accelerating structures:

37
C L I C C L I C CLIC-ACE, 26 May 2009 Alexej Grudiev, Accelerating structures. Accelerating structures: 3 TeV and 500 GeV CLIC designs, HOM damping and technology alternatives 26.05.2009 Alexej Grudiev

Upload: tate-battle

Post on 02-Jan-2016

36 views

Category:

Documents


0 download

DESCRIPTION

Accelerating structures: 3 TeV and 500 GeV CLIC designs, HOM damping and technology alternatives. 26.05.2009 Alexej Grudiev. 3 TeV CLIC accelerating structure design 500 GeV CLIC accelerating structure design Alternative HOM damping Choke mode damping Damped Detuned Structure - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Accelerating structures: 3 TeV and 500 GeV CLIC designs,

HOM damping and technology alternatives

26.05.2009Alexej

Grudiev

Page 2: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Outline

•3 TeV CLIC accelerating structure design•500 GeV CLIC accelerating structure design•Alternative HOM damping•Choke mode damping•Damped Detuned Structure•Technology alternatives•Quadrant •Brazed Disk

–Single rounded cell–Double rounded cell

•Coupler alternatives•Mode launcher coupler•Electric coupler•Magnetic coupler with damping•Ridged waveguide damping for lower pulse surface heating

temperature rise

30’

Page 3: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

3 TeV CLIC accelerating structure design

Page 4: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

WDS cell geometry

Waveguide Damped Structure (WDS) 2 cells

• Minimize E-field

• Minimize H-field

• Provide good HOM damping

• Provide good vacuum pumping

Page 5: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Optimization constraints

Beam dynamics (BD) constraints based on the simulation of the main linac, BDS and beam-beam collision at the IP:

• N – bunch population depends on <a>/λ, Δa/<a>, f and <Ea> because of short-range wakes

• Ns – bunch separation depends on the long-range dipole wake and is determined by the condition:

Wt,2 · N / Ea= 10 V/pC/mm/m · 4x109 / 150 MV/m

RF breakdown and pulsed surface heating (rf) constraints:

• ΔTmax(Hsurfmax, tp) < 56 K

• Esurfmax < 260 MV/m

• Pin/Cin·(tpP)1/3 = 18 MW·ns1/3/mm

Page 6: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Optimizing Figure of Merit

Luminosity per linac input power:

N

L

EefNNEe

fNL

P

L b

cmrepbcm

repbb

l

1

Collision energy is constant

Figure of Merit (FoM = ηLbx/N)

in [a.u.] = [1e34/bx/m2•%/1e9]

Page 7: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Total cost model

Total cost = Investment cost + Electricity cost for 10 years

Ct = Ci + Ce

Ci = Excel{fr; Ep; tp; Ea ; Ls ; f ; Δφ} Repetition frequency; Pulse energy; Pulse length; Accelerating gradient; Structure length (couplers included); Operating frequency; rf phase advance per cell

Ce = (0.032 + 2.4/FoM)

Page 8: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Parameters of 3TeV structure CLIC_G

Structure CLIC_G

Frequency: f [GHz] 12

Average iris radius/wavelength: <a>/λ 0.11

Input/Output iris radii: a1,2 [mm] 3.15, 2.35

Input/Output iris thickness: d1,2 [mm] 1.67, 1.00

Group velocity: vg(1,2)/c [%] 1.66, 0.83

N. of reg. cells, str. length: Nc, l [mm] 24, 229

Bunch separation: Ns [rf cycles] 6

Luminosity per bunch X-ing: Lb× [m-2] 1.22×1034

Bunch population: N 3.72×109

Number of bunches in a train: Nb 312

Filling time, rise time: τf , τr [ns] 62.9, 22.4

Pulse length: τp [ns] 240.8

Input power: Pin [MW] 63.8

Pin/CtPp

1/3[MW/mm ns1/3] 18

Max. surface field: Esurfmax [MV/m] 245

Max. temperature rise: ΔTmax [K] 53

Efficiency: η [%] 27.7

Figure of merit: ηLb× /N [a.u.] 9.10 5 10 15 20 25

0

50

100

150

200

250

300

iris number

P [

MW

] (b

lack

), E

s (

gre

en),

Ea (

red

) [M

V/m

],

T [

K]

(blu

e),

Sc*5

0 [M

W/m

m2 ]

(mag

enta

)

Parameters of unloaded (deshed) and loaded (solid) structure

49.8 47.9

225

243

5.4

4.8

118128

63.8

29.7

Pinload = 63.8 MW, P

outload = 11.9 MW

Eff = 27.7 % tr = 22.4 ns, t

f = 62.9 ns, t

p = 240.8 ns

Parameters assuming coupler overhead

Page 9: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

CLIC_G versus X-band measurement data

0 2 4 6 8 10 12 14 1600.5

11.5

22.5

Structure Number

(Sc)

1/2

[a.u

.]

0 2 4 6 8 10 12 14 160

1

2

3

4

5

6

7

8

Structure Number

(f×

P/C

)1/2

[a.u

.]

0 2 4 6 8 10 12 14 16050

100

150

200

250

300

350

Structure Number

Surf

ace

Ele

ctri

c Fie

ld [

MV

/m]

Constraints @ {200ns, BDR=10-6 bpp/m} ~ {180ns, BDR=3x10-7 bpp/m}

Page 10: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

500 GeV CLIC accelerating structure design

Page 11: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Beam dynamics constraints at 500GeV and conservative emittance

Short range wake limits bunch charge

Long range wake amplitude on the second bunch limits

the bunch spacing:Wt

(2) * N / <Ea>

< 20 V/pC/m/mm * 4x109 / 150

MV/m10 V/pC/m/mm has been

used for 3TeV

Nominal parametersεx,y = 660nm, 20nmβx,y = 4mm, 0.09mm

Conservative parametersεx,y = 3μm, 40nm

βx,y = 8mm, 0.1mm

Page 12: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Other constraints

• RF constraints remains the same as for 3TeV:• P/C*tp

1/3 < 18 Wu(MW/mm*ns1/3)• Es

max < 260 MV/m• ΔTmax < 56 K• RF phase advance per cell: 120 or 150 degree

• No 3TeV constraints:• Structure length Ls more than 200 mm; • Pulse length tp is free• Bunch spacing Ns is free

• 3TeV constraints Ns = 6:1. Ls = 230 mm; tp = 242 ns2. Ls = 480 mm; tp = 242 ns3. Ls = 480 mm; tp = 483 ns

Page 13: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Figure of Merit

CLIC_G@3TeV: 9.1

N

L

EeP

L b

cml

1

Page 14: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

If repetition rate is limited to 50 Hz

2

1

3

Case 2 has been chosen:• As close as possible to 100 MV/m• Cost considerations which were

not included in the optimization• Beam current in injectors is only

~2 times higher than for 3 TeV• RF constraints for PETS are the

lowest

Page 15: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Parameters of the structures

Case 3TeV nominal 500GeV conservative

Structure CLIC_G CLIC_502

Average accelerating gradient: <Ea> [MV/m] 100 80

rf phase advance: ∆φ[o] 120 150

Average iris radius/wavelength: <a>/λ 0.11 0.145Input/Output iris radii: a1,2 [mm] 3.15, 2.35 3.97, 3.28Input/Output iris thickness: d1,2 [mm] 1.67, 1.00 2.08, 1.67Group velocity: vg

(1,2)/c [%] 1.66, 0.83 1.88, 1.13N. of reg. cells, str. length: Nc, l [mm] 24, 229 19, 229Bunch separation: Ns [rf cycles] 6 6Luminosity per bunch X-ing: Lb× [m-2] 1.22×1034 0.57×1034

Bunch population: N 3.72×109 6.8×109

Number of bunches in a train: Nb 312 354

Filling time, rise time: τf , τr [ns] 62.9, 22.4 50.3, 15.3

Pulse length: τp [ns] 240.8 242.1

Input power: Pin [MW] 63.8 74.2

Pin/CtPp

1/3[MW/mm ns1/3] 18 17

Max. surface field: Esurfmax [MV/m] 245 250

Max. temperature rise: ΔTmax [K] 53 56

Efficiency: η [%] 27.7 39.6

Figure of merit: ηLb× /N [a.u.] 9.1 3.3

Page 16: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Alternative HOM damping• Choke mode cavity• Damped Detuned Structure

Page 17: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Magnetic field enhancement in WDS

NDS WDS

Page 18: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

The Choke mode cavity

Shintake, 1992

Page 19: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Radial choke for 2π/3 cells

Electric field Magnetic field

Coax. choke Coax. choke

Radial choke Radial choke

heat

heat

Page 20: Accelerating structures:

4th CLIC Advisory Committee (CLIC-ACE), 26th - 28th May 2009 20

Alternative Wakefield Suppression Alternate method entails heavy detuning and moderate damping of a series of

interleaved structures (known as CLIC_DDS). This is a similar technique to that experimentally verified and successful employed for the NLC/GLC program.

Integration of Task 9.2 within NC WP 9 -anticipate test of CLIC_DDS on modules

Potential benefits include, reduced pulse temperature heating, ability to optimally locate loads, built-in beam and structure diagnostic (provides cell to cell alignment) via HOM radiation. Provides a fall-back solution too!

Initial studies encouraging. However, the challenge remains to achieve adequate damping at 0.5 ns intra-bunch spacing

Roger M. Jones, Vasim F. Khan

Page 21: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Technology alternativesQuadrant – set a side for the momentBrazed Disks

Single rounded cellDouble rounded cell

Page 22: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

WDS cell geometry

Waveguide Damped Structure (WDS) 2 cells

• Minimize E-field

• Minimize H-field

• Provide good HOM damping

• Provide good vacuum pumping

Page 23: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

TD24_vg1.8_disk as CLIC_G proto

Currently available technology is Single rounded brazed disks

Page 24: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

TD24_vg1.8_disk transverse wake

0 0.15 0.3 0.45 0.510

-1

100

101

102

103

s [m]

Wx [

V/p

C/m

m/m

]

CLIC-G

TD24-vg1.8-disk

Page 25: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Parameters of TD24_vg1.8_disk

0 5 10 15 20 250

50

100

150

200

250

300

iris number

P [

MW

] (b

lack

), E

s (

gre

en),

Ea (

red

) [M

V/m

],

T [

K]

(blu

e),

Sc*5

0 [M

W/m

m2 ]

(mag

enta

)

Parameters of unloaded (deshed) and loaded (solid) structure

59.4 57.0

228238

5.6

4.6

120 125

66.0

28.4

Pinload = 66.0 MW, P

outload = 11.4 MW

Eff = 26.5 % tr = 23.1 ns, t

f = 64.2 ns, t

p = 242.7 ns

Structure CLIC_G TD24

Frequency: f [GHz] 12 12

Av. iris radius/wavelength: <a>/λ 0.11 0.11

In/Output iris radii: a1,2 [mm] 3.15, 2.35 3.15, 2.35

In/Output iris thickness: d1,2 [mm] 1.67, 1.00 1.67, 1.00

Group velocity: vg(1,2)/c [%] 1.66, 0.83 1.62, 0.81

N. of reg. cells, str. length: Nc, l [mm] 24, 229 24, 229

Bunch separation: Ns [rf cycles] 6 6

Lumi. per bunch X-ing: Lb× [m-2] 1.22×1034 1.22×1034

Bunch population: N 3.72×109 3.72×109

Number of bunches in a train: Nb 312 312

Filling time, rise time: τf , τr [ns] 62.9, 22.4 64.2, 23.1

Pulse length: τp [ns] 240.8 242.7

Input power: Pin [MW] 63.8 66.0

Pin/CtPp

1/3[MW/mm ns1/3] 18 18.6

Scmax [MW/mm2] 5.4 5.6

Max. surface field: Esurfmax [MV/m] 245 240

Max. temperature rise: ΔTmax [K] 53 62

Efficiency: η [%] 27.7 26.5

Figure of merit: ηLb× /N [a.u.] 9.1 8.7

Parameters assuming coupler overhead

Page 26: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Double rounded disk design

Double rounded disk design is under way

Page 27: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

30’+ slides

Page 28: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Coupler alternativesMode launcher couplerElectric couplerMagnetic coupler with damping

Page 29: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Coupler design

Mode launcher Electric field coupler Magnetic field coupler

Compact coupler

Page 30: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

CLIC_G + compact coupler

0 5 10 15 20 250

50

100

150

200

250

300

iris number

P [

MW

] (b

lack

), E

s (

gre

en),

Ea (

red

) [M

V/m

],

T [

K]

(blu

e),

Sc*5

0 [M

W/m

m2 ]

(mag

enta

)

Parameters of unloaded (deshed) and loaded (solid) structure

49.8 47.9

225

243

5.4

4.8

118128

63.8

29.7

Pinload = 63.8 MW, P

outload = 11.9 MW

Eff = 27.7 % tr = 22.4 ns, t

f = 62.9 ns, t

p = 240.8 ns

CLIC_G (electric coupler)

0 5 10 15 20 250

50

100

150

200

250

300

iris number

P [

MW

] (b

lack

), E

s (

gre

en),

Ea (

red

) [M

V/m

],

T [

K]

(blu

e),

Sc*5

0 [M

W/m

m2 ]

(mag

enta

)

Parameters of unloaded (deshed) and loaded (solid) structure

46.7 43.9

217

233

5.1

4.4

114123

59.8

27.2

Pinload = 59.8 MW, P

outload = 10.0 MW

Eff = 28.8 % tr = 22.4 ns, t

f = 64.7 ns, t

p = 242.6 ns

CLIC_GCC (magnetic coupler)

Prototype is under design

Page 31: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Ridged waveguide damping for lower pulse surface heating temperature rise

Page 32: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Ridged waveguide for HOM damping

Rectangular waveguide

Double-ridged waveguide

Ridged waveguide

CLIC_GLDT (low ΔT)idw = 7.5 mmadw = 9.25 mm

idw

adw

Page 33: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

EM field configuration in RWDS

Electromagnetic field configuration on the surface of a Ridged waveguide damped structure (RWDS) cell

Electric field Magnetic field Sc

Page 34: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Structures with ridged waveguide damping

0 5 10 15 20 250

50

100

150

200

250

300

iris number

P [

MW

] (b

lack

), E

s (

gre

en),

Ea (

red

) [M

V/m

],

T [

K]

(blu

e),

Sc*5

0 [M

W/m

m2 ]

(mag

enta

)

Parameters of unloaded (deshed) and loaded (solid) structure

38.332.4

220230

5.2

4.3

116121

61.3

26.7

Pinload = 61.3 MW, P

outload = 9.9 MW

Eff = 28.5 % tr = 21.6 ns, t

f = 63.0 ns, t

p = 242.1 ns

CLIC_GLDT : a = 3.15 – 2.35 mm CLIC_K : a = 3.3 – 2.35 mm

0 5 10 15 20 250

50

100

150

200

250

300

iris number

P [

MW

] (b

lack

), E

s (

gre

en),

Ea (

red

) [M

V/m

],

T [

K]

(blu

e),

Sc*5

0 [M

W/m

m2 ]

(mag

enta

)

Parameters of unloaded (deshed) and loaded (solid) structure

34.3 36.5

212

2445.04.8

108

128

64.6

29.9

Pinload = 64.6 MW, P

outload = 11.5 MW

Eff = 29.5 % tr = 21.6 ns, t

f = 58.4 ns, t

p = 242.5 ns

Page 35: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Wake field of proposed structures

0 0.15 0.3 0.4510

-1

100

101

102

103

s [m]

Wx [

V/p

C/m

m/m

]

CLIC-G

CLIC-G non-roundedCLIC-GLDT

CLIC-K

Page 36: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Transverse impedance

0 10 20 30 40 50 600

2

4

6

8

10

12

14

f [GHz]

Z x [kO

hm/m

/mm

]

CLIC-G

CLIC-G non-roundedCLIC-GLDT

CLIC-K

Page 37: Accelerating structures:

C L I CC L I C

CLIC-ACE, 26 May 2009Alexej Grudiev, Accelerating structures.

Parameters of the structures

Structure CLIC_G CLIC_GCCCLIC_GCC non-rounded

CLIC_GLDT CLIC_K

Frequency: f [GHz] 12 12 12 12 12

Average iris radius/wavelength: <a>/λ 0.11 0.11 0.11 0.11 0.113

Input/Output iris radii: a1,2 [mm] 3.15, 2.35 3.15, 2.35 3.15, 2.35 3.15, 2.35 3.3, 2.35

Input/Output iris thickness: d1,2 [mm] 1.67, 1.00 1.67, 1.00 1.67, 1.00 1.67, 1.00 1.67, 1.00

Group velocity: vg(1,2)/c [%] 1.66, 0.83 1.66, 0.83 1.67, 0.84 1.68, 0.86 1.97, 0.86

N. of reg. cells, str. length: Nc, l [mm] 24, 229 25, 225 25, 225 25, 225 25, 225

Bunch separation: Ns [rf cycles] 6 6 6 6 6

Luminosity per bunch X-ing: Lb× [m-2] 1.22×1034 1.22×1034 1.22×1034 1.22×1034 1.28×1034

Bunch population: N 3.72×109 3.72×109 3.72×109 3.72×109 3.94×109

Number of bunches in a train: Nb 312 312 312 316 326

Filling time, rise time: τf , τr [ns] 62.9, 22.4 64.7, 22.4 63.8, 22.0 63.0, 21.6 58.4, 21.6

Pulse length: τp [ns] 240.8 242.6 241.4 242.1 242.5

Input power: Pin [MW] 63.8 59.8 61.5 61.3 64.6 (65.2)

Pin/CtPp

1/3[MW/mm ns1/3] 17.9 16.8 17.3 17.3 17.5

Scmax [MW/mm2] 5.4 5.1 5.3 5.2 5.1

Max. surface field: Esurfmax [MV/m] 245 233 230 230 244

Max. temperature rise: ΔTmax [K] 53 48 45 39 37

Efficiency: η [%] 27.7 28.8 28.1 28.5 29.5 (29.2)

Figure of merit: ηLb× /N [a.u.] 9.1 9.4 9.3 9.4 9.6

(95%

of

Cu c

onduct

ivit

y)