Adaptive Storytelling Through User storytelling... · Adaptive Storytelling Through User Understanding…

Download Adaptive Storytelling Through User storytelling... · Adaptive Storytelling Through User Understanding…

Post on 07-Sep-2018




0 download

Embed Size (px)


<ul><li><p>Adaptive Storytelling Through User Understanding</p><p>Michael Garber-BarronCognitive Science Department</p><p>Rensselaer Polytechnic</p><p>Mei SiCognitive Science Department</p><p>Rensselaer Polytechnic</p><p>Abstract</p><p>Storytelling, when happening face to face, is a highlyinteractive process. A good storyteller attracts the au-dience by continuously observing their responses andadjusting the storytelling accordingly. The goal of thisproject is to simulate this process in digital storytellers.We created an automatic storytelling system that peri-odically estimates the users preferences and adapts thecontent in the subsequent storytelling by balancing nov-elty and topic consistency. We have performed an em-pirical evaluation on the effectiveness of our approach.The results indicate that gender and age play impor-tant roles in affecting ones subjective experience. Foryounger subjects, stories with mixed amount of noveltyand topic consistency are more preferred while for oldersubjects, larger amounts of variation are preferred. Ad-ditionally, in general, women enjoyed the stories morethan men.</p><p>IntroductionStorytelling is an integrated part of peoples lives. The artof storytelling has been studied since the time of Aristotle.With the rapid development of technologies, more media areavailable for telling stories, e.g. videos, audio books and an-imated books. However, a problem with non-interactive me-dia is that they cut off the feedback loop between the audi-ence and the storyteller, which is an important component inany performing art. Though the audience cannot affect whathappens in the story, storytelling when happening face toface is a highly interactive process. Good storytellers delib-erately try to understand their audiences interests and adjustthe amount of details or the types of information they pro-vide to the audience.</p><p>In this work, we are aiming to simulate human story-telling behaviors in a digital storyteller. More specifically,we want to be able to estimate the users interests basedon their questions and comments, and adapt the subse-quent storytelling to the estimated user interests. Reexam-ining familiar and related material can develop and deepena listeners preexisting interests (Hidi and Renninger 2006;Arnone et al. 2011). On the other hand, new content canattract a user, leading them to explore different content</p><p>Copyright c 2013, Association for the Advancement of ArtificialIntelligence ( All rights reserved.</p><p>which can develop alternate interests (Loewenstein 1994),and ultimately make the user feel more immersed and en-gaged (Wade 1992). In this work, we try to balance novelcontent with the listeners previous interests when present-ing the story.</p><p>Empirical evaluations have been conducted on the effec-tiveness of engaging the user using our digital storyteller.The results indicate that gender and age play importantroles in affecting ones subjective experience; for youngersubjects, stories with mixed amount of novelty and topicconsistency are more preferred while for older subjects,larger amounts of variation are preferred; and the stories areviewed as more enjoyable for women than for men.</p><p>Related WorkDigital Storytelling SystemsThere is a large body of work in the area of user model-ing and interactive narratives in which the user plays a rolein the story and interact with other characters controlledby an AI system (Mateas and Stern 2003; Si, Marsella,and Pynadath 2009; El-Nasr 2007; Pizzi et al. 2007; Lee,Mott, and Lester 2010; Riedl, Saretto, and Young 2003;Thue et al. 2007; Rowe et al. 2010; Nelson and Mateas 2005;Weyhrauch 1997; Sharma et al. 2010). This work is towardsa different direction. The user is a listener of a story and hasno agency in the story world. Instead of taking a specific rolein a story, the users interest may be very different from thecharacters interests and may span across several characters.</p><p>There are several interesting works along the directionof dynamically telling a story based on the users feed-backs. The Papous system (Silva, Raimundo, and Paiva2003) proposes to adapt storytelling based on the listenersemotional experiences. The Virtual Storyteller (Theune etal. 2003) uses autonomous agents to interact with eachother and present a story to the audience. The interactionis steered by the positive or negative feedback from the au-dience members. Similar to Papous, the storybook system(SSAU) (Tanenbaum and Tomizu 2008) explored adaptingstorytelling to the users mood. Different from all other sys-tems, instead of adjusting the content to be presented to theuser, SSAU adjusts the audio and visual presentation, suchas darker lighting to signify a more melancholic environ-ment.</p><p>In IRST (Nakasone, Prendinger, and Ishizuka 2009), the</p><p>Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment</p><p>128</p></li><li><p>story is developed around the notion of interest. A fixed storyis presented to the user, but optional information can be pre-sented to add details about characters or events. As the userviews the scenes they can explicitly demonstrate their inter-est through an adjustable slider, which is used to indicatewhich characters interest the user.</p><p>Our work is inspired by IRST. We also try to adapt astory around the interests and preferences of the user. In thiswork, we go further by trying to balance between provid-ing the user more material along the lines of where he/shehas already shown interest and presenting materials that canpotentially trigger new interest from the user. In addition,we also developed algorithms for automatically inferring theusers interest from his/her questions and comments.</p><p>Curiosity and Interest of the AudienceFrom a psychological perspective, curiosity have beenviewed purely in terms of a need for environmental varia-tion, and novel stimuli (Loewenstein 1994). This later ex-tended to include a more directed view in that the inter-est and curiosity of an individual can be comprised of adesire for particular knowledge, or information (Berlyne1954). In general, there is an acceptance of associating in-terest in relation to exploring information that is novel, orcauses uncertainty (Reeve and Nix 1997; Loewenstein 1994;Day 1982).</p><p>More recently, Arnone et al. has proposed a functionaldefinition where interest and curiosity are viewed as me-diating factors towards the development of user engage-ment (Arnone et al. 2011). As our preference for particu-lar content develops, we examine related material and in-formation pertaining to those interests. Certain content thatinitially sparks the users curiosity can be further exploredleading to a deeper sense of interest (Hidi and Renninger2006). This in turn can lead to a greater degree of immer-sion and engagement with the content. In contrast, failing toeffectively address the users interests may lead to a sense ofwithdrawal and boredom (Arnone et al. 2011).</p><p>Example DomainOur example domain is a Chinese fantasy story ThePainted Skin (Sung-Ling 1916). The story starts as a youngman Wang meets an attractive young lady on the road.She was actually a demon, and she approached young menlike Wang in order to obtain energy from them. Wang willeventually die when his energy is drained. However, Wangdid not know this, and quite enjoyed the demons companyuntil one day he met a priest on the street who warned himabout the demon. The story continues with the demon acci-dentally revealing her true identity to Wang, killing Wang,and the priest helping Wangs family to defeat the demonand resurrect Wang.</p><p>We created two versions of the story. One is a 3D inter-active environment created in the Unity game engine. Theother is a text version with associated pictures. For the pur-pose of conducting our evaluation as an online survey, thetext version was utilized. In both representations, as thestory progresses, the user selects various opinionated state-</p><p>Figure 1: User Interface for Evaluation</p><p>ments to direct towards the storyteller. A snapshot of how wepresent the story and the users options is shown in Figure 1.</p><p>Automated Storytelling SystemWe want to engage the user by letting him/her hearing moreabout the type of content theyve already shown interest to-wards as well as to discover new interests. To realize thisgoal, our system is comprised of two components: an inter-est profiling module that is used to infer what aspects of thestory interest the user and an event selection module whichtells the story. The event selection module determines thecontent to present to the user after taking into account his/herinterests and the progression of the story.</p><p>Story RepresentationWe represent a story as a set of connected events. Eachevent is either a phyical event that progresses the storyor an informational event that describes the charactersbackground, beliefs, or motivations. Both kinds of eventsare mapped to a line of text that is displayed or spokenby the narrator. Similar to other interactive narrative workthat use a graph of plot-points (Nelson and Mateas 2005;Weyhrauch 1997), to ensure that the story can only pro-gresses in a logical and coherent manner, events are mod-eled with preconditions, which are defined as a combinationof events that should or should not have already happenedin the story. Further, while both physical and informationalevents are treated algorithmically the same, in the case ofphysical events, they are structured to progress in the samerelative order. In contrast, informational events can appearvariably and optionally in terms of presentation. For exam-</p><p>129</p></li><li><p>ple, in our story, both the physical event of Wang meetingthe demon and his meeting of the priest will always occurin the story, and in that order of occurrence. However, an in-formational event such as Wang discussing his attitude aboutthe demon may optionally occur, but, it can only appear afterWangs meeting with the demon.</p><p>For enabling our system to understand the progression ofthe story and the users interests, the events described by thenarrator and the statements the user can say to the narratorare tagged with labels. For example, the event Wang hopedthat the priest could find some way of protecting his fam-ily is labeled with [Wife, Fear, Love, Wang]. The labels aredetermined by the designer of the interactive story. For mod-eling the Painted Skin story, twenty-four labels were used.</p><p>Interest ProfilesIn our system, the users interests are represented as a vec-tor of interest profiles. Each profile is a distinct represen-tation of the users inferred interest towards the various la-bels the designer used for modeling the story. More specifi-cally, each profile includes a vector of values that specify theusers inferred interest towards each of the labels, for exam-ple: [Wife: 0.4, Fear: 0.3, Love: 0.2, Wang: 0.1].</p><p>A profile can be thought of as a distribution of the usersdisposition towards the labels and the associated events. Theobjective of developing multiple profiles is to distinguish be-tween possible focuses of interest based on limited input.For example, as the story is progressing, the user has demon-strated a high preference towards both content labeled withLove and Fear. However, the user has not shown an in-terest towards contents that contain both labels. To accountfor this difference, we need at least two different profiles.One profile has a large preference value for Love, and theother has a large preference value for Fear. Then, when thesystem is trying to determine new content to present, eventswith the dual labels of Love and Fear will be consideredless interesting to the user over events that only contain oneof the labels. The more profiles there are, the more fine dis-tinctions the system can make about the users interests. Ofcourse, this brings up the question of the necessary numberof different profiles. Our proposed algorithms for event se-lection and profile update will operate in the same fashion aslong as there is more than one profile. The exact number ofprofiles is determined by the designer. For a short story likethis, we set the number as two.</p><p>The initial values of the labels in each profile can eitherbe set by the designer or by default configured randomly,which indicates that the system has no prior knowledge ofthe users interests. These profiles are updated as the usermakes choices in the storytelling process, and the systemgets additional information about the users preferences. Themore the user interacts with the system, the more likely theprofiles will converge and reflect the users true interests.</p><p>As the user selects statements, the system calculates con-fidence/preference values associated with each of the userprofiles. These values indicate how closely each profile isrepresentative of the users interests so far. Similar to thevalues of the labels in each profile, the initial preference val-</p><p>ues can either be randomly assigned or set by the designer.These values are adjusted as the user makes more choices.These preference values determine the impact that each pro-file will have during the Event Selection.Profile Update ProcedureThe profiles are updated as the story progresses based onthe choices of the user. When the user selects a statementit is compared to each profile, and used to update the mostsimilar profile, which is determined by comparing the la-bels of the statement with the label values in each profile.Specifically, the Euclidean distance between the two profilearrays are used, and the profile with the smallest distanceto the statement is selected as the most similar profile. Thescore of this profile is then incremented to indicate that thesystem views the profile as relatively more representative ofthe users interests. After this, the label values within thisprofile are updated by calculating the average occurrence ofeach label relative to the number of times the profile has beenchosen by the system (see (Garber-Barron and Si 2012) fordetails). This way, labels that are persistently chosen are val-ued more highly.Event SelectionAlgorithm 1 details how the system selects the next infor-mational or physical event to be presented to the user. Anoverall score is generated for each event that can immedi-ately proceed (judged by their preconditions) in the story.These scores are estimates for how the events will interestthe user immediately, as well as lead to future content andevents that will continue to engage the user.</p><p>In order to generate these scores and determine whichevent to present to the user, Algorithm 1 is applied to deter-mine what to select. The scores for each event are calculatedby using a weighted sum of the users inferred preferencetowards each interest profile along with the profile scoresand consistency values the system had generated in Algo-rithm 2 (see Algorithm 1, Line 6 and Line 8) which considerboth the topics novelty and consistency.</p><p>Once a score for each event is calculated, the systemchooses the event with the hig...</p></li></ul>