-­‐3me  control  §  Generalized  template  to  incorporate  measurements,  models  and  uncertainty  into  control  

Process and Measurement Model (Welding)

h f

Physical Model (dynamics) Measurement

Model Observation

Vector

+ +

+ + kx

1+kxku

kv1+kn

Control Vector

Process Noise

Vector Measurement Noise Vector

1+ky

Tf kkkkk !++=+ ),(1 vuxxxSample Period State Vector at Step n

State Vector at Step n+1 Due to significant process and measurement noise, the state vector needs to be estimated

Z-1

Ra@onale:  New  processes,  product  quality  and  performance,  produc@on  reliability  and  flexibility  

Address  Challenges  §  Dimensional  Tolerance  §  Surface  Finish  §  Composi@on  §  Microstructure  §  Thermal  Gradient  §  Porosity,  Cracking  §  Residual  Stress  

Universal or ‘Dream’ Machine

Make  …  §  any  object,  with  any  geometry,  any  place,  any  @me  §  with  any  material  and  material  sets    §  with  suitable  energy  source  or  sources  §  in  lot  size  of  one  or  small  lots,  affordably  §  reliably,  consistently,  dependably  

14  

Slogans  §  “Print  me  a  _____”  §  “If  you  can  draw  it,  you  can  build  it”  §  “Cer3fy-­‐as-­‐you-­‐build”  

Vascular  Structures  

GRIN  Lens   Metamaterials  

AuxeIc  Materials  

Internal  Complexity  

Geometric  Shapes  

AM presents unique design and manufacturing capabilities

Nanotechnology: Impact on Navy/DOD

Applica@ons  §  Sensors:  CBRNE  §  Metamaterials:  Antennae  for  Communica@on,  EM  &  Acous@c  Cloaking,  Radar  §  Devices:  Electronics,  Electromagne@cs,  Plasmonics,  Terahertz  Devices  §  Mul@-­‐func@onal  Systems    

15  

Requirements  §  Reduced  Size,  Lightweight,  Conformal,  Robust,  Reliable  

PlaMorms  §  Aircrap,  UXS,  Ships,  Submarines,  Vehicles,  Soldiers  

ONR Basic Research in Nanomanufacturing

16  

3D  Nanomanufacturing  §  Layer-­‐by-­‐layer  /  stereolithography  §  Serial  or  parallel  processing  §  Op3cal  enhancement  /  super  focusing  §  3D  nanostructures,  nanopaGerns  

NanopaGerning  §  Nanoimprin3ng—mechanical,  electrochemical  §  Op3cal  Nanolithography—electrical  field  enhancement  §  Template  Stripping—deposit  and  peel  §  Step  and  repeat  /  Large  area  processing  § Wafer-­‐scale  /  Roll-­‐to-­‐roll  §  2D-­‐2.5D  nanostructures,  nanoarrays  

Varying  Porosity  Woodpile  (Serial)  

S.  Che

n,  UC-­‐San  Diego  

FuncIonal  Structures  (Parallel)  

S.  Das,  G

eorgia  Tech  

Fractal  Antenna    (S4  nanoimprinIng)  

N.  Fang,  M

IT  

X.  Xu,  Purdu

e  

Hole  Array    (OpIcal  Nanolithography)  

S-­‐H.  Oh,  M

inne

sota  

Bull’s  Eye  GraIng  (Template  Stripping)  

ONR Basic Research in Nanomanufacturing

17  

High-­‐rate  Nanomanufacturing  §  Nanoprin3ng,  Nanoimprin3ng,  Nanocoa3ng  

§  Con@nuous,  web-­‐based,  roll-­‐to-­‐roll  §  Func@onal  and  mul@-­‐func@onal  systems  §  Membrane  electrode  assembly  §  Directed  assembly  of  func3onal  materials  §  System-­‐on-­‐film  

Roll-­‐to-­‐Roll  

Wireless  Conformal  BMI  

Digital signal processing

Memory

Electrode

Amp ADC

Large area MxN sensor array

Battery

CPU and wireless

transmitter (silicon chip)

Power management

+

-

Flexible electronics (this work)

Silicon electronics (conventional)

control

Existing EEG system Proposed EEG system

Electrode sheetFlexible electronics

...... ...

Circuit,  Device  Layout  

D  Frisb

ie,  U

Minn  

Assembly  Using  MagneIc  Fields  

Hybrid  Photovoltaics  

C.  Osuji,  Yale  

Industry/DOD Perspective

§  Harvest  and  foster  most  appropriate  technologies  available  to  meet  current  and  future  needs  of  customer  (e.g.,  DOD)  § Not  newest,  not  most  interes3ng,  …  most  appropriate  §  Technology  inser3on  needs  to  be  compelling  

§  View  advanced  manufacturing  as  enabling  technology  to  solve  problems  (e.g.,  parts-­‐on-­‐demand,  de-­‐icing)  

§ Need  R&D  to  overcoming  barriers  to  tech  transfer  and  commercializa@on  

§ Need  a  viable  manufacturing  base  

18  How can universities contribute?

Summary

Advanced  Manufacturing  §  Use  innova3ve  technologies  for  rapid  product  realiza3on,  customiza3on,  

produc3vity,  affordability  §  Challenge:  Transi@oning  from  research  to  prototype  to  market  

19  Plenty of Opportunities for Research and Education

ONR  Manufacturing  Science  Program  §  Addi@ve  Manufacturing—Disrup@ve  Technology  §  New  way  of  designing  and  making  things  §  Challenges:  Develop  reliable  systems,  explore  novel  structures  

Industry/DOD  Perspec@ve  §  Technology  inser@on  needs  to  be  compelling  §  Overcome  tech  transfer  and  commercializa3on  barriers