abutment well

74
Copy of Abutment_well Design of Abutment Well Stability of Well Foundation and steining stresses have been checked for the following four cases:- (1) Normal LWL case with Maximum CWLL (2) Normal HFL case with Minimum CWLL (3) Seismic LWL case with Maximum CWLL (4) Seismic HFL case with Minimum CWLL Design Levels Road Formation Level = 81.190 m Total Length of Bridge = 122.350 m Soffit Level = 78.513 m Abutment Cap Bottom Level = 77.313 m Abutment Cap Top Level = 78.21 m Well Cap Top Level = 75.990 m High Flood Level (HFL) = 75.580 m Well Cap Bottom Level = 73.990 m LBL = 69.582 m Maximum Scour Level = 67.013 m Low Water Level (LWL) = 70.000 m Raised Scour Level = 67.870 m Foundation Level = 52.000 m Well Kerb Top Level = 53.700 m RL of sand fill in abutment well = 67.01 m Dimensions of Different Component Length of Abutment cap = 10.25 m Width of Abutment cap(Uniform portion) 1.350 m Length of Abutment = 10.25 m Width of Abutment = 1.000 m Thickness of Dirt Wall = 0.300 m Thickness of Cantilever Return = 0.300 m Length of Cantilever Return = 3.500 m Cantilever at tip of Return wall = 0.300 m Length of Approach Slab = 3.500 m Expansion Gap at Either end = 0.050 m Outer Diameter of Well = 6.500 m Inner Diameter of Well Foundation = 4.500 m Thickness of Intermediate Plug = 0.500 m Height of Bottom Sump = 1.000 m Outer projection at well kerb top in either direction = 0.075 m Inner projection at Foundation Level = 0.150 m Thickness of plug above well kerb top level = 0.300 m Thickness of uniform dia. below well kerb top = 0.300 m Projection of well on Earth side(From abut shaft face) = 3.500 m Projection of well on River side(From abut shaft face) = 2.000 m Width of corbel in abutment cap = 0.350 m Uniform height of corbel in abutment cap = 0.600 m Varying height of corbel in abutment cap = 0.350 m Loads and Forces from Superstructure C/C of end span = 43.425 m Dead Load Reaction = 3816.7 kN Height of crash barrier = 0.850 m SIDL Reaction = 932.1 kN Projection from C/Lof bearing on abutment side = 0.600 m FPLL Reaction = 61.6 kN Projection from C/L of bearing on Pier side = 1.025 m Max Depth of Superstructure = 2.500 m for friction(POT/PTFE) = 0.050 Thickness of wearing coat = 0.065 m Base width of Superstructure = 5.000 m Min. thickening at bottom at support = 0.050 m Thickening at mid section of superstructure = 0.113 m Width of cross girder = 1.200 m CWLL Reaction (Without Impact) Max. Reaction at abutment Max. Reaction at other end Due to 70 R Wheeled = 895.82 kN Due to 70 R Wheeled = 104.18 kN + + Due to class A 1 Lane = 0.00 kN Due to class A 1 Lane = 0.00 kN Min. Reaction at abutment Min. Reaction at other end Due to 70 R Wheeled = 166.98 kN Due to 70 R Wheeled = 833.02 kN + + Due to class A 1 Lane = 0.00 kN Due to class A 1 Lane = 0.00 kN Impact Factor = 1.09 CWLL Reaction (Used at Abutment Shaft Bottom) Impacr Factor used for moment at abutment shaft bottom = 1.03 Max. Reaction at abutment Min. Reaction at abutment Due to 70 R Wheeled = 918.628 kN Due to 70 R Wheeled = 171.233 kN + + Due to class A 1 Lane = 0.000 kN Due to class A 1 Lane = 0.000 kN Transverse eccy. in transverse direction( safety kerb side) Due to 70 R wheeled = 1.2800 m Due to SIDL = 0.4500 m + Due to FPLL(one side only ,if loaded) = 4.2500 m Due to class A 1 Lane = 0.000 m Unit wts. of Different Component Grade of conc. of superstructure = M 40.000 Dry wt. of conc. = 24.000 kN/m^3 Grade of conc. of Substructure = M 35.000 Grade of steel = 200.000 MPa Dry unit weight of soil = 18.000 kN/m^3 R value for M35 conc. = 1.844 MPa Submerged unit weight of soil = 10.000 kN/m^3 j value for M35 conc. = 0.878 Seismic Coefficient : Zone-III Horizontal seismic coefficient = 0.048 Vertical seismic coefficient = 0.024 45.1 x 2 + 32.1

Upload: ambrish

Post on 12-Nov-2014

434 views

Category:

Documents


12 download

DESCRIPTION

Design of well foundation for bridge Abutments

TRANSCRIPT

Page 1: Abutment Well

Copy of Abutment_well

Design of Abutment Well

Stability of Well Foundation and steining stresses have been checked for the following four cases:-

(1) Normal LWL case with Maximum CWLL(2) Normal HFL case with Minimum CWLL(3) Seismic LWL case with Maximum CWLL(4) Seismic HFL case with Minimum CWLL

Design Levels

Road Formation Level = 81.190 m Total Length of Bridge = 122.350 mSoffit Level = 78.513 m Abutment Cap Bottom Level = 77.313 mAbutment Cap Top Level = 78.21 m Well Cap Top Level = 75.990 mHigh Flood Level (HFL) = 75.580 m Well Cap Bottom Level = 73.990 mLBL = 69.582 m Maximum Scour Level = 67.013 mLow Water Level (LWL) = 70.000 m Raised Scour Level = 67.870 mFoundation Level = 52.000 m Well Kerb Top Level = 53.700 mRL of sand fill in abutment well = 67.01 m

Dimensions of Different Component

Length of Abutment cap = 10.25 m Width of Abutment cap(Uniform portion) 1.350 mLength of Abutment = 10.25 m Width of Abutment = 1.000 mThickness of Dirt Wall = 0.300 m Thickness of Cantilever Return = 0.300 mLength of Cantilever Return = 3.500 m Cantilever at tip of Return wall = 0.300 mLength of Approach Slab = 3.500 m Expansion Gap at Either end = 0.050 mOuter Diameter of Well = 6.500 m Inner Diameter of Well Foundation = 4.500 mThickness of Intermediate Plug = 0.500 m Height of Bottom Sump = 1.000 mOuter projection at well kerb top in either direction = 0.075 m Inner projection at Foundation Level = 0.150 mThickness of plug above well kerb top level = 0.300 m Thickness of uniform dia. below well kerb top = 0.300 m

Projection of well on Earth side(From abut shaft face) = 3.500 mProjection of well on River side(From abut shaft face) = 2.000 m

Width of corbel in abutment cap = 0.350 mUniform height of corbel in abutment cap = 0.600 mVarying height of corbel in abutment cap = 0.350 m

Loads and Forces from Superstructure

C/C of end span = 43.425 m Dead Load Reaction = 3816.7 kN Height of crash barrier = 0.850 mSIDL Reaction = 932.1 kN Projection from C/Lof bearing on abutment side = 0.600 mFPLL Reaction = 61.6 kN Projection from C/L of bearing on Pier side = 1.025 mMax Depth of Superstructure = 2.500 m for friction(POT/PTFE) = 0.050

Thickness of wearing coat = 0.065 mBase width of Superstructure = 5.000 mMin. thickening at bottom at support = 0.050 mThickening at mid section of superstructure = 0.113 mWidth of cross girder = 1.200 m

CWLL Reaction (Without Impact)

Max. Reaction at abutment Max. Reaction at other endDue to 70 R Wheeled = 895.82 kN Due to 70 R Wheeled = 104.18 kN

+ +Due to class A 1 Lane = 0.00 kN Due to class A 1 Lane = 0.00 kN

Min. Reaction at abutment Min. Reaction at other endDue to 70 R Wheeled = 166.98 kN Due to 70 R Wheeled = 833.02 kN

+ +Due to class A 1 Lane = 0.00 kN Due to class A 1 Lane = 0.00 kN

Impact Factor = 1.09

CWLL Reaction (Used at Abutment Shaft Bottom)

Impacr Factor used for moment at abutment shaft bottom = 1.03Max. Reaction at abutment Min. Reaction at abutmentDue to 70 R Wheeled = 918.628 kN Due to 70 R Wheeled = 171.233 kN

+ +Due to class A 1 Lane = 0.000 kN Due to class A 1 Lane = 0.000 kN

Transverse eccy. in transverse direction( safety kerb side)

Due to 70 R wheeled = 1.2800 m Due to SIDL = 0.4500 m+ Due to FPLL(one side only ,if loaded) = 4.2500 m

Due to class A 1 Lane = 0.000 m

Unit wts. of Different Component

Grade of conc. of superstructure = M 40.000 Dry wt. of conc. = 24.000 kN/m^3Grade of conc. of Substructure = M 35.000 Grade of steel = 200.000 MPaDry unit weight of soil = 18.000 kN/m^3 R value for M35 conc. = 1.844 MPaSubmerged unit weight of soil = 10.000 kN/m^3 j value for M35 conc. = 0.878

Seismic Coefficient :

Zone-III

Horizontal seismic coefficient = 0.048 Vertical seismic coefficient = 0.024

45.1 x 2 + 32.1

Page 2: Abutment Well

Copy of Abutment_well

0.050 m (At Either End)

3.500 m 0.300Deck Level 81.190 m

80.890 m Level

Soffit Level 78.513 m

Abutment Cap Top 78.213 m

Abutment Cap Bottom Level 77.31 m

1.350 m

HFL 75.580 m

0.950 76.492

76.0 m Well Cap Top Level

3.500 m 1.000 m 2.000 m

74.0 m Well Cap Bottom Level

6.500 m

Water Fill

cL of brg.

1.200 m

67.0 m MSL 1.000 Intermediate Plug in M 25 Concrete

Sand Fill

Well Kerb Top Level 53.700 m

Foundation Level 52.000 m

Height of Bottom sump

cL of well

Page 3: Abutment Well

Copy of Abutment_well

1.000 m

3.250 m 3.250 m10.250

m

6.500 m dia of well

Plan at well cap top Level

Dimensions of Substructure Components

(i) Dirt Wall

Length = 10.250 m Thickness = 0.300 m Height = 2.977 m

(ii) Cantilever Returns

Depth at Free End = 0.300 m Depth at Root = 2.633 m Thickness = 0.300 mLength = 3.500 m

(iii) Abutment Cap

Length = 10.250 m Width = 1.350 m Thickness = 0.900 m

(iv) Abutment ShaftLength = 10.250 m Width = 1.000 m Height = 1.323 m

(v) Well Cap

Radius = 3.250 m Thickness = 2.000 mMajor axis = 5.125 m Minor axis = 2.000 m

(vi) Intermediate PlugDiameter = 4.500 m Thickness = 0.500 m Bottom Level = 67.013 m

(vii) WellOuter Dia. = 6.500 m Steining Thickness = 1.000 m Inner Dia. = 4.500 m

(viii) Bottom Plug Dia. at top = 4.500 m Thickness of plug above well kerb top level = 0.300 mDia. at bottom = 6.350 m Thickness of uniform dia. below well kerb top = 0.300 mDepth of sump = 1.000 m Height of bottom plug of tapering portion = 1.400 m

(ix) Well Kerb

Outer dia = 6.650 m Thickness at Bottom = 0.150 moffset at Top = 0.075 m Height = 1.700 m

(x) Back fill Parameters

Angle of Internal Friction = 30.000 degree d = 18.000 kN/m^3Cohesion c = 0.000 kN/m^2 sub = 10.000 kN/m^3

Computation of Volumes of Substructure ComponentsThickening of slab at bottom

Volume = 5.000 x 1.200 x 0.113 = 0.675 m^3

(i) Volume of Dirt Wall= 10.250 x 0.300 x 2.977 = 9.156 m^3

(ii) Volume of Return Walls

Uniform Portion = 2.000 x 0.300 x 3.500 x 0.300 = 0.630 m^3(Nos)

Tapered Portion = 2.000 x 0.500 x 2.333 x 3.500 x 0.300 = 2.450 m^3(Nos)

(iii) Volume of Abutment CapRectangular portion = 10.250 x 1.350 x 0.550 = 7.611 m^3

Uniform portion of corbel = 10.250 x 0.350 x 1.000 = 3.588 m^3

Triangular portion of corbel= 10.250 x 0.500 x 0.350 x 0.350 = 0.628 m^3

Page 4: Abutment Well

Copy of Abutment_well

(iv) Volume of Abutment Shaft

Above HFL

= 10.250 x 1.000 x 1.733 = 17.758 m^3

Below HFL

= 10.250 x 1.000 x -0.410 = -4.202 m^3

(v) Volume of Well Cap

Left rectangular portion = 10.250 x 3.500 x 2.000 = 71.750 m^3

C.G. of back Fill From Abutment Face = 3.500 / 2.000 = 3.500 = 1.750 m2.000

from the face of abutment on left sideRectangular portion = 10.250 x 1.000 x 2.000 = 20.500 m^3

Right elliptical portion = x 5.125 x 2.000 x 2.000 = 32.201 m^32.000

C.G. of Front Fill From Abutment Face = 4 R = 4.000 x 2.000 = 8.000 = 0.849 m 3.000 x 3.142 9.425

from the face of abutment on right side(vi) Volume of Intermediate Plug

= x 4.500 ^2 x 0.500 = 7.952 m^34.000

(vii) Volume of Well Steining upto RL 53.700 mArea = x ( 6.500 ^2 - 4.500 ^2 ) = 17.279 m^2

4.000

Volume = 17.279 x 20.290 = 350.59 m^3

(vii) Volume of Well Steining upto RL 62.901 mArea = x ( 6.500 ^2 - 4.500 ^2 ) = 17.279 m^2

4.000

Volume = 17.279 x 11.089 = 191.596 m^3

(vii) Volume of Well Steining upto RL 58.316 m

Volume = 17.279 x 15.674 = 270.83 m^3

(vii) Volume of Well Steining upto RL 61.997 m

Volume = 17.279 x 11.993 = 207.22 m^3

(vii) Volume of Well Steining upto RL 58.84 m

Volume = 17.279 x 15.149 = 261.76 m^3

(viii) Volume of Bottom Plug

(a) Uniform dia. Portion= x 4.500 ^2 x ( 0.300 + 0.300 ) = 9.543 m^3

4.000

(b) Flared Portion

Plan area at Top, A1 = x 4.500 ^2 = 15.90 m^24.000

Plan area at Bottom, A2 = x 6.350 ^2 = 31.67 m^24.000

Height h = = 1.400 m

Volume = h x ( A1 + A2 + A1.A2 ) = 32.674 m^33.000

Total Volume of Bottom Plug = 42.217 m^3

(ix) Well Curb

= x ( 6.650 ^2 x 1.700 -4.500 ^2 x 0.300 ) -32.674 = 21.599 m^34.000

(x) Volume of Backfill

Above HFL

Volume = 10.250 x 3.500 x 5.610 = 201.259 m^3

Below HFL

Volume = 10.250 x 3.500 x -0.410 = -14.709 m^3

(xi) Volume of Sandfill = x 4.500 ^2 x 13.013 = 206.96 m^3

4.000

(xii) Volume of Earth on Well CurbArea = x ( 6.650 ^2 - 6.500 ^2 ) = 1.549 m^2

4.000

Volume in Normal Case = 1.549 x 13.313 = 20.624 m^3

Volume in Seismic Case = 1.549 x 14.170 = 21.952 m^3

Page 5: Abutment Well

Copy of Abutment_well

(xiii) Volume of Sump in Bottom Plug

C

3.175 3.175A 1.000 B

D

Let the sump be a part of sphere of radius = R

then by the intersecting arcs AB and CD

(2R -1.000 ) x 1.000 = 3.175 x 3.175R = 5.540 m

Volume of sump = x h^2 (R-h/3) = 16.358 m^3

(XIV) Volume of Front Fill

Total Hori. Distance between free end (Cantilever Return) from Abutment Shaft edge(River Side) = 1.000 + 3.500 = 4.500 m

Height from Deck Level to the RL of starting of front pitching slope = 4.500 = 3.000 m1.500

RL of point from which front slope pitching starts = 81.125 -0.300 -3.000 = 77.825 m

RL of point for front pitching above the well cap edge (River side) = 77.825 -2.000 = 76.492 m1.500

RL of point for frontpitching above the well cap edge (River side) 1.888 m from face = 77.825 -1.888 = 76.567 m1.500

Average height of Front fill pitching = 77.825 -75.990 + 76.492 -75.9902.000

= 1.168 m

Average height of Front fill pitching = 77.825 -75.990 + 76.567 -75.9902.000

= 1.206 m

Major Semi Axis = ( 6.500 -2.000 ) x 2.000 = 3.000 m

Minor Semi Axis = 2.000 m

Area in Plan of Front Fill = x 5.125 x 2.000 x 0.500 = 16.101 m ^2

Volume of Front Fill on Well cap = 16.101 x 1.168 18.8 m ^3

C.G. of Front Fill From Abutment Face = 4 R = 4.000 x 2.000 = 8.000 = 0.849 m 3.000 x 3.142 9.425

from the face of abutment

Page 6: Abutment Well

Horizontal Seismic Force

Feq = Seismic forces to be resistedFeq = Ah x (Dead load + Appropriate Live load)Ah = horizontal seismic coefficient

= Z Sa2 g

Zone No. Zone factor Z = Zone factor V 0.36

IV 0.24I = Importance factor III 0.16

II 0.1Important bridges = 1.5Other bridges = 1.0

T = Fundamental period of the bridge member (in sec.)or horizontal vibrations.

= 2.0 D 1/2

1000F

D = appropriate dead load of the superstructure , and live load in KN

F =

DL SIDL FPLL

D = 7633.4 + 1864.2 + 123.2LL

= 9620.8 + 1000 = 10620.8 KNShear Rating

F = 3.8218 x 6 = 22.9308 KN

T = 2.0 x 10620.8 1/222930.8

= 1.361 sec

R = Response reduction factor = 2.5

For medium soil sitesSa = 2.5

g 1.36 /T

= 1.36 = 0.9991.361

Ah = 0.16 x 0.9992

2.51.5

Ah = 0.048

Seismic coefficient analysis

0.0 < T < 0.55

0.55 < T < 4.0

RI

Horizontal force in KN required to be applied at the center of mass of the superstructure for one mm horizontal deflection at the top of the pier/abutment along the considered direction of horizontal force.

No of bearings

Page 7: Abutment Well

Copy of Abutment_well

Live Load AnalysisClass A 2 Lane

Max CWLL Reaction at Abutment

68.000 68.000 68.000 68.000 114.000 114.000 27.000 27.000

3.000 3.000 3.000 4.300 1.100 3.200 1.200

0.600 43.425 m 1.025RA RB

Fixed end Free end

RA + RB = 554.000 kN

43.425 RB = 68.000 x 2.400 + 68.000 x 5.400 + 68.000 x 8.400

+ 114.000 x 12.700 + 114.000 x 13.800 + 27.000 x 17.000

+ 27.000 x 18.200 + -68.000 x 0.600

= 163.200 + 367.200 + 571.200 + 1447.80 + 1573.20 + 459.000 + 491.400 -40.800

RB = 115.883 kN

RA = 438.117 kN

Without impact

Max. reaction at Abutment for class A 1 Lane = 438.117 kNMin. reaction at Abutment for class A 1 Lane = 115.883 kN

Max. reaction at Abutment for class A 2 Lane = 876.23 kNMin. reaction at Abutment for class A 2 Lane = 231.765 kN

Page 8: Abutment Well

Copy of Abutment_well

70 R wheeled

Max CWLL Reaction at Abutment

170.000 170.000 170.000 170.000 120.000 120.000 80.000

1.370 3.050 1.370 2.130 1.520 3.960

0.600 1.025RA 43.425 m RB

RA + RB = 1000.00 kN

43.425 RB = 170.000 x 0.770 + 170.000 x 3.820 + 170.000 x 5.190

+ 120.000 x 7.320 + 120.000 x 8.840 + 80.000 x 12.800

-170.000 x 0.600

= 130.900 + 649.400 + 882.300 + 878.400 + 1060.80 + 1024.00 -102.000

RB = 104.175 kN

RA = 895.825 kN

Without impact

Max. reaction (70 R wheeled) = 895.825 kNMin. reaction (70 R wheeled) = 104.175 kN

Page 9: Abutment Well

Copy of Abutment_well

Class A 2 Lane

Min CWLL Reaction at Abutment

68.000 68.000 68.000 68.000 114.000 114.000 27.000 27.000

3.000 3.000 3.000 4.300 1.200 3.200 1.100

0.600 43.425 m 1.025RA RB

Fixed end Free end

RA + RB = 554.000 kN

43.425 RB = 68.000 x ( 25.650 + 28.650 + 31.650 + 34.650 )

+ 114.000 x ( 38.950 + 40.150 )

+ 27.000 x ( 43.350 + 44.450 )

= 8200.80 + 9017.40 + 2370.60

RB = 451.095 kN

RA = 102.905 kN

Without impact

Reaction at Abutment end for class A 1 Lane = 102.905 kNReaction at other end for class A 1 Lane = 451.095 kN

Reaction at Abutment end for class A 2 Lane = 205.810 kNReaction at other end for class A 2 Lane = 902.19 kN

Page 10: Abutment Well

Copy of Abutment_well

70 R wheeled

Min CWLL Reaction at Abutment

170.000 170.000 170.000 170.000 120.000 120.000 80.000

1.370 3.050 1.370 2.130 1.520 3.960

0.600 43.425 m RB1.025

RA + RB = 1000.00 kN

43.425 RB = 170.000 x ( 31.050 + 32.420 + 35.470 + 36.840 )

+ 120.000 x ( 38.970 + 40.490 ) + 80.000 x 44.450

= 23082.60 + 9535.20 + 3556.00

= 36173.80

RB = 833.018 kN

RA = 166.982 kN

Without impact

Reaction at Abutment end for (70 R Wheeled) = 166.982 kNReaction at other end for (70 R wheeled) = 833.018 kN

Page 11: Abutment Well

Copy of Abutment_well

Normal ..... Max. CWLL at abutment

Longitudinal Horizontal Breaking Force (HL) =

Braking force is considered 20 % of live load coming on the span for two lane as per cl. 214.2 of IRC :6.For third lane , 5% braking force will be considered.

Max. CWLL at abutment end Min. CWLL at other end

Fh due to 70 R Wheeled = 0.2 x ( 895.82 + 104.18 ) = 200 kN

Max. CWLL at abutment end Min. CWLL at other end

Fh due to class A = 0.05 x ( 0.00 + 0.00 ) = 0 kN(For 3rd Lane)

Total Fh = 200 + 0 = 200 kN

Longitudinal Horizontal Force At Bearing Level - For a simply supported span sitting on identical Elastomeric Bearings at each end and resting on unyielding supports.

Force At Each End = Fh / 2 + Vr . ltc

Vr = Shear Rating of the Elastomeric Bearing = 3821.800 N/mmltc = Movement of deck above Bearing, other than that due to applied forces.

Movement due to temprreture will be considered for contraction and as well as for expansion both.

Movement of superstructure Due to Temperatur = . L . t

Co-efficient of Expansion = 0.000012 / 0C(Refer IRC -6)

Variation in the temperature = oC (for moderate conditions)

Movement of superstructure due to temperature = 12.70 mm

Movement of superstructure Due to Creep = 8.79 mm

Movement of superstructure Due to Shrinkage = Strain due to Residual Shrinkage at 28 days x Span/2= 0.00019 x 21712.500 ( Refer IRC: 18)= 4.13 mm

Net expansion due to temp.,shrinkage & creep = -12.70 + 8.79 + 4.1 = 0.2 mm

Net contraction due to temp.,shrinkage & creep = 12.70 + 8.787 + 4.1 = 25.6 mm

No. of bearings

Force due to temp., shrinkage & creep in expansion case = 3 x 3821.8 x 0.2 = 2.4 kN1000

No. of bearings

Force due to temp.,shrinkage & creep in contraction case = 3 x 3821.8 x 25.6 = 293.7 kN1000

Fh/2 + Vr ltc in expansion case = 100 + 2.41 = 102.4 kN

Fh/2 + Vr ltc in contraction case = 100 + 293.68 = 393.7 kN

Governing Longitudnal Force at bearing level = 393.677 kN

Seismic ..... Max. CWLL at abutment

Seismic caseLongitudnal Horizontal Force (HL) =

Fh due to 70 R Wheeled = 0.200 x ( 447.91 + 52.09 ) = 100.000 kN(For first two lane)

0.100 x ( 0.00 + 0.00 ) = 0.000 kN

Fh in seismic case = 0.0480 x ( 7633.400 + 1864.20 + 123.2 ) = 461.416 kN

Total Fh in seismic case = 100.000 + 461.416 = 561.416 kN

Longitudinal Horizontal Force At Bearing Level - For a simply supported span sitting on identical Elastomeric Bearings at each end and resting on unyielding supports.

Force At Each End = Fh / 2 + Vr . ltc

Vr = Shear Rating of the Elastomeric Bearing = 3821.800 N/mmltc = Movement of deck above Bearing, other than that due to applied forces.

Movement due to temprreture will be considered for contraction and as well as for expansion both.

Net expansion due to temp., shrinkage and creep = 12.70 + 8.79 + 4.1 = 25.6 mm

Net contraction due to temp, shrinkage and creep = -12.70 + 8.79 + 4.1 = 0.2 mm

Force in expansion case = 3.000 x 3821.80 x 25.6 = 293.7 kN1000.00

Force in contraction case = 3.000 x 3821.80 x 0.2 = 2.4 kN1000.00

Fh/2 + Vr. ltc in expansion case = 280.71 + 293.677 = 574.4 kN

Fh/2 + Vr. ltc in contraction case = 280.71 + 2.41 = 283.1 kN

Governing Longitudnal force (Temp. rise case) = 574.38 kN

Governing Longitudnal force (Temp. fall case) = 283.12 kN

Page 12: Abutment Well

Copy of Abutment_well

Governing Longitudnal force = 574.38 kN

Page 13: Abutment Well

Copy of Abutment_well

Case 1 (Normal case........... LWL Case With Max. CWLL)Case 1 (a)Calculation for Loads and Moments at Abutment Shaft Bottom

Moment at abutment base = 393.677 x ( 78.513 -75.990 ) = 393.677 x 2.523(Due to long. Force) = 993.05 kN

Moment " MT" due to Transverse Live Load Eccentricity =

Due to 70 R Wheeled = 918.628 x 1.280 = 1175.844 kN.mDue to Class A = 0.000 x 0.000 = 0.000 kN.mDue to FPLL = 61.600 x 4.250 = 261.800 kN.mDue to SIDL = 932.100 x 0.450 = 419.445 kN.m

Vertical Loads (P) and their Moments (ML) along L-L AxisAt RL @ 75.990 m and @ cg of Abutment Shaft

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1 Dead load 3816.700 0.450 1717.5152 SIDL 932.100 0.450 419.4453 FPLL 61.600 0.450 27.7204 Reaction from CWLL (Max.)

70 R Wheeled 918.628 0.450 413.383class A 1 Lane 0.000 0.450 0.000

5 Thickening of slab 0.675 24.000 16.200 0.450 7.2906 Dirt wall 9.156 24.000 219.739 -0.350 -76.9097 Abutment Cap(Uniform portion) 7.611 24.000 182.655 0.175 31.9658 Uniform portion of corbel 3.588 24.000 86.100 0.000 0.0009 Triangluar portion of corbel 0.628 24.000 15.068 0.617 9.29210 Abutment Shaft (Above HFL) 17.758 24.000 426.195 0.000 0.00011 Abutment Shaft (Below HFL) -4.202 24.000 -100.860 0.000 0.00012 Return Wall (Uniform Portion) 0.630 24.000 15.120 -2.250 -34.02013 Return Wall (Tapered Portion) 2.450 24.000 58.800 -1.667 -98.00014 Railing over cantilever Return 2.000 3.800 3.000 22.800 -2.100 -47.880

Nos.

15 Total Load and moments at Abutment Shaft Bottom 6670.845 2369.800

Loads and moments at Abutment Shaft Bottom

Vertical Load = 6670.845 kNDue to Horz. force Due o Back Fill

Moment, ML = 2369.800 + 993.050 + 2044.377 = 5407.227 kN.m

Moment, MT = 1175.844 + 0.000 + 261.800 + 419.445= 1857.089 kN.m

Case 1 (b)Calculation for Loads and Moments at Foundation Level

Longitudnal Horizontal Force (HL) =

Governing Longitudnal Force at Bearing Level = 393.677 kN

Moment at abutment base = 393.677 x ( 78.513 + -52.000 ) = 393.677 x 26.513(Due to long. Force) = 10437.4 kN

Moment " MT" due to Transverse Live Load EccentricityDue to 70 R Wheeled = 895.825 x 1.280 = 1146.656 kN.mDue to Class A = 0.000 x 0.000 = 0.000 kN.mDue to FPLL = 61.600 x 4.250 = 261.800 kN.mDue to SIDL = 932.100 x 0.450 = 419.445 kN.m

Page 14: Abutment Well

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L AxisAt RL @ 52.000 m and @ cg of Foundation Level

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1 Dead load 3816.700 1.200 4580.0402 SIDL 932.100 1.200 1118.5203 FPLL 61.600 1.200 73.9204 Reaction from CWLL (Max.)

70 R Wheeled 895.825 1.200 1074.990class A 1 Lane 0.000 1.200 0.000

5 Thickening of slab 0.675 24.000 16.200 1.200 19.4406 Dirt wall 9.156 24.000 219.739 0.400 87.8967 Abutment Cap(Uniform portion) 7.611 24.000 182.655 0.175 31.9658 Uniform portion of corbel 3.588 24.000 86.100 1.425 122.6939 Triangluar portion of corbel 0.628 24.000 15.068 1.367 20.59210 Abutment Shaft (Above HFL) 17.758 24.000 426.195 0.750 319.64611 Abutment Shaft (Below HFL) -4.202 24.000 -100.860 0.750 -75.64512 Return Wall (Uniform Portion) 0.630 24.000 15.120 -1.500 -22.68013 Return Wall (Tapered Portion) 2.450 24.000 58.800 -0.917 -53.90014 Railing over cantilever Return 2.000 3.800 3.000 22.800 -1.350 -30.780

Nos.Total Load and moments at Abutment Shaft Bottom 6648.042 7266.70

15 Backfill behind Abutment

On Rectangular Portion (Above HFL) 201.259 18.000 3622.658 -1.500 -5433.986On Rectangular Portion (Below HFL) -14.709 18.000 -264.757 -1.500 397.136

16 Front Fill on Well cap 18.811 18.000 338.597 2.099 710.656Total Load and moments at Abutment Shaft Bottom 10344.54 2940.50(Including Back Fill + Front Fill )

17 Well Cap (Left rectangular portion) 71.750 14.000 1004.500 0.000 0.00018 Rectangular portion 20.500 14.000 287.000 0.000 0.00019 Well Cap (Right elliptical portion) 32.201 14.000 450.819 0.000 0.00020 Intermediate Plug 7.952 12.000 95.426 0.000 0.00021 Well Steining 350.586 14.000 4908.204 0.000 0.00022 Bottom Plug 42.217 12.000 506.602 0.000 0.00023 Well Kerb 21.599 14.000 302.390 0.000 0.00024 Sump in Bottom Plug 16.358 12.000 196.298 0.000 0.00025 Sand Fill 206.963 10.000 2069.628 0.000 0.00026 Earth on Well Kerb 20.624 10.000 206.245 0.000 0.000

Total Loads and Moment at Well Foundation 20371.65 2940.50

Loads and moments at Well Foundation Level

Vertical Load = 20371.65 kNTotal Active Earth Press. Moment. Due to Horiz. Force at bearing Level

Moment, ML = 2940.50 + 121925.045 + 10437.359 = 135302.906 kN.m

Moment, MT = 1146.656 + 0.000 + 261.800 + 419.445 = 1827.90 kN.m

Resultant Moment MR = 135302.9 ^2 + 1827.901 ^2 = 135315.3

Moment due to Tilt & Shift

Total Loads upto Well Cap Top Level SHIFT TILT Total Loads below Well Cap Top Level TILT

Mts .= 10344.539 x ( 0.150 + 23.990 ) + 10027.113 x 23.990 = 6157.190 kNm80.000 160.000MR Mts

Total Resultant Moment = 135315.253 + 6157.190 = 141472.443 kNm

Page 15: Abutment Well

Copy of Abutment_well

7.1.3 Computation of Base Pressure

Total Moment at Foundation = MR + Mts = 141472.4 kNm

Soil Resistance = 201322.29 > 141472.443 Hence, No Moment will Transfer to the Base = 141472.443 + -201322.293

= 0.000 kN

A = x 6.650 ^2 = 34.732 m^24.000

Z = x 6.650 ^3 = 28.871 m^332.000

P max. = P + M = 20371.652 + 0.000A Z 34.732 28.871

= 586.534 + 0.000

= 586.534 kPa < 801.434 Hence OKP min. = P - M = 20371.652 - 0.000

A Z 34.732 28.871

= 586.534 - 0.000

= 586.534 kPa > 0.000 No Uplift , Hence OK

Case 2 (Normal case........... HFL Case With Min. CWLL)Case 2 (a)Calculation for Loads and Moments at Abutment Shaft Bottom

Governing Longitudnal Force at bearing level = 393.677 kN

Moment at abutment base = 393.677 x ( 78.513 -75.990 ) = 393.677 x 2.523(Due to long. Force) = 993.050 kN

Moment " MT" due to Transverse Live Load Eccentricity =

Due to 70 R Wheeled = 171.233 x 1.280 = 219.178 kN.mDue to Class A = 0.000 x 0.000 = 0.000 kN.mDue to FPLL = 61.600 x 4.250 = 261.800 kN.mDue to SIDL = 932.100 x 0.450 = 419.445 kN.m

Vertical Loads (P) and their Moments (ML) along L-L AxisAt RL @ 75.990@ cg of Abutment Shaft

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1 Dead load 3816.700 0.450 1717.5152 SIDL 932.100 0.450 419.4453 FPLL 61.600 0.450 27.7204 Reaction from CWLL (Max.)

70 R Wheeled 171.233 0.450 77.055class A 1 Lane 0.000 0.450 0.000

5 Thickening of slab 0.675 24.000 16.200 0.450 7.2906 Dirt wall 9.156 24.000 219.739 -0.350 -76.9097 Abutment Cap (Uniform portion) 7.611 24.000 182.655 0.175 31.9658 Uniform portion of corbel 3.588 24.000 86.100 0.000 0.0009 Triangluar portion of corbel 0.628 24.000 15.068 0.617 9.29210 Abutment Shaft (Above HFL) 17.758 24.000 426.195 0.000 0.00011 Abutment Shaft (Below HFL) -4.202 14.000 -58.835 0.000 0.00012 Return Wall (Uniform Portion) 0.630 24.000 15.120 -2.250 -34.02013 Return Wall (Tapered Portion) 2.450 24.000 58.800 -1.667 -98.00014 Railing over cantilever Return 2.000 3.800 3.000 22.800 -2.100 -47.880

Nos.15 Total Load and moments at Abutment Shaft Bottom 5965.475 2033.472

Page 16: Abutment Well

Copy of Abutment_well

Loads and moments at Abutment Shaft Bottom

Vertical Load = 5965.475 kNDue to Horz. force Due o Back Fill

Moment, ML = 2033.472 + 993.050 + 2044.640 = 5071.162 kN.m

Moment, MT = 219.178 + 0.000 + 261.800 + 419.445= 900.423 kN.m

Case 2 (b)Calculation for Loads and Moments at Foundation Level

Longitudnal Horizontal Force (HL) =

Governing Longitudnal Force at bearing level = 393.677 kN

Moment at abutment base = 393.677 x ( 78.513 + -52.000 ) = 393.677 x 26.513(Due to long. Force) = 10437.359 kN

Moment " MT" due to Transverse Live Load Eccentricity

Due to 70 R Wheeled = 166.982 x 1.280 = 213.737 kN.mDue to Class A = 0.000 x 0.000 = 0.000 kN.mDue to FPLL = 61.600 x 4.250 = 261.800 kN.mDue to SIDL = 932.100 x 0.450 = 419.445 kN.m

Page 17: Abutment Well

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L AxisAt RL @ 52.000g of Well Foundation Level

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1.000 Dead load 3816.700 1.200 4580.0402.000 SIDL 932.100 1.200 1118.5203.000 FPLL 61.600 1.200 73.9204.000 Reaction from CWLL (Max.)

70 R Wheeled 166.982 1.200 200.379class A 1 Lane 0.000 1.200 0.000

5.000 Thickening of slab 0.675 24.000 16.200 1.200 19.4406.000 Dirt wall 9.156 24.000 219.739 0.400 87.8967.000 Abutment Cap (Uniform portion) 7.611 24.000 182.655 0.175 31.9658.000 Uniform portion of corbel 3.588 24.000 86.100 1.425 122.6939.000 Triangluar portion of corbel 0.628 24.000 15.068 1.367 20.59210.000 Abutment Shaft (Above HFL) 17.758 24.000 426.195 0.750 319.64611.000 Abutment Shaft (Below HFL) -4.202 14.000 -58.835 0.750 -44.12612.000 Return Wall (Uniform Portion) 0.630 24.000 15.120 -1.500 -22.68013.000 Return Wall (Tapered Portion) 2.450 24.000 58.800 -0.917 -53.90014.000 Railing over cantilever Return 2.000 3.800 3.000 22.800 -1.350 -30.780

Total Load and moments at Abutment Shaft Bottom 5961.224 6423.60

15.000 Backfill behind Abutment

On Rectangular Portion (Above HFL) 201.259 18.000 3622.658 -1.500 -5433.986On Rectangular Portion (Below HFL) -14.709 10.000 -147.087 -1.500 220.631

16.000 Front Fill on Well cap 18.811 10.000 188.109 2.099 394.809

Total Load and moments at Abutment Shaft Bottom 9624.904 1605.06(Including Back Fill + Front Fill + Return Wall)

17.000 Well Cap (Left elliptical portion) 71.750 14.000 1004.500 0.000 0.00018.000 Rectangular portion 20.500 14.000 287.000 0.000 0.00019.000 Well Cap (Right elliptical portion) 32.201 14.000 450.819 0.000 0.00020.000 Intermediate Plug 7.952 12.000 95.426 0.000 0.00021.000 Well Steining 350.586 14.000 4908.204 0.000 0.00022.000 Bottom Plug 42.217 12.000 506.602 0.000 0.00023.000 Well Kerb 21.599 14.000 302.390 0.000 0.00024.000 Sump in Bottom Plug 16.358 12.000 196.298 0.000 0.00025.000 Sand Fill 206.963 10.000 2069.628 0.000 0.00026.000 Earth on Well Kerb 20.624 10.000 206.245 0.000 0.000

Total Loads and Moment at Well Foundation 19652.02 1605.06

Page 18: Abutment Well

Copy of Abutment_well

Loads and moments at Well Foundation Level

Vertical Load = 19652.016 kNTotal Active Earth Press. Moment. Due to Horiz. Force at bearing Level

Moment, ML = 1605.058 + 109339.446 + 10437.359 = 121381.863 kN.m

Moment, MT = 213.737 + 0.000 + 261.800 + 419.445= 894.982 kN.m

Resultant Moment MR = 121381.863 ^2 + 894.982 ^2 = 121385.162

Moment due to Tilt & Shift

Total Loads upto

Well Cap Top Level SHIFT TILT Total Loads below Well Cap Top Level TILT

Mts .= 9624.904 x ( 0.150 + 23.990 ) + 10027.113 x 23.990 = 5833.444 kNm80.000 160.000

MR Mts

Total Resultant Moment = 121385.162 + 5833.444 = 127218.606 kNm

Computation of Base Pressure

Total Moment at Foundation Level = MR + Mts = 127218.6 kNm

Soil Resistance = 97911.60 < 127218.61

Hence, Moment will Transfer to the Base = 127218.606 + -97911.603= 0.000 kN

P max. = P + M = 19652.016 + 0.000A Z 34.732 28.871

= 565.814 + 0.000

= 565.814 kPa < 801.434 Hence OK

P min. = P - M = 19652.016 - 0.000A Z 34.732 28.871

= 565.814 - 0.000

= 565.814 kPa > 0.000 No Uplift , Hence OK

Case 3 (Seismic case........... LWL Case With Max. CWLL)

Loads and forces due to seismic

Horizontal Seismic Coefficient = 0.048Vertical Seismic Coefficient = 0.024

Page 19: Abutment Well

Copy of Abutment_well

Considering Seismic Force in Longitudnal direction

S.No. Item Volume Unit Wt. P Fh Fv c.g. of eL at c.g. ML @ RL ML at ML at @ ML @ RL ML at ML atForce of abutment 75.990 abut. shaft 75.990 c.g. of 52.000 61.997

(m^3) (kN/m^3) (kN) (kN) (kN) RL in m shaft (kN.m) bottom (kN.m) Well Fnd. (kN.m) (kN.m)

1 Reaction from Superstructure DL 3816.700 91.525 0.450 41.186 41.1862 SIDL 932.100 22.352 0.450 10.058 10.0583 FPLL 61.600 1.477 0.450 0.665 0.6654 Reaction from CWLL (Max.)

70 R Wheeled 459.314 11.014 0.450 4.956 4.956class A 1 Lane 0.000 0.000 0.450 0.000 0.000

5 Thickening of slab 0.675 24.000 16.200 0.777 0.388 78.569 0.450 2.004 0.175 2.004 0.175 20.643 12.8756 Dirt wall 9.156 24.000 219.739 10.539 5.269 79.701 -0.350 39.112 -1.844 39.112 -1.844 291.937 186.5797 Abutment Cap(Uniform portion) 7.611 24.000 182.655 8.760 4.380 77.763 0.175 15.527 0.767 15.527 0.767 225.684 138.1078 Uniform portion of corbel 3.588 24.000 86.100 4.129 2.065 77.913 0.000 7.939 0.000 7.939 0.000 107.002 65.7209 Triangluar portion of corbel 0.628 24.000 15.068 0.723 0.361 77.496 0.617 1.088 0.223 1.088 0.223 18.424 11.20010 Abutment Shaft (Above HFL) 17.758 24.000 426.195 20.440 10.220 76.446 0.000 9.326 0.000 9.326 0.000 499.691 295.34511 Abutment Shaft (Below HFL) -4.202 24.000 -100.860 -4.837 -2.419 75.785 0.000 0.992 0.000 0.992 0.000 -115.054 -66.69512 Return Wall (Uniform Portion) 0.630 24.000 15.120 0.725 0.363 81.040 -2.250 3.662 -0.816 3.662 -0.816 21.059 13.80913 Return Wall (Tapered Portion) 2.450 24.000 58.800 2.820 1.410 80.112 -1.667 11.625 -2.350 11.625 -2.350 79.278 51.08614 Railing over cantilever Return 2.000 3.800 3.000 22.800 1.093 0.547 81.615 -2.100 6.151 -1.148 6.151 -1.148 32.384 21.452

Nos.

15 Total Load and moments at Abutment Shaft Bottom 6211.531 45.170 148.953 97.425 51.872 97.43 51.87 1181.0 729.5

16 Well Cap (RSL) 0.000 24.000 0.000 0.000 0.000 71.502 0.000 0.00 0.00 0.0 0.0

Total Load and moments at Well Foundation Level 6211.531 45.170 148.953 97.43 51.87 1181.0 729.5

Case 3 (a)Calculation for Loads and Moments at Abutment Shaft Bottom

Longitudnal Horizontal Force (HL) =

Governing Longitudnal Force at Bearing Level = 574.385 kN

Moment at abutment base = 574.385 x ( 78.513 -75.990 ) = 574.385 x 2.523 = 1448.885 kN(Due to long. Force)

Moment " MT" due to Transverse Live Load Eccentricity

Due to 70 R Wheeled = 459.314 x 1.280 = 587.922 kN.mDue to Class A = 0.000 x 0.000 = 0.000 kN.mDue to FPLL = 61.600 x 4.250 = 261.800 kN.mDue to SIDL = 932.100 x 0.450 = 419.445 kN.m

Loads and moments at Abutment Shaft Bottom

Vertical Load = 6670.845 kNDue to Horz. force Moment Due o Back Fil in normal case Due to Seismic Force

Moment, ML = 2369.800 + 1448.885 + 2591.145 + 97.425= 6507.256 kN.m

Due to Trans. eccy. of CWLL

Moment, MT = 1857.089 kN.m

Page 20: Abutment Well

Copy of Abutment_well

Case 3 (b)Calculation for Loads and Moments at Foundation Level

Longitudnal Horizontal Force (HL) =

Governing Longitudnal Force at bearing level = 574.385 kN

Moment at abutment base = 574.385 x ( 78.513 + -52.000 ) = 574.385 x 26.513(Due to long. Force) = 15228.375 kN

Moment " MT" due to Transverse Live Load Eccentricity

Due to 70 R Wheeled = ( 447.912 + 10.741 ) x 1.280 = 587.076 kN.mDue to Class A = ( 0.000 + 0.000 ) x 0.000 = 0.000 kN.mDue to FPLL = ( 61.600 + 1.477 ) x 4.250 = 268.078 kN.mDue to SIDL = ( 932.100 + 22.352 ) x 0.450 = 429.503 kN.m

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1.000 Total Loads and Moment at Well Foundation in Normal Case 20371.65 2940.502.000 Earth on Well Kerb in Normal case -20.624 10.000 -206.24 0.00 0.003.000 Earth on Well Kerb in Seismic case 21.952 10.000 219.52 0.00 0.00

Total Loads and Moment at Well Foundation in Seismic Case 20384.92 2940.50

Page 21: Abutment Well

Copy of Abutment_well

Loads and moments at Well Foundation Level

Vertical Load = 20384.924 + 148.953 = 20533.877 kNTotal Active Earth Press. Moment. Due to Horiz. Force at bearing Level

Moment, ML = 2940.503 + 178882.49 + 15228.375 + 51.872 + 1181.048= 198284.288 kN.m

Moment, MT = 1284.658 kN.m

Resultant Moment MR = 198284.288 ^2 + 1284.658 ^2 = 198288.449 kNm

Moment due to Tilt & Shift

Total Loads upto Well Cap Top Increment in Load Total Loads below Well Increment in Load

Level in normal case Due to Seismic SHIFT TILT Cap top level in Normal Case Due to Seismic TILT

Mts .= ( 10344.539 + 148.953 ) x ( 0.150 + 23.990 ) + ( 10027.113 + 0.000 ) x 23.99080.000 160.000

= 6224.200 kNmMR Mts

Total Resultant Moment = 198288.449 + 6224.200 = 204512.649 kNm

Computation of Base Pressure

Total Moment at Foundation Level = MR + Mts = 204512.6 kNm

Soil Resistance = 251652.87 > 204512.649

Hence, No Moment will Transfer to the Bas = 204512.649 + -251652.9= 0.000 kN

A = x 6.650 ^2 = 34.732 m^24.000

Z = x 6.650 ^3 = 28.871 m^332.000

P max. = P + M = 20533.877 + 0.000A Z 34.732 28.871

= 591.205 + 0.000

= 591.205 kPa < 1001.793 Hence OK

P min. = P - M = 20533.877 - 0.000A Z 34.732 28.871

= 591.205 - 0.000

= 591.205 kPa > 0.000 No Uplift , Hence OK

Page 22: Abutment Well

Copy of Abutment_well

Case 4 (Seismic case........... HFL Case With Min. CWLL)

Loads and forces due to seismic

Horizontal Seismic Coefficient = 0.048Vertical Seismic Coefficient = 0.024

Considering Seismic Force in Longitudnal direction

Well cap top RSLS.No. Item Volume Unit Wt. P Fh Fv c.g. of eL at c.g. ML @ RL ML at eL at c.g. ML @ RL ML at ML at

Force of abutment 75.990 of abutment 67.870 c.g. of 52.000 58.841(m^3) (kN/m^3) (kN) (kN) (kN) RL in m shaft (kN.m) shaft (kN.m) Well Fnd. (kN.m) (kN.m)

1.000 Reaction from Superstructure DL 3816.700 91.525 0.450 41.186 41.1862.000 SIDL 932.100 22.352 0.450 10.058 10.0583.000 FPLL 61.600 1.477 0.450 0.665 0.6654.000 Reaction from CWLL (min.)

70 R Wheeled 85.616 2.053 0.450 0.924 0.924class A 1 Lane 0.000 0.000 0.450 0.000 0.000

5.000 Thickening of slab 0.675 24.000 16.200 0.777 0.388 78.569 0.450 2.004 0.175 8.313 0.175 20.643 15.3286.000 Dirt wall 9.156 24.000 219.739 10.539 5.269 79.701 -0.350 39.112 -1.844 124.690 -1.844 291.937 219.8467.000 Abutment Cap(Uniform portion) 7.611 24.000 182.655 8.760 4.380 77.763 0.175 15.527 0.767 86.663 0.767 225.684 165.7608.000 Uniform portion of corbel 3.588 24.000 86.100 4.129 2.065 77.913 0.000 7.939 0.000 41.470 0.000 107.002 78.7559.000 Triangluar portion of corbel 0.628 24.000 15.068 0.723 0.361 77.496 0.617 1.088 0.223 6.956 0.223 18.424 13.48110.000 Abutment Shaft (Above HFL) 17.758 24.000 426.195 20.440 10.220 76.446 0.000 9.326 0.000 175.308 0.000 499.691 359.86811.000 Abutment Shaft (Below HFL) -4.202 14.000 -58.835 -2.822 -1.411 75.785 0.000 0.578 0.000 -22.335 0.000 -67.115 -47.81312.000 Return Wall (Uniform Portion) 0.630 24.000 15.120 0.725 0.363 81.040 -2.250 3.662 -0.816 9.551 -0.816 21.059 16.09813.000 Return Wall (Tapered Portion) 2.450 24.000 58.800 2.820 1.410 80.112 -1.667 11.625 -2.350 34.525 -2.350 79.278 59.98814.000 Railing over cantilever Return 2.000 3.800 3.000 22.800 1.093 0.547 81.615 -2.100 6.151 -1.148 15.030 -1.148 32.384 24.904

Total Load and moments at Abutment Shaft Bottom 5879.858 47.185 141.000 97.012 47.839 480.17 47.84 1229.0 906.2

15.000 Well Cap 0.000 24.000 0.000 0.000 0.000 71.502 0.000 0.00 0.00 0.0 0.0

Total Load and moments at Well Foundation Level 5879.858 47.185 141.000 480.17 47.84 1229.0 906.2

Page 23: Abutment Well

Copy of Abutment_well

Case 4 (a)Calculation for Loads and Moments at Abutment Shaft Bottom

Longitudnal Horizontal Force (HL) =

Governing Longitudnal Force at bearing level = 574.385 kN

Moment at abutment base = 574.385 x ( 78.513 -75.990 ) = 574.385 x 2.523 = 1448.885 kN(Due to long. Force)

Moment " MT" due to Transverse Live Load Eccentricity

Due to 70 R Wheeled = 85.616 x 1.280 = 109.589 kN.mDue to Class A = 0.000 x 0.000 = 0.000 kN.mDue to FPLL = 61.600 x 4.250 = 261.800 kN.mDue to SIDL = 932.100 x 0.450 = 419.445 kN.m

Loads and moments at Abutment Shaft Bottom

Vertical Load = 5965.475 kNDue to Horz. force Moment Due o Back Fil in normal case Due to Seismic Force

Moment, ML = 2033.472 + 1448.885 + 2044.640 + 97.012 = 5624.009 kN.m

Due to Trans. eccy. of CWLL

Moment, MT = 900.423 kN.m

Case 4 (b)Calculation for Loads and Moments at Foundation Level

Longitudnal Horizontal Force (HL) =

Governing Longitudnal Force at bearing level = 574.385 kN

Moment at abutment base = 574.385 x ( 78.513 + -52.000 ) = 574.385 x 26.513(Due to long. Force) = 15228.375 kN

Moment " MT" due to Transverse Live Load Eccentricity

Due to 70 R Wheeled = ( 83.491 + 2.002 ) x 1.280 = 109.431 kN.mDue to Class A = ( 0.000 + 0.000 ) x 0.000 = 0.000 kN.mDue to FPLL = ( 61.600 + 1.477 ) x 4.250 = 268.078 kN.mDue to SIDL = ( 932.100 + 22.352 ) x 0.450 = 429.503 kN.m

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1.000 Total Loads and Moment at Well Foundation in Normal Case 19652.02 1605.12.000 Earth on Well Kerb in Normal case -20.624 10.000 -206.24 0.00 0.03.000 Earth on Well Kerb in Seismic case 21.952 10.000 219.52 0.00 0.0

ds and Moment at Well Foundation in Seismic Case 19665.29 1605.1

Loads and moments at Well Foundation Level

Vertical Load = 19665.288 + 141.000 = 19806.288 kNTotal Active Earth Press. Moment. Due to Horiz. Force at bearing Level

Moment, ML = 1605.058 + 114979.0 + 15228.375 + 47.839 + 1228.987= 133089.296 kN.m

Moment, MT = 807.013 kN.m

Resultant Moment MR = 133089.296 ^2 + 807.013 ^2 = 133091.742 kNm

Page 24: Abutment Well

Copy of Abutment_well

Moment due to Tilt & Shift

Total Loads upto Well Cap Top Increment in Load Total Loads below Well Increment in Load

Level in normal case Due to Seismic SHIFT TILT Cap top level Due to Seismic TILT

Mts .= ( 9624.904 + 141.000 ) x ( 0.150 + 23.990 ) + ( 10027.113 + 0.000 ) x 23.99080.000 160.000

= 5896.876 kNmMR Mts

Total Resultant Moment = 133091.742 + 5896.876 = 138988.618 kNm

Computation of Base Pressure

Total Moment at Foundation Level = MR + Mts = 138988.6 kNm

Soil Resistance = 126583.83 < 138988.618

Hence, Moment will Transfer to the Base = 138988.618 + -126583.830= 12404.788 kN

A = x 6.650 ^2 = 34.732 m^24.000

Z = x 6.650 ^3 = 28.871 m^332.000

P max. = P + M = 19806.288 + 12404.788A Z 34.732 28.871

= 570.256 + 429.660

= 999.916 kPa < 1001.793 Hence OK

P min. = P - M = 19806.288 - 12404.788A Z 34.732 28.871

= 570.256 - 429.660

= 140.596 kPa > 0.000 No Uplift , Hence OK

Page 25: Abutment Well

Copy of Abutment_well

Case 1 Live Load Surcharge

Layer Ka = 0.2794 Moment @ Moment @Reduced Level thickness Pressure Length Force c.g. of force 52.0 76.0

(m) (kN / m^2) (kN. m) (kN. m)

Deck Level 81.25.2 6.0 10.3 321.7 78.6 8553 836.3

Well cap top(Assumed MSL) 76.06.0 6.0 10.3 370.5 73.0 7779.4 0.0

LWL 70.0-4.0 6.0 10.3 -246.8 72.0 -4935.1

Well cap bottom 74.01.0 6.0 6.5 39.2 73.5 843.0

End of Layer 1 73.06.0 6.0 6.5 234.5 70.0 4220.7

MSL 67.02.0 6.0 6.5 78.5 66.0 1099.4

End of Layer 2 65.02.0 6.0 6.5 78.5 64.0 942.5

End of Layer 3 63.09.3 6.0 6.5 365.3 58.4 2322.2

Well kerb top 53.71.7 6.0 6.65 68.2 52.9 58.0

Foundation Level 52.0

29.2 1309.5 20883 836.3

Case 1 Active Earth Pressure(Normal Case) (LWL Case) In case of LWL , it is assumed that MSL is at Well cap level

LayerReduced Level thickness c N -2c / N yz / N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

Deck Level 81.2 0.05.2 0.0 25.0 3.6 18.0 0.0 26.2 3.579

Well cap top(Assumed MSL) 76.0 26.26.0 0.0 25.0 3.6 18.0 0.0 56.3

LWL 70.0 56.3-4.0 0.0 25.0 3.6 10.0 0.0 45.1

Well cap bottom 74.0 45.11.0 0.0 25.0 3.6 10.0 0.0 47.9

End Layer 1 73.0 47.96.0 0.0 25.0 3.6 10.0 0.0 64.6

MSL 67.0 64.62.0 0.0 25.0 3.6 10.0 0.0 70.2

End of Layer 2 65.0 70.22.0 0.0 25.0 3.6 10.0 0.0 75.8

End of Layer 3 63.0 75.89.3 0.0 25.0 3.6 10.0 0.0 101.8

Well kerb top 53.7 101.81.7 0.0 25.0 3.6 10.0 0.0 106.6

Foundation Level 52.0

29.2

Page 26: Abutment Well

Copy of Abutment_well

Reduced Level Layer -2c / N yz / N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @ Moment @ Moment @thickness Length of well c to c soil c 52.0 52.0 76.0 76.0

(FOS=2) (m) (m) c c (kN) (kN) (m) (m) (kN.m) (kN.m) (kN.m) (kN.m)

Deck Level 81.2 0.05.2 0.0 26.2 10.3 1.0 0.0 1.0 696.9 0.0 77.7 0.0 17927.8 0.0 1208.0

Well cap top(Assumed MSL) 76.0 26.26.0 0.0 56.3 10.3 1.0 0.0 1.0 2530.5 0.0 72.6 0.0 52203.6 0.0 0.0

LWL 70.0 56.3

-4.0 0.0 45.1 10.3 3.0 0.0 2.0 -1036.8 0.0 71.9 0.0 -20655.2Well cap bottom 74.0 45.1

1.0 0.0 47.9 6.5 3.0 0.0 2.0 151.2 0.0 73.5 0.0 3248.7End Layer 1 73.0 47.9

6.0 0.0 64.6 6.5 3.0 0.0 2.0 1093.1 0.0 69.9 0.0 19516.0MSL 67.0 64.6

2.0 0.0 70.2 6.5 3.0 0.0 2.0 438.2 0.0 66.0 0.0 6134.5End of Layer 2 65.0 70.2

2.0 0.0 75.8 6.5 3.0 0.0 2.0 474.5 0.0 64.0 0.0 5694.5End of Layer 3 63.0 75.8

9.3 0.0 101.8 6.5 2.0 0.0 2.0 2688.0 0.0 58.1 0.0 16475.0Well kerb top 53.7 101.8

1.7 0.0 106.6 6.7 2.0 0.0 2.0 589.0 0.0 52.8 0.0 496.8Foundation Level 52.0

29.2Total 0.0 7624.6 0.0 101041.8 0.0 1208.0

Total Active Force 7624.6 Total Active Moment 101041.8 1208.020883.2 836.3

Grand total 121925.0 2044.4

Passive Earth Pressure(Normal Case)(LWL Case)

LayerReduced Level thickness c N 2c * N yz * N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

LWL 70.0 0.0-4.0 0.0 25.0 5.7 10.0 0.0 -228.9 5.736

Well cap bottom 74.0 -228.91.0 0.0 25.0 5.7 10.0 0.0 -171.5 5.736

End Layer 1 73.0 -171.56.0 0.0 25.0 5.7 10.0 0.0 171.3 5.736

MSL 67.0 171.32.0 0.0 25.0 5.7 10.0 0.0 286.1 5.736

End of Layer 2 65.0 286.12.0 0.0 25.0 5.7 10.0 0.0 400.8 5.736

End of Layer 3 63.0 400.89.3 0.0 25.0 5.7 10.0 0.0 935.0 5.736

Well kerb top 53.7 935.01.7 0.0 25.0 5.7 10.0 0.0 1032.5 5.736

Foundation Level 52.0

18.0

Page 27: Abutment Well

Copy of Abutment_well

Reduced Level Layer 2c * N yz * N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 52.0 52.0

(m) (m) c

(kN) (kN) (m) (m) (kN.m) (kN.m)

LWL 70.0 0.0-4.0 0.0 -228.9 10.3 2.0 0.0 2.0 2340.0 0.0 72.7 0.0 48344.7

Well cap bottom 74.0 -228.91.0 0.0 -171.5 6.5 2.0 0.0 2.0 -650.6 0.0 73.5 0.0 -13997.1

End Layer 1 73.0 -171.56.0 0.0 171.3 6.5 3.0 0.0 2.0 -1.7 0.0 2054.7 0.0 -3347.2

MSL 67.0 171.32.0 0.0 286.1 6.5 3.0 0.0 2.0 1486.5 0.0 65.9 0.0 20706.2

End of Layer 2 65.0 286.1

2.0 0.0 400.8 6.5 3.0 0.0 2.0 2232.2 0.0 64.0 0.0 26691.1

End of Layer 3 63.0 400.8

9.3 0.0 935.0 6.5 2.0 0.0 2.0 20214.6 0.0 57.7 0.0 115946.1

Well kerb top 53.7 935.0

1.7 0.0 1032.5 6.7 2.0 0.0 2.0 5560.5 0.0 52.8 0.0 4648.3

Foundation Level 52.0

18.0Total 0.0 31181.6 0.0 198992.2

Total Passive Force 31181.6 Total Passive Moment 198992.2

Passive relief due to (-ve) surcharge Surcharge height = 0.3 m 70.0 m

LayerReduced Level thickness c N y z * N

(m) (kN /m^2) (degree) (kN / m^2) 74.0 m

LWL 70.0-4.0 0.0 25.0 2.46 10.0 6.2 5.736

Well cap bottom 74.0 6.2 73.0 m1.0 0.0 25.0 2.46 10.0 6.2 5.7

End Layer 1 73.06.0 0.0 25.0 2.46 10.0 6.2 5.7

MSL 67.0 6.2 67.0 m2.0 0.0 25.0 2.46 10.0 6.2 5.7

End of Layer 2 65.02.0 0.0 25.0 2.46 10.0 6.2 5.7 6.2 65.0 m

End of Layer 3 63.09.3 0.0 25.0 2.46 10.0 6.2 5.7

Well kerb top 53.71.7 0.0 25.0 2.46 10.0 6.2 5.7 6.2 63.0

Foundation Level 52.0

18.0 6.2 53.7

Page 28: Abutment Well

Copy of Abutment_well

6.2 52.0 mReduced Level Layer yz * N Projected (FOS) Force c.g. of force Moment @

thickness Length of we (kN) 52.0(m) c

(kN.m)

Passive relief due to (-ve) surchargeLWL 70.0

-4.0 6.2 10.3 2.0 -126.4 72.0 -2527.0Well cap bottom 74.0

1.0 6.2 6.5 2.0 20.1 73.5 431.6End Layer 1 73.0

6.0 6.2 6.5 2.0 120.1 70.0 2161.2MSL 67.0

2.0 6.2 6.5 2.0 40.2 66.0 562.9End of Layer 2 65.0

2.0 6.2 6.5 2.0 40.2 64.0 482.6End of Layer 3 63.0

9.3 6.2 6.5 2.0 187.1 58.4 1189.1Well kerb top 53.7

1.7 6.2 6.7 2.0 34.9 52.9 29.7Foundation Level 52.0

18.0Total 316.1 2330.1

Grand Total Passive Force 31498 Total Passive Moment 201322.3

Check for steining :As per clause 710.2.3.1 ,the minimum thickness of steining shall not be less than 500mm and satisfy the following relationship.

t required = k d l = 0.03 x 6.5 x 4.9 = 0.955 m

Thickness provided = 1.00 m Hence OK

Case 1

It is assumed that point of zero shear will be at a distance of Z m below from well cap bottom.

Total Active force =Governing Longitudnal Force at Bearing Level

393.7 +

Active force upto Well cap bottom by surcharge Active force below Well cap bottom for Z depth by surcharge

445.4 + 39.2 Z +

Active Force due Active Force due

to c soil upto Well cap bottom to c soil below Well cap bottom

0.0 + 0.0 Z +3.0

(FOS) -c

Active Force due to Active Force due Active Force due

upto Well cap bottom to phai soil below Well cto phai soil below Well cap bottom

2190.6 + 293.3 Z + 9.1 Z2

2.0 2.0(FOS)

Page 29: Abutment Well

Copy of Abutment_well

Total Passive force =

Passive Force due Passive Force due

to c soil upto Well cap bottom to c soil below Well cap bottom upto depth Z

0.0 + 0.0 Z +2.0

(FOS) -c

Passive Force due Passive Force due Passive Force due

upto Well cap bottom to phai soil below Well cto phai soil below Well cap bottom

upto depth Z upto depth Z2340.0 + -1487.6 Z + 186.4 Z^2 +

2.0 2.0

Passive Force due to -ve Surcharge Passive Force due to -ve Surcharge

upto Well cap bottom by phai of soil below Well cap bottom by phai of soil

upto depth Z-126.4 + 40.2 Z

2.0

Eqating both active and passive earth pressure :

3029.7 + 185.9 Z + 4.5 Z^2 = 2213.6 + -723.7 Z + 93.2 Z^2

816.0 + 909.6 Z + -88.7 Z^2 = 0.0

-9.2 + -10.3 Z + Z^2 = 0.0

Z = 10.3 + 11.9 = 11.1 m2.0

This means, Point of zero shear will be at a distance of 11.1 m in layer 2 i.e. at RL 62.9 m

Live Load Surcharge upto RL 62.9 m

Layer Ka = 0.3 Moment @Reduced Level thickness Pressure Length Force c.g. of force 62.9

(m) (kN / m^2) (kN. m)

Deck Level 81.25.2 6.0 10.3 321.7 78.6 5046.5

Well cap top(MSL) 76.06.0 6.0 10.3 370.5 73.0 3740.0

LWL 70.0-4.0 6.0 10.3 -246.8 72.0 -2244.4

Well cap bottom 74.011.1 6.0 6.5 435.0 68.4 2411.6

End Layer 1 62.90.0 6.0 6.5 0.0 0.0 0.0

Well kerb top 0.00.0 6.0 6.5 0.0 0.0 0.0

End Layer 2 0.00.0 6.0 6.5 0.0 0.0 0.0

Foundation Level 0.0

18.3 880.4 8953.7

Page 30: Abutment Well

Copy of Abutment_well

Active Earth Pressure(Normal Case)(LWL Case) upto RL 62.9 m

LayerReduced Level thickness c N 2c / N yz / N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

Deck Level 81.2 0.05.2 0.0 25.0 3.6 18.0 0.0 26.2 3.6

Well cap top(MSL) 76.0 26.26.0 0.0 25.0 3.6 18.0 0.0 56.3 3.6

LWL 70.0 56.3-4.0 0.0 25.0 3.6 10.0 0.0 45.1 3.6

Well cap bottom 74.0 45.111.1 0.0 25.0 3.6 10.0 0.0 76.1 3.6

End Layer 1 62.9 0.00.0 0.0 25.0 3.6 10.0 0.0 0.0 3.6

Well kerb top 0.0 0.00.0 0.0 25.0 3.6 10.0 0.0 0.0 3.6

End Layer 2 0.0 0.00.0 0.0 25.0 3.6 10.0 0.0 0.0 3.6

Foundation Level 0.0

18.3

Reduced Level Layer -2c / N yz / N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 62.9 62.9

(FOS=3) (m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

Deck Level 81.2 0.05.2 0.0 26.2 10.3 1.0 0.0 1.0 696.9 78.6 77.7 0.0 10330.0

Well cap top(MSL) 76.0 26.26.0 0.0 56.3 10.3 1.0 0.0 1.0 2530.5 73.0 72.6 0.0 24618.0

LWL 70.0 56.3-4.0 0.0 45.1 10.3 3.0 0.0 2.0 -1036.8 72.0 71.9 0.0 -9352.4

Well cap bottom 74.0 45.111.1 0.0 76.1 6.5 3.0 0.0 2.0 2184.6 68.4 68.0 0.0 11080.2

End of Layer 1 62.9 0.00.0 0.0 0.0 6.5 3.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0

Well kerb top 0.0 0.00.0 0.0 0.0 6.5 3.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0

End Layer 2 0.0 0.00.0 0.0 0.0 6.5 3.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0

Foundation Level 0.0

18.3Total 0.0 4375.2 0.0 36675.8

Total Active Force 4375.2 Total Active Moment 36675.88953.7

Grand total 45629.5

Page 31: Abutment Well

Copy of Abutment_well

Passive Earth Pressure(Normal Case)(LWL Case) upto 62.9 m

LayerReduced Level thickness c N 2c * N yz * N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

LWL 70.0 0.0-4.0 0.0 25.0 5.7 10.0 0.0 -228.9 5.7

Well cap bottom 74.0 -228.911.1 0.0 25.0 5.7 10.0 0.0 407.2 5.7

End of Layer 1 62.9 0.00.0 0.0 25.0 5.7 10.0 0.0 0.0 5.7

Well kerb top 0.0 0.00.0 0.0 25.0 5.7 10.0 0.0 0.0 5.7

End Layer 2 0.0 0.00.0 0.0 25.0 5.7 10.0 0.0 0.0 5.7

Foundation Level 0.0

7.1

Reduced Level Layer 2c * N yz * N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 62.9 62.9

(m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

LWL 70.0 0.0-4.0 0.0 -228.9 10.3 2.0 0.0 2.0 2340.0 72.0 72.7 0.0 22835.1

Well cap bottom 74.0 -228.911.1 0.0 407.2 6.5 2.0 0.0 2.0 3212.9 68.4 61.9 0.0 -3367.4

End of Layer 1 62.9 0.00.0 0.0 0.0 6.5 3.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0

Well kerb top 0.0 0.00.0 0.0 0.0 6.5 3.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0

End Layer 2 0.0 0.00.0 0.0 0.0 6.5 3.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0

Foundation Level 0.0

7.1Total 0.0 5552.9 0.0 19467.7

Total Passive Force 5552.9 Total Passive Moment 19467.7

Page 32: Abutment Well

Copy of Abutment_well

Passive relief due to (-ve) surcharge upto RL 62.9 m Surcharge height = 0.251 m

LayerReduced Level thickness c N y z * N

(m) (kN /m^2) (degree) (kN / m^2)

LWL 70.0-4.0 0.0 25.0 5.7 10.0 14.4 5.736

Well cap bottom 74.011.1 0.0 25.0 5.7 10.0 14.4 5.736

End of Layer 1 62.90.0 0.0 25.0 5.7 10.0 14.4 5.736

Well kerb top 0.00.0 0.0 25.0 5.7 10.0 14.4 5.736

End Layer 2 0.00.0 0.0 25.0 5.7 10.0 0.0 5.736

Foundation Level 0.0

7.1

Reduced Level Layer yz * N Projected (FOS) Force c.g. of force Moment @thickness Length of we (kN) 62.9

(m) c(kN.m)

LWL 70.0-4.0 14.4 10.3 2.0 -294.2 72.0 -2675.4

Well cap bottom 74.011.1 14.4 6.5 2.0 518.5 68.4 2874.7

End of Layer 1 62.90.0 14.4 6.5 2.0 0.0 0.0 0.0

Well kerb top 0.00.0 14.4 6.5 2.0 0.0 0.0 0.0

End Layer 2 0.00.0 0.0 6.5 2.0 0.0 0.0 0.0

Foundation Level 0.0

7.1Total 224.3 199.3

Grand Total Passive Force 5777 Total Passive Moment 19667.0

Page 33: Abutment Well

Copy of Abutment_well

Case 1 Calculation for Loads and Moments upto RL 62.9 m

Longitudnal Horizontal Force (HL) =

Governing Longitudnal Force at Bearing Level = 393.7 kN

Moment @ = 393.7 x ( 78.5 + -62.9 ) = 393.7 x 15.6(Due to long. Force) = 6145.7 kNm

Moment " MT" due to Transverse Live Load Eccentricity

Due to 70 R Wheeled = 895.8 x 1.3 = 1146.7 kN.mDue to Class A = 0.0 x 0.0 = 0.0 kN.mDue to FPLL = 61.6 x 4.3 = 261.8 kN.mDue to SIDL = 932.1 x 0.5 = 419.4 kN.m

Vertical Loads (P) and their Moments (ML) along L-L AxisAt RL @ 62.9 m and @ cg of Foundation Level

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1.0 Dead load 3816.7 1.2 4580.02.0 SIDL 932.1 1.2 1118.53.0 FPLL 61.6 1.2 73.94.0 Reaction from CWLL (Max.)

70 R Wheeled 895.8 1.2 1075.0class A 1 Lane 0.0 1.2 0.0

5.0 Thickening of slab 0.7 24.0 16.2 1.2 19.46.0 Dirt wall 9.2 24.0 219.7 0.4 87.97.0 Abutment Cap(Uniform portion) 7.6 24.0 182.7 0.2 32.08.0 Uniform portion of corbel 3.6 24.0 86.1 1.4 122.79.0 Triangluar portion of corbel 0.6 24.0 15.1 1.4 20.6

10.0 Abutment Shaft (Above HFL) 17.8 24.0 426.2 0.8 319.611.0 Abutment Shaft (Below HFL) -4.2 24.0 -100.9 0.8 -75.612.0 Return Wall (Uniform Portion) 0.6 24.0 15.1 -1.5 -22.713.0 Return Wall (Tapered Portion) 2.5 24.0 58.8 -0.9 -53.914.0 Railing over cantilever Return 2.0 3.8 3.0 22.8 -1.4 -30.8

Nos.

Total Load and moments @ RL 6648 7266.7

15.0 Backfill behind Abutment

On Rectangular Portion (Above HFL) 201.3 18.0 3622.7 -1.5 -5434.0On Rectangular Portion (Below HFL) -14.7 18.0 -264.8 -1.5 397.1

16.0 Front Fill on Well cap 18.8 18.0 338.6 2.1 710.7

Total Load and moments @ RL 10345 2940.5(Including Back Fill + Front Fill )

17.0 Well Cap (Left elliptical portion) 71.8 22.5 1614.4 0.0 0.018.0 Rectangular portion 20.5 22.5 461.3 0.0 0.019.0 Well Cap (Right elliptical portion) 32.2 22.5 724.5 0.0 0.020.0 Intermediate Plug 0.0 12.0 0.0 0.0 0.021.0 Well Steining 191.6 22.5 4310.9 0.0 0.022.0 Bottom Plug 0.0 12.0 0.0 0.0 0.023.0 Well Kerb 0.0 14.0 0.0 0.0 0.024.0 Sump in Bottom Plug 0.0 12.0 0.0 0.0 0.025.0 Sand Fill 0.0 10.0 0.0 0.0 0.026.0 Earth on Well Kerb 0.0 10.0 0.0 0.0 0.0

Total Load and moments @ RL 17455.6 2940.5

Page 34: Abutment Well

Copy of Abutment_well

Loads and moments upto RL 62.9 m

Vertical Load = 17455.6 kNTotal Active Earth Press. Moment. Due to Horiz. Force at bearing Level

Moment, ML = 2941 + 45629 + 6146 = 54715.7 kN.m

Moment, MT = 1147 + 0 + 262 + 419.4= 1827.9 kN.m

Resultant Moment MR = 54716 ^2 1828 ^2 54746 kN.m

Moment due to Tilt & Shift

Total Loads upto Well Cap Top Level SHIFT TILT Total Loads below Well Cap Top Level TILT

Mts .= 10344.5 x ( 0.150 + 13.1 ) + 7111.1 x 13.1 = 3825.8 kNm80.0 160.0

MR Mts

Total Resultant Moment = 54746 + 3826 = 58572 kNm

Total Moment upto RL 62.9 m MR + Mts = 58572 kNm

Passive Resistance = 19667 < 58572

Hence, Moment will Transfer to the steining = 58572 + -19667.0= 38905 kN

A = x 22.0 = 17.3 m^24.0

Z = x 1375.0 = 20.8 m^3208.0

P max. = P + M = 17455.6 + 38905A Z 17.3 20.8

= 1010.2 + 1873

= 2883.6 kPa

P min. = P - M = 17455.6 - 38905A Z 17.3 20.8

= 1010.2 - 1873.3

= -863.1 kPa= 0.9 < 6.1

Section is uncracked

Check for safety of section 1.0 + 1.9 = 0.4 < 1.0 Hence OK6.3 8.3

Case2Live Load Surcharge

Layer Ka = 0.3 Moment @ Moment @Reduced Level thickness Pressure Length Force c.g. of force 52.0 76.0

(m) (kN / m^2) (kN. m) (kN. m)Deck Level 81.2

5.6 6.0 10.3 347.0 78.4 9156.4 831.1HFL 75.6

-0.4 6.0 10.3 -25.4 75.8 -603.2 5.2Well cap top 76.0

2.0 6.0 10.3 123.7 75.0 2844.3Well cap bottom 74.0

1.0 6.0 6.5 39.2 73.5 843.0End Layer 1 73.0

6.0 6.0 6.5 234.5 70.0 4220.7MSL 67.0

2.0 6.0 6.5 78.5 66.0 1099.4End of Layer 2 65.0

2.0 6.0 6.5 78.5 64.0 942.5End of Layer 3 63.0

9.3 6.0 6.5 365.3 58.4 2322.2Well kerb top 53.7

1.7 6.0 6.7 68.2 52.9 58.0Foundation Level 52.0

29.2 1309.5 20883 836.3

Page 35: Abutment Well

Copy of Abutment_well

Case 2Active Earth Pressure(Normal Case)(HFL Case)

LayerReduced Level thickness c N 2c / N yz / N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

Deck Level 81.2 0.05.6 0.0 25.0 3.6 18.0 0.0 28.2 3.579

HFL 75.6 28.2 0.000-0.4 0.0 25.0 3.6 10.0 0.0 27.1 3.579

Well cap top 76.0 27.1 0.0002.0 0.0 25.0 3.6 10.0 0.0 32.7 3.579

Well cap bottom 74.0 32.7 0.0001.0 0.0 25.0 3.6 10.0 0.0 35.5 3.579

End Layer 1 73.0 35.5 0.0006.0 0.0 25.0 3.6 8.0 0.0 48.8 3.579

MSL 67.0 48.8 0.0002.0 0.0 25.0 3.6 8.0 0.0 53.3 3.579

End of Layer 2 65.0 53.3 0.0002.0 0.0 25.0 3.6 9.3 0.0 58.5 3.579

End of Layer 3 63.0 58.5 0.0009.3 0.0 25.0 3.6 10.0 0.0 84.5 3.579

Well kerb top 53.7 84.5 0.0001.7 0.0 25.0 3.6 10.0 0.0 89.2 3.579

Foundation Level 52.0

29.2

Page 36: Abutment Well

Copy of Abutment_well

Reduced Level Layer -2c / N yz / N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @ Moment @ Moment @thickness Length of well c to c soil c 52.0 52.0 76.0 76.0

(m) (m) c c (kN) (kN) (m) (m) (kN.m) (kN.m) (kN.m) (kN.m)

Deck Level 81.2 0.05.6 0.0 28.2 10.3 1.0 0.0 1.0 811.2 78.4 77.5 0.0 20644.6 0.0 1184.3

HFL 75.6 28.2

-0.4 0.0 27.1 10.3 1.0 0.0 1.0 -116.2 75.8 75.8 0.0 -2762.7 0.0 24.0

Well cap top 76.0 27.12.0 0.0 32.7 10.3 1.0 0.0 1.0 612.2 75.0 75.0 0.0 14054.8

Well cap bottom 74.0 32.71.0 0.0 35.5 6.5 1.0 0.0 1.0 221.3 73.5 73.5 0.0 4755.2

End Layer 1 73.0 35.56.0 0.0 48.8 6.5 1.0 0.0 1.0 1636.8 70.0 69.8 0.0 29205.9

MSL 67.0 48.82.0 0.0 53.3 6.5 3.0 0.0 2.0 331.8 66.0 66.0 0.0 4644.6

End of Layer 2 65.0 53.32.0 0.0 58.5 6.5 3.0 0.0 2.0 363.2 64.0 64.0 0.0 4357.6

End of Layer 3 63.0 58.59.3 0.0 84.5 6.5 2.0 0.0 2.0 2163.7 58.4 58.1 0.0 13142.5

Well kerb top 53.7 84.51.7 0.0 89.2 6.7 2.0 0.0 2.0 491.0 52.9 52.8 0.0 413.6

Foundation Level 52.0

29.2Total 0.0 6515.1 0.0 88456.2 0.0 1208.3

Total Active Force 6515.1 Total Active Moment 88456.2 1208.320883.2 836.3

Grand total 109339.4 2044.6

Page 37: Abutment Well

Copy of Abutment_well

Passive Earth Pressure(Normal Case)

LayerReduced Level thickness c N 2c * N yz * N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

MSL 67.0 0.02.0 0.0 25.0 5.7 8.0 0.0 91.8 5.7

End of Layer 2 65.0 91.82.0 0.0 25.0 5.7 9.3 0.0 198.5 5.7

End of Layer 3 63.0 198.59.3 0.0 25.0 5.7 10.0 0.0 732.7 5.7

Well kerb top 53.7 732.71.7 0.0 25.0 5.7 10.0 0.0 830.2 5.7

Foundation Level 52.0

15.0

Reduced Level Layer 2c * N yz * N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 52.0 52.0

(m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

MSL 67.0 0.02.0 0.0 91.8 6.5 3.0 0.0 2.0 298.3 66.0 65.7 0.0 4080.3

End of Layer 2 65.0 91.82.0 0.0 198.5 6.5 3.0 0.0 2.0 943.3 64.0 63.9 0.0 11216.1

End of Layer 3 63.0 198.59.3 0.0 732.7 6.5 2.0 0.0 2.0 14091.3 58.4 57.5 0.0 77023.2

Well kerb top 53.7 732.71.7 0.0 830.2 6.7 2.0 0.0 2.0 4416.9 52.9 52.8 0.0 3676.3

Foundation Level 52.0

15.0Total 0.0 19749.8 0.0 95995.8

Total Passive Force 19749.8 Total Passive Moment 95995.8

Page 38: Abutment Well

Copy of Abutment_well

Passive relief due to (-ve) surcharge Surcharge height = 0.3 m

67.0 mLayer

Reduced Level thickness c N y z * N (m) (kN /m^2) (degree) (kN / m^2)

MSL 67.0 6.2 65.0 m2.0 0.0 25.0 2.5 10.0 6.2 5.7

End of Layer 2 65.02.0 0.0 25.0 2.5 10.0 6.2 5.7 6.2 63.0 m

End of Layer 3 63.09.3 0.0 25.0 2.5 10.0 6.2 5.7

Well kerb top 53.71.7 0.0 25.0 2.5 10.0 6.2 5.7 6.2 53.7 m

Foundation Level 52.015.0 6.2 52.0 m

Reduced Level Layer yz * N Projected (FOS) Force c.g. of force Moment @

thickness Length of we (kN) 52.0 Passive relief due to (-ve) surcharge(m) c

(kN.m)

MSL 67.02.0 6.2 6.5 3.0 26.8 66.0 375.3

End of Layer 2 65.02.0 6.2 6.5 3.0 26.8 64.0 321.7

End of Layer 3 63.09.3 6.2 6.5 2.0 187.1 58.4 1189.1

Well kerb top 53.71.7 6.2 6.7 2.0 34.9 52.9 29.7

Foundation Level 52.015.0

Total 275.6 1915.8Grand Total Passive Force 20025 Total Passive Moment 97911.6

Page 39: Abutment Well

Copy of Abutment_well

Check for steining :

Case 2

It is assumed that point of zero shear will be at a distance of Z m below from Layer 2.

Total Active force =

393.7 +

797.5 + 39.2 Z +

0.0 + 0.0 Z +3.0

3497.1 + 346.3 Z + 8.4 Z^22.0 2.0

Total Passive force =

0.0 + 0.0 Z +3.0

298.3 + 596.5 Z + 173.4 Z^2 +2.0 2.0

26.8 + 40.2 Z3.0

Eqating both active and passive earth pressure :

4688.3 + 212.4 Z + 4.2 Z^2 = 325.1 + 311.7 Z + 86.7 Z^2

4363.3 + -99.3 Z + -82.5 Z^2 = 0.0

-52.9 + 1.2 + Z^2 = 0.0

Z = -1.2 + 14.6 = 6.7 m2.0

This means, Point of zero shear will be at a distance of 6.7 m in layer 2 i.e. at RL 58.3 m

Page 40: Abutment Well

Copy of Abutment_well

Live Load Surcharge upto RL 58.3 m

Layer Ka = 0.3 Moment @Reduced Level thickness Pressure Length Force c.g. of force 58.3

(m) (kN / m^2) (kN. m)

Deck Level 81.25.6 6.0 10.3 347.0 78.4 6964.5

HFL 75.6-0.4 6.0 10.3 -25.4 75.8 -443.1

Well cap top 76.02.0 6.0 10.3 123.7 75.0 2062.9

Well cap bottom 74.01.0 6.0 6.5 39.2 73.5 595.2

End Layer 1 73.06.0 6.0 6.5 234.5 70.0 2739.8

MSL 67.02.0 6.0 6.5 78.5 66.0 603.9

End of Layer 2 65.06.7 6.0 6.5 262.7 61.7 879.7

End of Layer 3 58.3

Well kerb top 0.0

Foundation Level 0.0

22.9 1060.2 13403

Active Earth Pressure(Normal Case) upto RL 58.3 m

LayerReduced Level thickness c N 2c / N yz / N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

Deck Level 81.2 0.05.6 0.0 25.0 3.6 18.0 0.0 28.2 3.6

HFL 75.6 28.2-0.4 0.0 25.0 3.6 10.0 0.0 27.1 3.6

Well cap top 76.0 27.12.0 0.0 25.0 3.6 10.0 0.0 32.7 3.6

Well cap bottom 74.0 32.71.0 0.0 25.0 3.6 10.0 0.0 35.5 3.6

End Layer 1 73.0 35.56.0 0.0 25.0 3.6 8.0 0.0 48.8 3.6

MSL 67.0 48.82.0 0.0 25.0 3.6 8.0 0.0 53.3 3.6

End of Layer 2 65.0 53.36.7 0.0 25.0 3.6 9.3 0.0 70.7 3.6

End of Layer 3 58.30.0 25.0 3.6 10.0 0.0 3.6

Well kerb top0.0 25.0 3.6 10.0 0.0 3.6

Foundation Level

22.9

Page 41: Abutment Well

Copy of Abutment_well

Reduced Level Layer -2c / N yz / N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 58.3 58.3

(m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

Deck Level 81.2 0.05.6 0.0 28.2 10.3 1.0 0.0 1.0 811.2 78.4 77.5 0.0 15521.2

HFL 75.6 28.2-0.4 0.0 27.1 10.3 1.0 0.0 1.0 -116.2 75.8 75.8 0.0 -2029.1

Well cap top 76.0 27.12.0 0.0 32.7 10.3 1.0 0.0 1.0 612.2 75.0 75.0 0.0 10188.3

Well cap bottom 74.0 32.71.0 0.0 35.5 6.5 1.0 0.0 1.0 221.3 73.5 73.5 0.0 3357.2

End Layer 1 73.0 35.56.0 0.0 48.8 6.5 1.0 0.0 1.0 1636.8 70.0 69.8 0.0 18868.0

MSL 67.0 48.82.0 0.0 53.3 6.5 3.0 0.0 3.0 221.2 66.0 66.0 0.0 1699.3

End of Layer 2 65.0 53.36.7 0.0 70.7 6.5 3.0 0.0 3.0 899.4 61.7 61.5 0.0 2870.6

End of Layer 3 58.3 0.00.0 0.0 0.0 6.5 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0

Well kerb top 0.0 0.00.0 0.0 0.0 6.7 2.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0

Foundation Level 0.0

22.9Total 0.0 4285.9 0.0 50475.6

Total Active Force 4285.9 Total Active Moment 50475.613403.0

Grand total 63878.6

Passive Earth Pressure(Normal Case) upto RL 58.3 m

LayerReduced Level thickness c N 2c * N yz * N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

MSL 67.0 0.02.0 0.0 25.0 5.7 8.0 0.0 91.8 5.7

End of Layer 2 65.0 91.86.7 0.0 25.0 5.7 9.3 0.0 449.0 5.7

End of Layer 3 58.3 0.00.0 0.0 25.0 5.7 10.0 0.0 0.0 5.7

Well kerb top 53.7 0.00.0 0.0 25.0 5.7 10.0 0.0 0.0 5.7

Foundation Level 52.0 0.0

8.7

Reduced Level Layer 2c * N yz * N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 58.3 58.3

(m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

MSL 67.0 0.02.0 0.0 91.8 6.5 3.0 0.0 2.0 298.3 66.0 65.7 0.0 2196.4

End of Layer 2 65.0 91.86.7 0.0 449.0 6.5 3.0 0.0 2.0 5885.3 61.7 60.9 0.0 15367.6

End of Layer 3 58.3 0.00.0 0.0 0.0 6.5 2.0 0.0 2.0 0.0 53.7 0.0 0.0 0.0

Well kerb top 53.7 0.00.0 0.0 0.0 6.7 2.0 0.0 2.0 0.0 52.0 0.0 0.0 0.0

Foundation Level 52.0 0.0

8.7Total 0.0 6183.6 0.0 17564.0

Total Passive Force 6183.6 Total Passive Moment 17564.0

Page 42: Abutment Well

Copy of Abutment_well

Passive relief due to (-ve) surcharge upto RL 58.3 m Surcharge height = 0.3 m

LayerReduced Level thickness c N y z * N

(m) (kN /m^2) (degree) (kN / m^2)

MSL 67.02.0 0.0 25.0 5.7 10.0 14.4 5.7

End of Layer 2 65.06.7 0.0 25.0 5.7 10.0 14.4 5.7

End of Layer 3 58.30.0 0.0 25.0 5.7 10.0 0.0 5.7

Well kerb top 53.70.0 0.0 25.0 5.7 10.0 0.0 5.7

Foundation Level 52.0

8.7

Reduced Level Layer yz * N Projected (FOS) Force c.g. of force Moment @thickness Length of we (kN) 58.3

(m) c(kN.m)

MSL 67.02.0 14.4 6.5 3.0 62.3 66.0 479.9

End of Layer 2 65.06.7 14.4 6.5 3.0 208.8 61.7 699.1

End of Layer 3 58.30.0 0.0 6.5 2.0 0.0 53.7 0.0

Well kerb top 53.70.0 0.0 6.7 2.0 0.0 52.0 0.0

Foundation Level 52.0

8.7Total 271.1 1178.9

Grand Total Passive Force 6454.7 Total Passive Moment 18742.9

Case 2Calculation for Loads and Moments upto RL 58.3 m

Longitudnal Horizontal Force (HL) =

Governing Longitudnal Force at Bearing Level = 393.7 kN

Moment at abutment base = 393.7 x ( 78.5 + -58.3 ) = 393.7 x 20.2(Due to long. Force) = 7950.9 kN

Moment " MT" due to Transverse Live Load Eccentricity

Due to 70 R Wheeled = 167.0 x 1.3 = 213.7 kN.mDue to Class A = 0.0 x 0.0 = 0.0 kN.mDue to FPLL = 61.6 x 4.3 = 261.8 kN.mDue to SIDL = 932.1 x 0.5 = 419.4 kN.m

Page 43: Abutment Well

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L AxisAt RL @ 58.3 m and @ cg of Foundation Level

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1.0 Dead load 3816.7 1.2 4580.02.0 SIDL 932.1 1.2 1118.53.0 FPLL 61.6 1.2 73.94.0 Reaction from CWLL (Max.)

70 R Wheeled 167.0 1.2 200.4class A 1 Lane 0.0 1.2 0.0

5.0 Thickening of slab 0.7 24.0 16.2 1.2 19.46.0 Dirt wall 9.2 24.0 219.7 0.4 87.97.0 Abutment Cap(Uniform portion) 7.6 24.0 182.7 0.2 32.08.0 Uniform portion of corbel 3.6 24.0 86.1 1.4 122.79.0 Triangluar portion of corbel 0.6 24.0 15.1 1.4 20.6

10.0 Abutment Shaft (Above HFL) 17.8 24.0 426.2 0.8 319.611.0 Abutment Shaft (Below HFL) -4.2 22.5 -94.6 0.8 -70.912.0 Return Wall (Uniform Portion) 0.6 24.0 15.1 -1.5 -22.713.0 Return Wall (Tapered Portion) 2.5 24.0 58.8 -0.9 -53.914.0 Railing over cantilever Return 2.0 3.8 3.0 22.8 -1.4 -30.8

Nos.

Total Load and moments at Abutment Shaft Bottom 5925.5 6396.8

15.0 Backfill behind Abutment

On Rectangular Portion (Above HFL) 201.3 18.0 3622.7 -1.5 -5434.0On Rectangular Portion (Below HFL) -14.7 10.0 -147.1 -1.5 220.6

16.0 Front Fill on Well cap 18.8 10.0 188.1 2.1 394.8

Total Load and moments at Abutment Shaft Bottom 9589.2 1578.3(Including Back Fill + Front Fill )

17.0 Well Cap (Left elliptical portion) 71.8 22.5 1614.4 0.0 0.0Rectangular portion 20.5 22.5 461.3 0.0 0.0

18.0 Well Cap (Right elliptical portion) 32.2 22.5 724.5 0.0 0.019.0 Intermediate Plug 0.0 12.0 0.0 0.0 0.020.0 Well Steining 270.8 22.5 6093.6 0.0 0.021.0 Bottom Plug 0.0 12.0 0.0 0.0 0.022.0 Well Kerb 0.0 14.0 0.0 0.0 0.023.0 Sump in Bottom Plug 0.0 12.0 0.0 0.0 0.024.0 Sand Fill 0.0 10.0 0.0 0.0 0.025.0 Earth on Well Kerb 0.0 10.0 0.0 0.0 0.0

Total Loads and Moment at Well Foundation 18483 1578.3

Loads and moments upto RL 58.3 m

Vertical Load = 18483 kNTotal Active Earth Press. Moment. Due to Horiz. Force at bearing Level

Moment, ML = 1578 + 63879 + 7951 = 73408 kN.m

Moment, MT = 214 + 0 + 262 + 419= 895.0 kN.m

Resultant Moment MR = 73408 ^2 895 ^2 73413

Moment due to Tilt & Shift

Total Loads upto Well Cap Top Level SHIFT TILT Total Loads below Well Cap Top Level TILT

Mts .= 9589.2 x ( 0.150 + 17.7 ) + 8893.8 x 17.7 = 4539.3 kNm80.0 160.0

MR Mts

Total Resultant Moment = 73413 + 4539 = 77952 kNm

Page 44: Abutment Well

Copy of Abutment_well

Total Moment upto RL 58 m MR + Mts = 77952 kNm

Passive Resistance = 18743 < 77952

Hence, Moment will Transfer to the steining = 77952 + -18742.9= 59210 kN

P max. = P + M = 18483 + 59210A Z 17.3 20.8

= 1070 + 2851

= 3921 kPa

P min. = P - M = 18483 - 59210A Z 17.3 20.8

= 1070 - 2851

= -1781 kPa= 1.78 < 6.10

Section is uncracked

Check for safety of section 1.1 + 2.9 = 0.5 < 1.0 Hence OK6.3 8.3

Case3Live Load Surcharge (Seismic Case) (LWL Case)

Layer Ka = 0.3 Moment @ Moment @Reduced Level thickness Pressure Length Force c.g. of force 52.0 76.0

(m) (kN / m^2) (kN. m) (kN. m)Deck Level 81.2

5.2 6.0 10.3 321.7 78.6 8553.1 836.3Well cap top(Assumed RSL) 76.0

6.0 6.0 10.3 370.5 73.0 7779.4 0.0LWL 70.0

-4.0 6.0 10.3 -246.8 72.0 -4935.1Well cap bottom 74.0

1.0 6.0 6.5 39.2 73.5 843.0End Layer 1 73.0

6.0 6.0 6.5 234.5 70.0 4220.7RSL 67.0

2.0 6.0 6.5 78.5 66.0 1099.4End of Layer 2 65.0

2.0 6.0 6.5 78.5 64.0 942.5End of Layer 3 63.0

9.3 6.0 6.5 365.3 58.4 2322.2Well kerb top 53.7

1.7 6.0 6.7 68.2 52.9 58.0Foundation Level 52.0

29.2 1309.5 20883 836.3

Active Earth Pressure(Seismic Case) (LWL Case)

LayerReduced Level thickness c N 2c / N yz / N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)Deck Level 81.2 0.0

5.2 0.0 25.0 2.5 18.0 0.0 38.0 0.0Well cap top(Assumed RSL) 76.0 38.0

6.0 0.0 25.0 2.5 18.0 0.0 81.7 0.0LWL 70.0 81.7

-4.0 0.0 25.0 2.5 10.0 0.0 65.6 0.0Well cap bottom 74.0 65.6

1.0 0.0 25.0 2.5 10.0 0.0 69.6 0.0End Layer 1 73.0 69.6

6.0 0.0 25.0 2.5 10.0 0.0 93.9 0.0RSL 67.0 93.9

2.0 0.0 25.0 2.5 10.0 0.0 102.0 0.0End of Layer 2 65.0 102.0

2.0 0.0 25.0 2.5 10.0 0.0 110.1 0.0End of Layer 3 63.0 110.1

9.3 0.0 25.0 2.5 10.0 0.0 147.9 0.0Well kerb top 53.7 147.9

1.7 0.0 25.0 2.5 10.0 0.0 154.8 0.0Foundation Level 52.0

29.2

Page 45: Abutment Well

Copy of Abutment_well

Reduced Level Layer -2c / N yz / N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @ Moment @ Moment @thickness Length of well c to c soil c 52.0 52.0 76.0 76.0

(m) (m) c c (kN) (kN) (m) (m) (kN.m) (kN.m) (kN.m) (kN.m)

Deck Level 81.2 0.05.2 0.0 38.0 10.3 1.0 0.0 1.0 1012.4 78.6 77.7 0.0 26042.0 0.0 1754.8

Well cap top(Assumed RSL) 76.0 38.0

6.0 0.0 81.7 10.3 1.0 0.0 1.0 3675.8 73.0 72.6 0.0 75831.4 0.0 0.0LWL 70.0 81.7

-4.0 0.0 65.6 10.3 1.6 0.0 1.6 -1882.6 72.0 71.9 0.0 -37504.8Well cap bottom 74.0 65.6

1.0 0.0 69.6 6.5 1.6 0.0 1.6 274.6 73.5 73.5 0.0 5898.9End Layer 1 73.0 69.6

6.0 0.0 93.9 6.5 1.6 0.0 1.6 1984.8 70.0 69.9 0.0 35436.4RSL 67.0 93.9

2.0 0.0 102.0 6.5 1.6 0.0 1.6 795.7 66.0 66.0 0.0 11138.8End of Layer 2 65.0 102.0

2.0 0.0 110.1 6.5 1.6 0.0 1.6 861.6 64.0 64.0 0.0 10339.8End of Layer 3 63.0 110.1

9.3 0.0 147.9 6.5 1.6 0.0 1.6 4880.8 58.4 58.1 0.0 29914.7Well kerb top 53.7 147.9

1.7 0.0 154.8 6.7 1.6 0.0 1.6 1069.4 52.9 52.8 0.0 902.1Foundation Level 52.0

29.2Total 0.0 12672.4 0.0 157999.3 0.0 1754.8

Total Active Force 12672.4 Total Active Moment 157999.3 1754.820883.2 836.3

Grand total 178882.5 2591.1

Passive Earth Pressure(Seismic Case)(LWL Case)

LayerReduced Level thickness c N 2c * N yz * N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

LWL 70.0 0.0-4.0 0.0 25.0 5.7 10.0 0.0 -228.9 5.7

Well cap bottom 74.0 -228.91.0 0.0 25.0 5.7 10.0 0.0 -171.5 5.7

End Layer 1 73.0 -171.56.0 0.0 25.0 5.7 10.0 0.0 171.3 5.7

RSL 67.0 171.32.0 0.0 25.0 5.7 10.0 0.0 286.1 5.7

End of Layer 2 65.0 286.12.0 0.0 25.0 5.7 10.0 0.0 400.8 5.7

End of Layer 3 63.0 400.89.3 0.0 25.0 5.7 10.0 0.0 935.0 5.7

Well kerb top 53.7 935.01.7 0.0 25.0 5.7 10.0 0.0 1032.5 5.7

Foundation Level 52.018.0

Reduced Level Layer 2c * N yz * N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 52.0 52.0

(m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

LWL 70.0 0.0-4.0 0.0 -228.9 10.3 1.6 0.0 1.6 2925.0 72.0 72.7 0.0 60430.9

Well cap bottom 74.0 -228.91.0 0.0 -171.5 6.5 1.6 0.0 1.6 -813.3 73.5 73.5 0.0 -17496.3

End Layer 1 73.0 -171.56.0 0.0 171.3 6.5 2.4 0.0 1.6 -2.1 70.0 2054.7 0.0 -4184.0

RSL 67.0 171.3

2.0 0.0 286.1 6.5 2.4 0.0 1.6 1858.1 66.0 65.9 0.0 25882.8

End of Layer 2 65.0 286.1

2.0 0.0 400.8 6.5 2.4 0.0 1.6 2790.2 64.0 64.0 0.0 33363.8

End of Layer 3 63.0 400.89.3 0.0 935.0 6.5 1.6 0.0 1.6 25268.3 58.4 57.7 0.0 144932.6

Well kerb top 53.7 935.01.7 0.0 1032.5 6.7 1.6 0.0 1.6 6950.6 52.9 52.8 0.0 5810.4

Foundation Level 52.0

18.0Total 0.0 38977.0 0.0 248740.2

Total Passive Force 38977.0 Total Passive Moment 248740.2

Page 46: Abutment Well

Copy of Abutment_well

Passive relief due to (-ve) surcharge Surcharge height = 0.3 m

Layer 70.0 mReduced Level thickness c N y z * N

(m) (kN /m^2) (degree) (kN / m^2)

LWL 70.0 6.2 74.0 m-4.0 0.0 25.0 2.5 10.0 6.2 5.7

Well cap bottom 74.01.0 0.0 25.0 2.5 10.0 6.2 5.7 6.2

End Layer 1 73.0 73.0 m6.0 0.0 25.0 2.5 10.0 6.2 5.7

RSL 67.02.0 0.0 25.0 2.5 10.0 6.2 5.7 6.2

End of Layer 2 65.0 67.0 m2.0 0.0 25.0 2.5 10.0 6.2 5.7

End of Layer 3 63.09.3 0.0 25.0 2.5 10.0 6.2 5.7 6.2

Well kerb top 53.71.7 0.0 25.0 2.5 10.0 6.2 5.7 65.0 m

Foundation Level 52.0

18.0 6.2 63.0 m

6.253.7 m

Reduced Level Layer yz * N Projected (FOS) Force c.g. of force Moment @thickness Length of we (kN) 52.0 6.2

(m) c(kN.m) 52.0 m

LWL 70.0

-4.0 6.2 10.3 1.6 -158.0 72.0 -3158.7 Passive relief due to (-ve) surchargeWell cap bottom 74.0

1.0 6.2 6.5 1.6 25.1 73.5 539.6End Layer 1 73.0

6.0 6.2 6.5 1.6 150.1 70.0 2701.4RSL 67.0

2.0 6.2 6.5 1.6 50.2 66.0 703.7End of Layer 2 65.0

2.0 6.2 6.5 1.6 50.2 64.0 603.2End of Layer 3 63.0

9.3 6.2 6.5 1.6 233.8 58.4 1486.3Well kerb top 53.7

1.7 6.2 6.7 1.6 43.7 52.9 37.1Foundation Level 52.0

18.0Total 395.1 2912.6

Grand Total Passive Force 39372 Total Passive Moment 251652.9

Check for steining :Case 3It is assumed that point of zero shear will be at a distance of Z m below from well cap bottom.Total active force =

574.4 +

445.4 + 39.2 Z +

0.0 + 0.0 Z +1.6

2805.6 + 426.1 Z + 13.2 Z^21.6 1.6

Total Passive force =

0.0 + 0.0 Z +1.6

2925.0 + -1487.6 Z + 186.4 Z^2 +1.6 1.6

-158.0 + 40.2 Z1.6

Page 47: Abutment Well

Copy of Abutment_well

Eqating both active and passive earth pressure :

3825.3 + 305.5 Z + 8.2 Z^2 = 2767.0 + -904.7 Z + 116.5 Z^2

1058.3 + 1210.2 Z + -108.3 Z^2 = 0.0

-9.8 + -11.2 Z + Z^2 = 0.0

Z = 11.2 + 12.8 = 12.0 m2.0

This means, Point of zero shear will be at a distance of 12.0 m in layer 2 i.e. at RL 62.0 m

Live Load Surcharge upto RL 62.0 m

Layer Ka = 0.3 Moment @Reduced Level thickness Pressure Length Force c.g. of force 62.0

(m) (kN / m^2) (kN. m)

Deck Level 81.25.2 6.0 10.3 321.7 78.6 5337.4

HFL 76.06.0 6.0 10.3 370.5 73.0 4075.1

Well cap top(MSL) 70.0-4.0 6.0 10.3 -246.8 72.0 -2467.6

Well cap bottom 74.012.0 6.0 6.5 470.5 68.0 2821.0

End Layer 1 62.00.0 6.0 6.5 0.0 0.0 0.0

Well kerb top 0.00.0 6.0 6.5 0.0 0.0 0.0

End Layer 2 0.00.0 6.0 6.5 0.0 0.0 0.0

Foundation Level 0.0

19.2 915.8 9765.9

Active Earth Pressure(Seismic Case)(LWL Case) upto R 62.0 m

LayerReduced Level thickness c N 2c / N yz / N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

Deck Level 81.2 0.05.2 0.0 25.0 3.6 18.0 0.0 26.2 3.6

Well cap top(Assumed RSL) 76.0 26.26.0 0.0 25.0 3.6 18.0 0.0 56.3 3.6

LWL 70.0 56.3-4.0 0.0 25.0 3.6 10.0 0.0 45.1 3.6

Well cap bottom 74.0 45.112.0 0.0 25.0 3.6 10.0 0.0 78.6 3.6

End Layer 1 62.0 0.00.0 0.0 25.0 3.6 10.0 0.0 0.0 3.6

MSL 0.0 0.00.0 0.0 25.0 3.6 10.0 0.0 0.0 3.6

End of Layer 2 0.0 0.00.0 0.0 25.0 3.6 10.0 0.0 0.0 3.6

End of Layer 3 0.0 0.00.0 25.0 3.6 0.0 3.6

Well kerb top 0.00.0 25.0 3.6 0.0 3.6

Foundation Level

19.2

Page 48: Abutment Well

Copy of Abutment_well

Reduced Level Layer -2c / N yz / N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 62.0 62.0

(FOS=3) (m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

Deck Level 81.2 0.05.2 0.0 26.2 10.3 1.0 0.0 1.0 696.9 78.6 77.7 0.0 10960.3

Well cap top(Assumed RSL) 76.0 26.26.0 0.0 56.3 10.3 1.0 0.0 1.0 2530.5 73.0 72.6 0.0 26906.3

LWL 70.0 56.3-4.0 0.0 45.1 10.3 1.6 0.0 1.6 -1296.0 72.0 71.9 0.0 -12862.5

Well cap bottom 74.0 45.112.0 0.0 78.6 6.5 1.6 0.0 1.6 3015.0 68.0 67.5 0.0 16447.5

End Layer 1 62.0 0.00.0 0.0 0.0 6.5 1.6 0.0 2.4 0.0 0.0 0.0 0.0 0.0

MSL 0.0 0.00.0 0.0 0.0 6.5 1.6 0.0 2.4 0.0 0.0 0.0 0.0 0.0

End of Layer 2 0.0 0.00.0 0.0 0.0 6.5 1.6 0.0 2.4 0.0 0.0 0.0 0.0 0.0

End of Layer 3 0.0 0.00.0 0.0 6.5 1.6 0.0 1.6 0.0 0.0 0.0 0.0 0.0

Well kerb top 0.0 0.00.0 0.0 6.7 1.6 0.0 1.6 0.0 0.0 0.0 0.0 0.0

Foundation Level 0.0

19.2Total 0.0 4946.4 0.0 41451.6

Total Active Force 4946.4 Total Active Moment 41451.69765.9

Grand total 51217.4

Passive Earth Pressure(Seismic Case)(LWL Case) upto 62.0 m

LayerReduced Level thickness c N 2c * N yz * N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

LWL 70.0 0.0-4.0 0.0 25.0 2.5 10.0 0.0 -98.3 5.7

Well cap bottom 74.0 -98.312.0 0.0 25.0 2.5 10.0 0.0 197.2 5.7

End Layer 1 62.0 0.00.0 0.0 25.0 2.5 10.0 0.0 0.0 5.7

RSL 0.0 0.00.0 0.0 25.0 2.5 10.0 0.0 0.0 5.7

End of Layer 2 0.0 0.00.0 0.0 25.0 2.5 10.0 0.0 0.0 5.7

End of Layer 3 0.00.0 25.0 2.5 0.0 5.7

Well kerb top0.0 25.0 2.5 0.0 5.7

Foundation Level

8.0

Page 49: Abutment Well

Copy of Abutment_well

Reduced Level Layer 2c * N yz * N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 62.0 62.0

(m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

LWL 70.0 0.0-4.0 0.0 -98.3 10.3 1.6 0.0 1.6 1256.4 72.0 72.7 0.0 13397.3

Well cap bottom 74.0 -98.312.0 0.0 197.2 6.5 1.6 0.0 1.6 2408.6 68.0 62.0 0.0 54.8

End Layer 1 62.0 0.00.0 0.0 0.0 6.5 2.4 0.0 1.6 0.0 0.0 0.0 0.0 0.0

MSL 0.0 0.00.0 0.0 0.0 6.5 2.4 0.0 1.6 0.0 0.0 0.0 0.0 0.0

End of Layer 2 0.0 0.00.0 0.0 0.0 6.5 2.4 0.0 1.6 0.0 0.0 0.0 0.0 0.0

End of Layer 3 0.0 0.00.0 0.0 6.5 1.6 0.0 1.6 0.0 0.0 0.0 0.0

Well kerb top 0.0 0.00.0 0.0 6.7 1.6 0.0 1.6 0.0 0.0 0.0 0.0

Foundation Level 0.0

8.0Total 0.0 3665.0 0.0 13452.1

Total Passive Force 3665.0 Total Passive Moment 13452.1

Passive relief due to (-ve) surcharge upto RL 62.0 m Surcharge height = 0.3 m

LayerReduced Level thickness c N y z * N

(m) (kN /m^2) (degree) (kN / m^2)

LWL 70.0-4.0 0.0 25.0 2.5 10.0 6.2 5.7

Well cap bottom 74.012.0 0.0 25.0 2.5 10.0 6.2 5.7

End Layer 1 62.00.0 0.0 25.0 2.5 10.0 6.2 5.7

MSL 0.00.0 0.0 25.0 2.5 10.0 6.2 5.7

End of Layer 2 0.00.0 0.0 25.0 2.5 10.0 0.0 5.7

End of Layer 3 0.00.0 0.0 25.0 2.5 10.0 0.0 5.7

Well kerb top 0.00.0 0.0 25.0 2.5 10.0 0.0 5.7

Foundation Level 0.0

8.0

Page 50: Abutment Well

Copy of Abutment_well

Reduced Level Layer yz * N Projected (FOS) Force c.g. of force Moment @thickness Length of we (kN) 62.0

(m) c(kN.m)

LWL 70.0-4.0 6.2 10.3 1.6 -158.0 72.0 -1579.4

Well cap bottom 74.012.0 6.2 6.5 1.6 301.1 68.0 1805.6

End Layer 1 62.00.0 6.2 6.5 1.6 0.0 0.0 0.0

MSL 0.00.0 6.2 6.5 1.6 0.0 0.0 0.0

End of Layer 2 0.00.0 0.0 6.5 1.6 0.0 0.0 0.0

End of Layer 3 0.00.0 0.0 6.5 1.6 0.0 0.0 0.0

Well kerb top 0.00.0 0.0 6.7 1.6 0.0 0.0 0.0

Foundation Level 0.0

8.0Total 143.1 226.2

Grand Total Passive Force 3808 Total Passive Moment 13678.3

Case 3Calculation for Loads and Moments upto RL 62.0 m

Longitudnal Horizontal Force (HL) =

Governing Longitudnal Force at Bearing Level = 574 kN

Moment at abutment base = 574.4 x ( 78.5 + -62.0 ) = 574.4 x 16.5(Due to long. Force) = 9486.2 kN

Moment " MT" due to Transverse Live Load Eccentricity

Due to 70 R Wheeled = ( 447.9 + 10.7 ) x 1.3 = 587.1 kN.mDue to Class A = ( 0.0 + 0.0 ) x 0.0 = 0.0 kN.mDue to FPLL = ( 61.6 + 1.5 ) x 4.3 = 268.1 kN.mDue to SIDL = ( 932.1 + 22.4 ) x 0.5 = 429.5 kN.m

Page 51: Abutment Well

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L AxisAt RL @ 62.0 m and @ cg of Foundation Level

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1.0 Dead load 3816.7 1.2 4580.02.0 SIDL 932.1 1.2 1118.53.0 FPLL 61.6 1.2 73.94.0 Reaction from CWLL (Max.)

70 R Wheeled 895.8 1.2 1075.0class A 1 Lane 0.0 1.2 0.0

5.0 Thickening of slab 0.7 24.0 16.2 1.2 19.46.0 Dirt wall 9.2 24.0 219.7 0.4 87.97.0 Abutment Cap(Uniform portion) 7.6 24.0 182.7 0.2 32.08.0 Uniform portion of corbel 3.6 24.0 86.1 1.4 122.79.0 Triangluar portion of corbel 0.6 24.0 15.1 1.4 20.6

10.0 Abutment Shaft (Above HFL) 17.8 24.0 426.2 0.8 319.611.0 Abutment Shaft (Below HFL) -4.2 24.0 -100.9 0.8 -75.612.0 Return Wall (Uniform Portion) 0.6 24.0 15.1 -1.5 -22.713.0 Return Wall (Tapered Portion) 2.5 24.0 58.8 -0.9 -53.914.0 Railing over cantilever Return 2.0 3.8 3.0 22.8 -1.4 -30.8

Nos.Total Load and moments at Abutment Shaft Bottom 6648.0 7266.7

15.0 Backfill behind AbutmentOn Rectangular Portion (Above HFL) 201.3 18.0 3622.7 -1.5 -5434.0On Rectangular Portion (Below HFL) -14.7 18.0 -264.8 -1.5 397.1

16.0 Front Fill on Well cap 18.8 18.0 338.6 2.1 710.7

Total Load and moments at Abutment Shaft Bottom 10344.5 2940.5(Including Back Fill + Front Fill )

17.0 Well Cap (Left elliptical portion) 71.8 22.5 1614.4 0.0 0.018.0 Rectangular portion 20.5 22.5 461.3 0.0 0.01.0 Well Cap (Right elliptical portion) 32.2 22.5 724.5 0.0 0.02.0 Intermediate Plug 0.0 12.0 0.0 0.0 0.03.0 Well Steining 207.2 22.5 4662.5 0.0 0.04.0 Bottom Plug 0.0 12.0 0.0 0.0 0.05.0 Well Kerb 0.0 14.0 0.0 0.0 0.06.0 Sump in Bottom Plug 0.0 12.0 0.0 0.0 0.07.0 Sand Fill 0.0 10.0 0.0 0.0 0.08.0 Earth on Well Kerb 0.0 10.0 0.0 0.0 0.0

Total Loads and Moment at Well Foundation 17807.2 2940.5

Loads and moments upto RL 62.0 m

Vertical Load = 17807.2 + 149.0 = 17956.1 kNTotal Active Earth Press. Moment. Due to Horiz. Force at bearing Level

Moment, ML = 2941 + 51217 + 9486 + 52 + 729.5= 64425 kN.m

Moment, MT = 587 + 0 + 268 + 430 = 1284.7 kN.m

Resultant Moment MR = 64425 ^2 1285 ^2 64438

Moment due to Tilt & Shift

Total Loads upto Well Cap Top Level SHIFT TILT Total Loads below Well Cap Top Level TILT

Mts .= ( 10344.5 + 149 x ( 0.150 + 14 ) + ( 7463 + 0 ) x 14.080 160.0

= 4062 kNm

MR Mts

Total Resultant Moment = 64438 + 4062 = 68500 kNm

Total Moment upto RL 62 m MR + Mts = 68500 kNm

Passive Resistance = 13678 < 68500

Hence, Moment will Transfer to the steining = 68500 + -13678.3= 54822 kN

P max. = P + M = 17956.1 + 54822A Z 17.3 21

= 1039.2 + 2640

= 3679.0 kPa

Page 52: Abutment Well

Copy of Abutment_well

P min. = P - M = 17956.1 - 54822A Z 17.3 21

= 1039.2 - 2639.8

= -1601 kPa= 1.6 < 6.1

Section is uncracked

Check for safety of section 1.0 + 2.6 = 0.5 < 1.0 Hence OK6.3 8.3

Case4Live Load Surcharge

Layer Ka = 0.279 Moment @ Moment @Reduced Level thickness Pressure Length Force c.g. of force 52.0 76.0

(m) (kN / m^2) (kN. m) (kN. m)

Deck Level 81.25.6 6.0 10.3 347.0 78.4 9156.4 831.1

HFL 75.6-0.4 6.0 10.3 -25.4 75.8 -603.2 5.2

Well cap top 76.02.0 6.0 10.3 123.7 75.0 2844.3

Well cap bottom 74.01.0 6.0 6.5 39.2 73.5 843.0

End Layer 1 73.06.0 6.0 6.5 234.5 70.0 4220.7

RSL 67.02.0 6.0 6.5 78.5 66.0 1099.4

End of Layer 2 65.02.0 6.0 6.5 78.5 64.0 942.5

End of Layer 3 63.09.3 6.0 6.5 365.3 58.4 2322.2

Well kerb top 53.71.7 6.0 6.7 68.2 52.9 58.0

Foundation Level 52.0

29.2 1309.5 20883.2 836.3

Case4Active Earth Pressure(Seismic Case)(HFL Case)

LayerReduced Level thickness c N 2c / N yz / N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

Deck Level 81.2 0.05.6 0.0 25.0 3.6 18.0 0.0 28.2 3.6

HFL 75.6 28.2-0.4 0.0 25.0 3.6 10.0 0.0 27.1 3.6

Well cap top 76.0 27.12.0 0.0 25.0 3.6 10.0 0.0 32.7 3.6

Well cap bottom 74.0 32.71.0 0.0 25.0 3.6 10.0 0.0 35.5 3.6

End Layer 1 73.0 35.56.0 0.0 25.0 3.6 8.0 0.0 48.8 3.6

RSL 67.0 48.82.0 0.0 25.0 3.6 8.0 0.0 53.3 3.6

End of Layer 2 65.0 53.32.0 0.0 25.0 3.6 9.3 0.0 58.5 3.6

End of Layer 3 63.0 58.59.3 0.0 25.0 3.6 10.0 0.0 84.5 3.6

Well kerb top 53.7 84.51.7 0.0 25.0 3.6 10.0 0.0 89.2 3.6

Foundation Level 52.0

29.2

Page 53: Abutment Well

Copy of Abutment_well

Reduced Level Layer -2c / N yz / N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @ Moment @ Moment @thickness Length of well c to c soil c 52.0 52.0 76.0 76.0

(m) (m) c c (kN) (kN) (m) (m) (kN.m) (kN.m) (kN.m) (kN.m)

Deck Level 81.2 0.05.6 0.0 28.2 10.3 1.0 0.0 1.0 811.2 78.4 77.5 0.0 20644.6 0.0 1184.3

HFL 75.6 28.2-0.4 0.0 27.1 10.3 1.0 0.0 1.0 -116.2 75.8 75.8 0.0 -2762.7 0.0 24.0

Well cap top 76.0 27.12.0 0.0 32.7 10.3 1.0 0.0 1.0 612.2 75.0 75.0 0.0 14054.8

Well cap bottom 74.0 32.71.0 0.0 35.5 6.5 1.0 0.0 1.0 221.3 73.5 73.5 0.0 4755.2

End Layer 1 73.0 35.56.0 0.0 48.8 6.5 1.0 0.0 1.0 1636.8 70.0 69.8 0.0 29205.9

RSL 67.0 48.82.0 0.0 53.3 6.5 1.6 0.0 1.6 414.7 66.0 66.0 0.0 5805.7

End of Layer 2 65.0 53.32.0 0.0 58.5 6.5 1.6 0.0 1.6 454.0 64.0 64.0 0.0 5447.1

End of Layer 3 63.0 58.59.3 0.0 84.5 6.5 1.6 0.0 1.6 2704.7 58.4 58.1 0.0 16428.2

Well kerb top 53.7 84.51.7 0.0 89.2 6.7 1.6 0.0 1.6 613.8 52.9 52.8 0.0 517.0

Foundation Level 52.0

29.2Total 0.0 7352.6 0.0 94095.8 0.0 1208.3

Total Active Force 7352.6 Total Active Moment 94095.8 1208.320883.2 836.3

Grand total 114979.0 2044.6

Passive Earth Pressure(Seismic Case)

LayerReduced Level thickness c N 2c * N yz * N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

RSL 67.0 0.02.0 0.0 25.0 5.7 8.0 0.0 91.8 5.7

End of Layer 2 65.0 91.82.0 0.0 25.0 5.7 9.3 0.0 198.5 5.7

End of Layer 3 63.0 198.59.3 0.0 25.0 5.7 10.0 0.0 732.7 5.7

Well kerb top 53.7 732.71.7 0.0 25.0 5.7 10.0 0.0 830.2 5.7

Foundation Level 52.0

15.0

Reduced Level Layer 2c * N yz * N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of wel c to c soil c 52.0 52.0

(m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

RSL 67.0 0.02.0 0.0 91.8 6.5 2.4 0.0 1.6 372.8 66.0 65.7 0.0 5100.3

End of Layer 2 65.0 91.82.0 0.0 198.5 6.5 2.4 0.0 1.6 1179.1 64.0 63.9 0.0 14020.1

End of Layer 3 63.0 198.59.3 0.0 732.7 6.5 1.6 0.0 1.6 17614.1 58.4 57.5 0.0 96278.9

Well kerb top 53.7 732.7

1.7 0.0 830.2 6.7 1.6 0.0 1.6 5521.2 52.9 52.8 0.0 4595.4

Foundation Level 52.0

15.0Total 0.0 24687.3 0.0 119994.8

Total Passive Force 24687.3 Total Passive Moment 119994.8

Page 54: Abutment Well

Copy of Abutment_well

Passive relief due to (-ve) surcharge Surcharge height = 0.3 m

LayerReduced Level thickness c N y z * N

(m) (kN /m^2) (degree) (kN / m^2) 67.0 m

RSL 67.02.0 0.0 25.0 5.7 10.0 14.4 5.7

End of Layer 2 65.0 14.4 65.0 m2.0 0.0 25.0 5.7 10.0 14.4 5.7

End of Layer 3 63.09.3 0.0 25.0 5.7 10.0 14.4 5.7 63.0 m

Well kerb top 53.7 14.41.7 0.0 25.0 5.7 10.0 14.4 5.7

Foundation Level 52.014.4 53.7 m

15.014.4 52.0 m

Reduced Level Layer yz * N Projected (FOS) Force c.g. of force Moment @thickness Length of we (kN) 52.0

(m) c

(kN.m) Passive relief due to (-ve) surcharge

Well cap top(MSL) 67.02.0 14.4 6.5 1.6 116.9 66.0 1638.1

Well cap bottom 65.02.0 14.4 6.5 1.6 116.9 64.0 1404.3

End of Layer 1 63.09.3 14.4 6.5 1.6 544.3 58.4 3460.2

Well kerb top 53.71.7 14.4 6.7 1.6 101.7 52.9 86.4

End Layer 2 52.0

15.0Total 879.8 6589.0

Grand Total Passive Force 25567.1 Total Passive Moment 126583.8

Check for steining :

Case4

It is assumed that point of zero shear will be at a distance of Z m below from RSL.

Total Active force =

574.4 +

719.1 + 39.2 Z +

0.0 + 0.0 Z +1.6

3165.3 + 317.3 Z + 7.3 Z^21.6 1.6

Total Passive force =

0.0 + 0.0 Z +2.4

0.0 + 0.0 Z + 149.1 Z^2 +1.6 1.6

0.0 + 93.5 Z1.6

Page 55: Abutment Well

Copy of Abutment_well

Eqating both active and passive earth pressure :

4458.8 + 237.5 Z + 4.5 Z^2 = 0.0 + 58.5 Z + 93.2 Z^2

4458.8 + 179.1 Z + -88.7 Z^2 = 0.0

-50.3 + -2.0 Z + Z^2 = 0.0

Z = 2.0 + 14.3 = 8.2 m2.0

This means, Point of zero shear will be at a distance of 8.2 m from RSL i.e. at RL 58.8 m

Live Load Surcharge upto RL 58.8 m

Layer Ka = 0.3 Moment @Reduced Level thickness Pressure Length Force c.g. of force 58.8

(m) (kN / m^2) (kN. m)

Deck Level 81.25.6 6.0 10.3 347.0 78.4 6782.5

HFL 75.6-0.4 6.0 10.3 -25.4 75.8 -429.8

Well cap top 76.02.0 6.0 10.3 123.7 75.0 1998.0

Well cap bottom 74.01.0 6.0 6.5 39.2 73.5 574.7

End Layer 1 73.06.0 6.0 6.5 234.5 70.0 2616.9

MSL 67.08.2 6.0 6.5 320.6 62.9 1310.0

End of Layer 2 58.80.0 6.0 6.5 0.0 63.0 0.0

End of Layer 3 63.00.0 6.0 6.5 0.0 53.7 0.0

Well kerb top 53.70.0 6.0 6.7 0.0 52.0 0.0

Foundation Level 52.0

22.3 1039.7 12852.3

Active Earth Pressure(Normal Case) upto RL 58.8 m

LayerReduced Level thickness c N 2c / N yz / N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

Deck Level 81.2 0.05.6 0.0 25.0 2.5 18.0 0.0 41.0 3.6

HFL 75.6 41.0-0.4 0.0 25.0 2.5 10.0 0.0 39.3 3.6

Well cap top 76.0 39.32.0 0.0 25.0 2.5 10.0 0.0 47.4 3.6

Well cap bottom 74.0 47.41.0 0.0 25.0 2.5 10.0 0.0 51.5 3.6

End Layer 1 73.0 51.56.0 0.0 25.0 2.5 8.0 0.0 70.9 3.6

RSL 67.0 70.98.2 0.0 25.0 2.5 8.0 0.0 97.4 3.6

End of Layer 2 58.8 0.00.0 0.0 25.0 2.5 9.3 0.0 0.0 3.6

End of Layer 3 63.0 0.00.0 0.0 25.0 2.5 10.0 0.0 0.0 3.6

Well kerb top 53.7 0.00.0 0.0 25.0 2.5 10.0 0.0 0.0 3.6

Foundation Level 52.0

22.3

Page 56: Abutment Well

Copy of Abutment_well

Reduced Level Layer -2c / N yz / N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 58.8 58.8

(m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

Deck Level 81.2 0.05.6 0.0 41.0 10.3 1.0 0.0 1.0 1178.3 78.4 77.5 0.0 21928.1

HFL 75.6 41.0-0.4 0.0 39.3 10.3 1.0 0.0 1.0 -168.7 75.8 75.8 0.0 -2858.9

Well cap top 76.0 39.32.0 0.0 47.4 10.3 1.0 0.0 1.0 889.3 75.0 75.0 0.0 14333.2

Well cap bottom 74.0 47.41.0 0.0 51.5 6.5 1.0 0.0 1.0 321.5 73.5 73.5 0.0 4708.0

End Layer 1 73.0 51.56.0 0.0 70.9 6.5 1.0 0.0 1.0 2377.6 70.0 69.8 0.0 26160.8

RSL 67.0 70.98.2 0.0 97.4 6.5 1.6 0.0 1.6 2794.5 62.9 62.7 0.0 10819.0

End of Layer 2 58.8 0.00.0 0.0 0.0 6.5 1.6 0.0 1.6 0.0 63.0 0.0 0.0 0.0

End of Layer 3 63.0 0.00.0 0.0 0.0 6.5 1.6 0.0 1.6 0.0 53.7 0.0 0.0 0.0

Well kerb top 53.7 0.00.0 0.0 0.0 6.7 1.6 0.0 1.6 0.0 52.0 0.0 0.0 0.0

Foundation Level 52.0

22.3Total 0.0 7392.5 0.0 75090.2

Total Active Force 7392.5 Total Active Moment 75090.212852.3

Grand total 87942.5

Passive Earth Pressure(Seismic Case) upto RL 58.8 m

LayerReduced Level thickness c N 2c * N yz * N

(m) (kg / cm^2) (degree) (kN / m^2) (kN / m^2)

RSL 67.0 0.08.2 0.0 25.0 2.5 8.0 0.0 161.1 5.7

End of Layer 2 58.8 0.00.0 0.0 25.0 2.5 9.3 0.0 0.0 5.7

End of Layer 3 63.0 0.00.0 0.0 25.0 2.5 10.0 0.0 0.0 5.7

Well kerb top 53.7 0.00.0 0.0 25.0 2.5 10.0 0.0 0.0 5.7

Foundation Level 52.08.2

Reduced Level Layer 2c * N yz * N Projected (FOS) Force due (FOS) Force due to c.g. of force c.g. of force Moment @ Moment @thickness Length of well c to c soil c 58.8 58.8

(m) (m) c (kN) (kN) (m) (m) (kN.m) (kN.m)

RSL 67.0 0.08.2 0.0 161.1 6.5 2.4 0.0 1.6 2674.2 62.9 61.6 0.0 7284.9

End of Layer 2 58.8 0.00.0 0.0 0.0 6.5 2.4 0.0 1.6 0.0 63.0 0.0 0.0 0.0

End of Layer 3 63.0 0.00.0 0.0 0.0 6.5 1.6 0.0 1.6 0.0 53.7 0.0 0.0 0.0

Well kerb top 53.7 0.00.0 0.0 0.0 6.7 1.6 0.0 1.6 0.0 52.0 0.0 0.0 0.0

Foundation Level 52.0 0.0

8.2Total 0.0 2674.2 0.0 7284.9

Total Passive Force 2674.2 Total Passive Moment 7284.9

Page 57: Abutment Well

Copy of Abutment_well

Passive relief due to (-ve) surcharge upto RL 58.8 m Surcharge height = 0.3 m

LayerReduced Level thickness c N y z * N

(m) (kN /m^2) (degree) (kN / m^2)

RSL 67.08.2 0.0 25.0 5.7 10.0 14.4 5.7

End of Layer 2 58.80.0 0.0 25.0 5.7 10.0 14.4 5.7

End of Layer 3 63.00.0 0.0 25.0 5.7 10.0 14.4 5.7

Well kerb top 53.70.0 0.0 25.0 5.7 10.0 14.4 5.7

Foundation Level 52.0

8.2

Reduced Level Layer yz * N Projected (FOS) Force c.g. of force Moment @thickness Length of we (kN) 58.8

(m) c(kN.m)

RSL 67.08.2 14.4 6.5 1.6 477.7 62.9 1951.9

End of Layer 2 58.80.0 14.4 6.5 1.6 0.0 63.0 0.0

End of Layer 3 63.00.0 14.4 6.5 1.6 0.0 53.7 0.0

Well kerb top 53.70.0 14.4 6.7 1.6 0.0 52.0 0.0

Foundation Level 52.0

8.2Total 477.7 1951.9

Grand Total Passive Force 3152 Total Passive Moment 9236.8

Case 4Calculation for Loads and Moments upto RL 58.8 m

Longitudnal Horizontal Force (HL) =Governing Longitudnal Force at Bearing Level = 574.4 kN

Moment at abutment base = 574.4 x ( 78.5 + -58.8 ) = 574.4 x 19.7(Due to long. Force) = 11299.3 kN

Moment " MT" due to Transverse Live Load Eccentricity

Due to 70 R Wheeled = ( 83.5 + 2.0 ) x 1.3 = 109.4 kN.mDue to Class A = ( 0.0 + 0.0 ) x 0.0 = 0.0 kN.mDue to FPLL = ( 61.6 + 1.5 ) x 4.3 = 268.1 kN.mDue to SIDL = ( 932.1 + 22.4 ) x 0.5 = 429.5 kN.m

Vertical Loads (P) and their Moments (ML) along L-L AxisAt RL @ 58.8 m and @ cg of Foundation Level

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1.0 Dead load 3816.7 1.2 4580.02.0 SIDL 932.1 1.2 1118.53.0 FPLL 61.6 1.2 73.94.0 Reaction from CWLL (Max.)

70 R Wheeled 167.0 1.2 200.4class A 1 Lane 0.0 1.2 0.0

5.0 Thickening of slab 0.7 24.0 16.2 1.2 19.46.0 Dirt wall 9.2 24.0 219.7 0.4 87.97.0 Abutment Cap(Uniform portion) 7.6 24.0 182.7 0.2 32.08.0 Uniform portion of corbel 3.6 24.0 86.1 1.4 122.79.0 Triangluar portion of corbel 0.6 24.0 15.1 1.4 20.6

10.0 Abutment Shaft (Above HFL) 17.8 24.0 426.2 0.8 319.611.0 Abutment Shaft (Below HFL) -4.2 22.5 -94.6 0.8 -70.912.0 Return Wall (Uniform Portion) 0.6 24.0 15.1 -1.5 -22.713.0 Return Wall (Tapered Portion) 2.5 24.0 58.8 -0.9 -53.914.0 Railing over cantilever Return 2.0 3.8 3.0 22.8 -1.4 -30.8

Nos.Total Load and moments at Abutment Shaft Bottom 5925.5 6396.8

Page 58: Abutment Well

Copy of Abutment_well

15.0 Backfill behind Abutment

On Rectangular Portion (Above HFL) 201.3 18.0 3622.7 -1.5 -5434.0On Rectangular Portion (Below HFL) -14.7 10.0 -147.1 -1.5 220.6

16.0 Front Fill on Well cap 18.8 10.0 188.1 2.1 394.8

Total Load and moments at Abutment Shaft Bottom 9589 1578.3(Including Back Fill + Front Fill )

17.0 Well Cap (Left elliptical portion) 71.8 22.5 1614.4 0.0 0.018.0 Rectangular portion 20.5 22.5 461.3 0.0 0.019.0 Well Cap (Right elliptical portion) 32.2 22.5 724.5 0.0 0.020.0 Intermediate Plug 0.0 12.0 0.0 0.0 0.021.0 Well Steining 261.8 22.5 5889.7 0.0 0.022.0 Bottom Plug 0.0 12.0 0.0 0.0 0.023.0 Well Kerb 0.0 14.0 0.0 0.0 0.024.0 Sump in Bottom Plug 0.0 12.0 0.0 0.0 0.025.0 Sand Fill 0.0 10.0 0.0 0.0 0.026.0 Earth on Well Kerb 0.0 10.0 0.0 0.0 0.0

Total Loads and Moment at Well Foundation 18279 1578.3

Loads and moments upto RL 58.8 m

Vertical Load = 18279 + 141 = 18420 kNTotal Active Earth Press. Moment. Due to Horiz. Force at bearing Level

Moment, ML = 1578 + 87943 + 11299 + 48 + 906= 101774 kN.m

Moment, MT = 109 + 0 + 268 + 430 = 807 kN.m

Resultant Moment MR = 101774 ^2 807 ^2 = 101777

Moment due to Tilt & Shift

Total Loads upto Well Cap Top Level SHIFT TILT Total Loads below Well Cap Top Level TILT

Mts .= ( 9589.2 + 141.0 x ( 0.150 17.1 ) + ( 8689.9 + 0.0 ) x 17.180.0 160.0

= 4476.8 kNmMR Mts

Total Resultant Moment = 101777 + 4477 = 106254 kNm

Total Moment upto RL 58.8 m MR + Mts = 106254 kNm

Passive Resistance = 9237 < 106254

Hence, Moment will Transfer to the steining = 106254 + -9236.8= 97017 kN

P max. = P + M = 18279 + 97017A Z 17.28 20.77

= 1058 + 4672

= 5729 kPa

P min. = P - M = 18279 - 97017A Z 17.28 20.77

= 1058 - 4672

= -3614 kPa= 3.6 < 6.1

Section is uncracked

Check for safety of section 1.1 + 4.7 = 0.7 < 1.0 Hence OK6.3 8.3

Page 59: Abutment Well

Copy of Abutment_well

Summary of Loads and Moments at Abutment Shaft Base

LWL with max. LL HFL with min. LL

Normal Seismic Normal SeismicCase Case Case Case

Load (kN) 6670.8 6670.8 5965.5 5965.5ML (kN.m) 5407.2 6507.3 5071.2 5624.0MT (kN.m) 1857.1 1857.1 900.4 900.4

Summary of Base Pressure at Well Foundation Level

Max. Base Min. BasePressure Pressure

V V(kN) (kN)

LWL with max. LL 587 587Normal case

HFL with min. LL 566 566Normal case

LWL with max. LL 591 591Seismic case

HFL with min. LL 1000 141Seismic case

Page 60: Abutment Well

Copy of Abutment_well

Reinforcement in abutment well steining

Since steining is in compression only minimum reinfrocement shall be provided as per Cl. 708.3.4

Steining Area = 42.25 - 20.25 = 17.279 m sq4

a. longitudinal reinforcememt@ 0.12% of X-section area = 0.12 x 17.279 x 1000000

100

= 20734.5115 mm2

Longitudinal reinf. Shall be distributed equally on both faces of steining.

Area of steel for each face = 20734.51 = 10367 mm2

2

Provide 36.000 bars of 20.000 mm dia at each face ( Providing = 11310 mm^2 Hence OK

b. Transverse reinforcement.

@ .04% by volume = 0.04 x 17.279 x 1000000100

= 6911.504 x 7850.00 = 54.26 Kg/m of stg.

Length of one set (one inner+one outer) hoopbars

= 2 x x ( 6.5 + 4.5 ) = 34.557519 m2

Using 10 mm hoopbars, wt/set=34.5575192 x 0.62 = 21.306009 Kg

> No of sets/m of stg= 54.26 = 2.5 nos21.30601

> spacing req = 1000 = 392.7 mm2.5

> Provide Hoop bars @ 300 c/c on each face. Hence OK

Design of Well Curb

Volume of well kerb = 21.60 m^3

Min. reinforcement in terms of wt. = 72.00 kg / m^3 x 21.60 = 1555.15 kg

Provide 18.00 Nos. 25.00 dia bar around the periphery. No. of bars in top layer = 5.0072.00 Nos. of stirrups 12.00 dia in well kerb. No. of bars in bottom layer = 1.00

72.00 sets 6.00 Nos. of links 12.00 dia in one set.Clear cover = 75.00 mmUnit wt. of steel = 7850.00 kg / m^3

925.0225.0

1550.00

65.00

Bar mark 1.00 to 7.00 7.00 Dia = 6451.00

=3.14 x 6451.00 x 3.85 x 7.00 = 546.38 kg

Bar mark 8.00 to 12.00 5.00 Dia = 5575.000

= 3.14 x 5575.00 x 3.85 x 5.00 = 337.27 kg

Bar mark 13.00 to 18.00 6.00 Dia = 5624.00

= 3.14 x 5624.00 x 3.85 x 6.00 = 408.29 kg

Total 1291.9 kg

Balance to be provided in the form of stirups and ties = 1555.15 - 1291.94 = 263.21 Kg

Check for the Percentage of remaining steel = 263.21 / 1555.15 = 0.17 %

Page 61: Abutment Well

Copy of Abutment_well

Wt. of stirrups

925225.0

1550.0

1579.6

65.00

StirrupsPerimetre of one stirrups = 4344.63 mm

LinksAverage Length of one link = 462.50 mm

Total Length of all the links = 6.00 x 462.50 = 2775.00 mm

Total length of the one set of strip and link = 4344.63 + 2775.00 = 7119.63 mm

Weight Per Set = 0.89 x 7119.63 = 6.32 Kg

Total no of sets required = 263.21 / 6.32 = 41.66

Total no of sets provided = 72.00

Total weight of all the provided sets = 6.32 x 72.00 = 454.87 Kg

Total wt. of reinforcement provided in curb = 1291.94 + 454.87 = 1747 > 1555 kgHence OK

Page 62: Abutment Well

Design of Abutment WellDesign of Return Wall

0.300 m 3.500 m X0.300 m

y

2.633 m 1 dy

1.5

X

Earth pressure due to live load surcharge = 0.279 x 18.000 x 1.200 = 6.035 kN/m^2

Taking a strip of thickness "dy" at a depth "y" from top.

Earth pressure on this strip = 0.279 x 18.000 x y = 5.029 y kN/m^2

dMx = ( 6.035 + 5.029 y ) dy { 1.500 x ( 2.633 -y ) } ^2 / 2

Mx = ( 6.035 + 5.029 y ) dy ( 1.125 ) x ( 6.934 + y^2 -5.267 y )

= 1.125 x ( 41.850 + 6.035 y^2 -31.785 y + 34.875 y +

+ 5.029 y^3 + -26.487 y^2 ) dy

= 1.125 x ( 5.029 y^3 + -20.452 y^2 + 3.090 y + 41.850 ) dy

After integrating , we get

= 1.125 x ( 1.257 y^4 + -6.817 y^3 + 1.545 y^2 + 41.850 y

= 1.125 x ( 1.257 x 2.633 ^4 + -6.817 x 2.633 ^3 +

+ 1.545 x 2.633 ^2 + 41.850 x 2.633

= 1.125 x ( 60.459 + -124.490 + 10.714 + 110.204 )

= 1.125 x 56.888

Mx = 63.999 kN.m

Mx = 63.999 = 24.303 kN.m /m2.633

Adopting steel bars Dia. 12 mm and clear cover of 50.000 mm.

Available effective depth = 300 -50.000 -6.000

= 244.000 mm

Required Ast = 24.303 x 1000000 = 567.22 mm^2 / m200 x 0.878 x 244.000

Provide 12.000 mm dia bar @ 150.000 mm c/c horizontally on earth face. ( Provided steel = 753.98 mm^2/m )

Provide 10.000 mm dia bar @ 150.000 mm c/c horizontally on other face. ( Provided steel = 523.60 mm^2/m )

Provide 10.000 mm dia bar @ 150.000 mm c/c vertically on both faces. ( Provided steel = 523.60 mm^2/m )

This return will also bend in a vertical plane due to its self wt.

Mx = 0.500 x ( 0.300 + 2.633 ) x 3.500 x 0.300 x 24.000 x 1.286

Mx = 0.500 x ( 2.933 ) x 32.407 = 47.530 kN.m

Moment due to railing = 3.500 x 3.000 x 1.750 = 18.375 kN.m

Moment due to railing kerb = 0.300 x 0.450 x 3.500 x 24.000 x 1.750 = 19.845 kN.m

Total moment at vertical plane = 47.530 + 18.375 + 19.845 = 85.750 kN.m

Check for effective depth

85750000.00 = 1.844 x 300.000 x d ^2

d ^2 = 8.58E+07 = 155007.231.844 x 300.000

d = 393.710 mm < 2633.33 (Hence |OK)

Adopting steel bars Dia. 20 mm and clear cover of 50.000 mm.

provide reinforcement at top in two layers

Available effective depth = 2633.33 -50.000 -20.000 -25.000

= 2538.33 mm

Required Ast = 85.750 x 1000000 = 192.4 mm^2 200 x 0.878 x 2538.33

Check : This steel should not be less than 0.200 % of bt.d as per 305.16 of IRC : 21.

0.200 x 2633.33 x 300.00 = 1580.00 mm^2100.000

Governing steel at top of cantilever return = 1580.0 mm^2

Provide 6.000 bars of 20.000 mm dia at top face in two layers. ( Providing = 1885.0 mm^2

Provide 3.000 bars of 12.000 mm dia at bottom in sloping face. ( Providing = 339.3 mm^2

Kangsabati 93/1 on NH - 6

Page 63: Abutment Well

Copy of Abutment_well

Design of Dirt Wall

Dirt wall will be designed as a vertical cantilever.

Surcharge Pressure0.279 x 18.00 x 1.20 = 6.04 kN/m^2

6.04

2.98 m

14.97 kN/m^2

Earth Pressure Diagram

Intensity for = 0.279 x 18.00 x 1.20 = 6.04 kN/m^2rectangular portion

F1 = 6.04 x 2.98 x 10.25 = 184.19 kN

Intensity for = 0.28 x 18.00 x 2.98 = 14.97 kN/m^2triangular portion

F2 = 0.50 x 14.97 x 2.98 x 10.25 = 228.51 kN

Total F = 184.19 + 228.51 = 412.69 kN

Moment @ RL 78.213 m (at dirt wall base)

M1 = 184.19 x 1.49 = 274.21 kN.m

M2 = 228.51 x 1.25 = 285.76 kN.m (Centre of pr. considered at an elevation of 0.42mof the ht. of the abutment shaft as per cl. 217.1 of IRC:6

Total M (at dirt wall base) = 559.96 kN.m

HL = 412.69 kN ML = 559.96 kN.m

Total moment at the base of dirt wall = 559.96 kN.m

= 559.96 = 54.63 kN.m/m10.25

Thickness of dirtwall = 0.30 m

Adorting clear cover on either face = 50.00 mm

(a) Vertical steel on earth face

Adopting steel bars Dia. = 20.00 mm

Available effective depth = 300.00 -50.00 -10.00

= 240.00 mm

Rquired effctive depth = 54.63 x 1.00E+06 = 172.12 mm < 240.001.84 x 1000.00 OK

Required Ast = 54.63 x 1.00E+06 = 1296.3 mm^2/m200.00 x 0.88 x 240.00

Increasing this by 50% to resist the increased tensile forces due to non linear stress pattern above the bracket.( as suggested by note 8 of enclosure toMinistry of Surface Transport (India) Circular no. RW/NH - 34015 / 2 / 86 - S & R dated 22.6.94)

Required Ast = 1.50 x 1296.28 = 1944.43 mm^2/m

Minimum steel = 0.06 x 300.00 x 1000.00 = 180.00 mm^2/m100.00

Governing vertical steel at earth face = 1944.4 mm^/m

Provide 16.00 mm dia bar @ 100.00 mm c/c as vertical steel at earth face. ( Provided steel = 2010.6 mm^2/m )

Page 64: Abutment Well

Copy of Abutment_well

(b) Distribution steel on earth face

Adopting distribution steel bars Dia. = 10.00 mm

Available effective depth = 300.00 -50.00 -16.00 -5.00 = 229.00 mm

0.30 M = 0.30 x 54.63 = 16.39 kN.m/m

Required Ast = 16.39 x 1.00E+06 = 407.57 mm^2/m200.00 x 0.88 x 229.00

0.06% of cross section

Minimum steel = 0.06 x 300.00 x 1000.00 = 180.00 mm^2/m100.00

Governing vertical steel at earth face = 407.57 mm^/m

Provide 10.00 mm dia bar @ 150.00 mm c/c as vertical steel at earth face. ( Provided steel = 523.60 mm^2/m )

(c) Vertical steel on other face0.12 % of cross section

Minimum Reinforcement = 0.12 x 300.00 x 1000.00 = 360.00 mm^2/m100.00

Provide 12.00 mm dia bar @ 150.00 mm c/c as vertical steel at earth face. ( Provided steel = 753.98 mm^2/m )

(d) Distribution steel on other face

Adopting distribution steel bars Dia. = 10.00 mm

0.06% of cross section

Minimum distribution steel = 0.06 x 300.00 x 1000.00 = 180.00 mm^2/m100.00

Provide 10.00 mm dia bar @ 150.00 mm c/c as vertical steel at earth face. ( Provided steel = 523.60 mm^2/m )

Page 65: Abutment Well

Copy of Abutment_well

SUMMARY OF LOADS AND MOMENTS AT THE BASE OF ABUTMENT SHAFT

S.No. Case P Ml Mt(kN) (kN-m) (kN-m)

A) Normal Case1.00 LWL Condition with Maximum Live Load 6670.85 5407.23 1857.092.00 HFL Condition with Minimum Live Load 5965.47 5071.16 900.42

B) Seismic Case(Longitudinal)3.00 LWL Condition with Maximum Live Load 6670.85 6507.26 1857.094.00 HFL Condition with Minimum Live Load 5965.47 5624.01 900.42

Check For Cracked / Uncracked Section

Length of the Section = 1025.00 cmWidth of the Section = 100.00 cmGross Area of Section (Ag) = 1025.00 x 100.00

= 1.03E+05 cm^2

Gross M.O.I. of Section ( Igxx ) = 8.54E+07 cm^4

Gross M.O.I. of Section ( Igyy ) = 8.97E+09 cm^4

Y

X X100.00 cm

Y1025.00 cm

Abutment Section

Transformed Sectional Properties of Section

Adopting Modular ratio , m = 10.00

(Both in Tension as well in Compression)Dia. of Bars 2.00 cmNo. of Bars on each longer face of abutment(tension face) = 80.00 128Dia. of Bars 1.60 cmNo. of Bars on each longer face of abutment(compression face) = 80.00 128No. of Bars on each Shorter face of Abutment(both face) = 6.00 167

Total bars in Section = 172.00Steel Area As = 436.30 cm^2% of Steel = 0.43 %Effective Cover = 7.00 cm

Y251.33 cm^2

12.06 cm^2 43.00 cm

X X

505.50 cmY

Asx = 251.33 cm^2 Asy = 12.06 cm^2Area of concrete , Ac = Ag - As = 102500.00 -436.30 = 1.02E+05 cm^2C.G. of Steel placed on longer face = 43.00 cmC.G. of Steel placed on shorter face = 505.50 cmTransformed Area of Section Atfm= Ac +m.As = 106426.74 cm^2Transformed M.Itxx. = Igxx+2(m-1).Asx . ax^2

= 85416666.67 + 8364678.94 = 93781345.60 cm^4Zxx = Itxx/(d/2) = 1875626.91 cm^3Transformed M.Iyy. = Igyy+2*(m-1).As . ay^2Ityy = 8974088541.7 + 55487597.6 = 9029576139.3 cm^4Zyy = Iyy/(d/2) = 17618685.15 cm^3

Permissible StressesMinimum Gross Moment of Inertia , Imin. = 8.54E+07 cm^4

Area of Section = 1.03E+05 cm^2Hence Least radius of Gyration,r = Imin/Ag = 0.29 m

Page 66: Abutment Well

Copy of Abutment_well

Effective Length of Abutment Shaft (Refer Notes :(2) and (3) at Page 42 of IRC:21-1987)

Abutment Shaft Height ,L= 2.22 mService Condition

Effective length , leff. (1.75 x L) = 3.89 mSlenderness ratio (leff./r)= 13.47 (<50)Type of Member ===>Short Column

Stress reduction Coefficient (Refer cl: 306.4.3of IRC:21) 1.00

Permissible Stresses (kg/cm^2) for M35 Grade of Concrete cbc 116.67 Kg/cm^2 co 87.50 Kg/cm^2

Basic tensile Stress -6.70 Kg/cm^2Permissible Stresses (kg/cm^2) for S415 Grade of Steel

st -2000.00 Kg/cm^2

Check for Cracked/ Uncracked Section of Abutment Shaft

S. No. Max. L.L. Min. L.L. Max. L.L. Min. L.L.LWL Case HFL Case LWL Case HFL Case

Loads and Moments(1). P (t) 667.08 596.55 667.08 596.55(2) Mx (tm) 540.72 507.12 650.73 562.40(3) My (tm) 185.71 90.04 185.71 90.04

Actual Stresses (kg/cm^2) (4) co,cal (P/Atfm) 6.27 5.61 6.27 5.61(5) x cbc,cal (Mx/Zxx) 28.83 27.04 34.69 29.98(6) y cbc,cal (My/Zyy) 1.05 0.51 1.05 0.51(7) cbc,cal = (5)+(6) 29.88 27.55 35.75 30.50

Permissible stresses (kg/cm^2) co 87.50 87.50 131.25 131.25 cbc 116.67 116.67 175.00 175.00

Check for Minimum Steel Area (cm^2)(10) Conc. Area Required for Direct Stress= (1)/(8) 7623.82 6817.69 5082.55 4545.12(11) % of area required 0 .008 x (10) 60.99 54.54 40.66 36.36(12) % of Ag = 0.003 x Ag 307.50 307.50 307.50 307.50 (13) Governing Minimum Steel (cm^2) 307.50 307.50 307.50 307.50(14) Provided Steel Area (cm^2) 436.30 436.30 436.30 436.30(15) Remark (OK) (OK) (OK) (OK)

Check for safety of Section (15) co,cal + cbc,cal 0.33 0.30 0.25 0.22

co cbc < 1 (OK) < 1 (OK) < 1 (OK) < 1 (OK)

Check for Cracked/Uncracked Section (Stresses are in kg/cm^2)

(17) co,cal - cbc,cal -23.61 -21.94 -29.48 -24.89(18) Permissible Basic tensile stress in Concrete. -6.70 -6.70 -10.05 -10.05

(19) Section is to be designed as Cracked Cracked Cracked Cracked

Note:- The design for cracked section in the succeeding pages has been carried out as per computer programme, which is based on "Behaviour of columns and walls" in the book entitled " Reinforced Concrete Structural Elements " by P. Purushothaman .

Provision Of Binders and Ties

As per clause 306.3.2 the diameter of transverse reinforcement of any type should not be less than onequarter the diameter of the largest longitudinal bar in the column and in no case less than 8 mm

The diameter of the main longitudinal bar is 20 mm, hence required dia of transverse reinforcement is 10 mmHowever provide 10 mm dia binders and ties.

As per clause 306.3.3 of IRC: 21- 1987 the pitch of transverse reinforcement should not exceed

(i) 300.00 mm(ii) The least lateral dimension of the column = 1000.00 mm(iii) 12 times the dia of the smallest longitudinal bar = 240.00 mm

Provide # 10 mm dia binders and 10 mm dia ties @ 175 mm

ItemNormal Case Seismic Case

Page 67: Abutment Well

Copy of Abutment_well

Design of Abutment Cap (M-35)

As the cap is fully supported on the abutment. Minimum thickness of the cap required as per cl. 716.2.1 of IRC : 78- 1983 is 225 mm.However the thickness of abutment cap is kep 900.0 mm.

Assuming a cap thickness of 225.0 mm

Volume of abutment cap = 225.0 x 1350.0 x 10250.0 = 3113437500 mm^3

As per cl 716.2.1 of IRC : 78 - 1983

Quantity of steel = 1.0 % of volume

= 1.0 x 3113437500 = 31134375 mm^3100.0

Quantity of steel to be provided at top = 15567188 mm^3

Quantity of steel to be provided at bottom = 15567188 mm^3

Top Face

(a) Longitudnal steel

Quantity of steel to be provided in longitudnal direction = 7783593.8 mm^3

Assuming a clear cover of = 50.0 mm

Length of bar = 10250.0 -100.0 = 10150.0 mm

Area of steel required in longitudnal direction = 7783594 = 766.9 mm^210150.0

Provide 10.0 bar of 16.0 mm dia bar as longitudnal steel on top face of abutment cap. ( Provided steel = 2010.6 mm^2

(b) Transverse steel

Quantity of steel to be provided in transverse direction = 7783593.8 mm^3

Quantity of steel required = 7783593.8 = 766856.5 mm^3/m10.2

Adopting 16.0 mm dia bar and clear cover 50.0 mm

Length of each stirrups = 1350.0 -100.0 = 1250.0 mm

Volume of each stirrup = x 16.0 ^2 x 1250.0 = 251327 mm^34.0

No. of stirrups required in per m length = 3.1 ( say 4.0 )

Required spacing = 1000.0 = 250.0 mm4.0

Provide 16.0 mm dia bar @ 150.0 mm c/c stirrups throughout in length of abutment cap. ( Provided steel = 1340.4 mm^2/m )

Same steel will be provided at bottom also

Provide 10.0 bar of 16.0 mm dia bar as longitudnal steel on bottom face of abutment cap. ( Provided steel 2010.6 mm^2

Provide 16.0 mm dia bar @ 150.0 mm c/c stirrups throughout in length of the abutment cap. ( Provided steel = 1340.4 mm^2/m )

Page 68: Abutment Well

Copy of Abutment_well

Design of Abutment Well cap

Outer dia of well = 6.50 m Grade of conc. of well cap = M 35.00Inner dia of well = 4.50 m Depth of well cap = 2.00 m

The well cap has been designed as partillay restrained at supports and following coefficients have been adopted for the design of circular well cap under uniformly distibuted load.

Sagging moment at bottom = WD^230.00 W = Uniformly distributed load on well cap

D = Effective diameter of wellHogging moment at top = WD^2

60.00

The load transmitted by abutment is assumed to have been dispersed at 45 degree upto effective depth of well cap.

Effective dia of well = 6.50 + 4.50 = 5.50 m(Av. of inner & outer dia) 2.00

Effective depth of well cap = 1.89 m Thickness of steining = 1.00 m

Effective dia = 4.50 + 1.00 x 1.89 = 6.39 m(Inner dia + eff. depth)

Hence,Effective dia = 5.50 m

Normal case........... LWL Case With Max. CWLL

Calculation for Loads and Moments at abutment Shaft Bottom

Longitudnal Horizontal Force (HL) =

Moment at Abutment (from left span) = 393.68 x ( 78.51 -75.99 ) = 393.68 x 2.52 = 993.0 kN(Due to long. Force)

Moment " MT" due to Transverse Live Load Eccentricity

70 R Wheeled = 918.63 x 1.28 = 1175.84 kN.mClass A 1 lane = 0.00 x 0.00 = 0.00 kN.mSIDL = 61.60 x 4.25 = 261.80 kN.mFPLL = 932.10 x 0.45 = 419.45 kN.m

Page 69: Abutment Well

Copy of Abutment_well

Vertical Loads (P) and their Moments (ML) along L-L AxisAt RL @ 75.99 m and @ cg of Pier Shaft

S.No. Item Volume Unit Wt. P eL ML(m^3) (kN/m^3) (kN) (m) (kNm)

1.00 Dead load 3816.70 0.450 1717.522.00 SIDL 932.10 0.450 419.453.00 FPLL 61.60 0.450 27.724.00 Reaction from CWLL (Max.)

70 R Wheeled 918.63 0.450 413.38class A 1 Lane 0.00 0.450 0.00

5.00 Thickening of slab 0.68 24.00 16.20 0.450 7.296.00 Dirt wall 9.16 24.00 219.74 -0.350 -76.917.00 Abutment Cap(Uniform portion) 7.61 24.00 182.66 0.18 31.968.00 Uniform portion of corbel 3.59 24.00 86.10 0.00 0.009.00 Triangluar portion of corbel 0.63 24.00 15.07 0.62 9.2910.00 Abutment Shaft (Above HFL) 17.76 24.00 426.20 0.00 0.0011.00 Abutment Shaft (Below HFL) -4.20 24.00 -100.86 0.00 0.0012.00 Return Wall (Uniform Portion) 0.63 24.00 15.12 -2.25 -34.0213.00 Return Wall (Tapered Portion) 2.45 24.00 58.80 -1.67 -98.0014.00 Railing over cantilever Return 2.00 3.80 3.00 22.80 -2.10 -47.88

15.00 6670.85 2369.80

Loads and moments at Abutment Shaft Bottom

Vertical Load = 6670.85 kNDue to Horz. force Back fill

Moment, ML = 2369.80 + 993.05 + 2044.38 = 5407.23 kN.m

Moment, MT = 1175.84 + 0.00 + 261.80 + 419.45 = 1857.09 kN.m

Equation of the ellipse is given by X 2 + Y 2 = 1.00

A 2 B 2

At X = 2.00 m 2.00 2 + Y ^2 = 1.002.00 ^2 5.13 ^2

Y ^2 = 0.00 Y = 0.00 m5.13 ^2 ** on elliptical side only

Abutment width Well cap depth

Dispersion width = 1.89 + 1.00 + 1.89 = 4.78 m

Page 70: Abutment Well

Copy of Abutment_well

Abutment length

Dispersion length (Elliptical side) = 10.25 + 2.00 x 0.00 = 5.13 m

Dispersion length (Rect. side) = 10.25 m

Dispersion area for both side = 2.39 x 5.13 + 2.39 x 10.25 = 36.71 m2

Backfill above well cap in 1.89 from the face of abutment shaft = 10.25 x 1.89 x 5.20 x 18.00 = 1810.87 kN

eL of backfill = -0.69 m

Front fill above well cap in 1.89 from the face of abutment shaft = 5.13 x 1.89 x 1.21 x 18.00 = 209.96 kN

eL of frontfill = 2.03 m

Total weight of well cap (on dispersed area) = 6670.85 + 1810.87 + 209.96 = 8691.67 kN

Total wt. above well cap / m^2 = 8691.67 = 236.78 kN / m^236.71

Self wt. of well cap / m^2 = ( 75.99 + -73.99 ) x 14.00 = 28.00 kN / m^2

Total weight (including well cap) / m^2 = 236.78 + 28.00 = 264.78 kN / m^2

Transverse Analysis

Length of cantilever from cL of well steining = 10.25 -5.50 = 2.38 m2.00

Total transverse moment through abutment = 1857.09 kN.m

Total transverse moment through abutment / m length = 1857.09 = 388.92 kN.m / m4.78

To resist this moment a couple will be formed with reaction = 388.92 = 70.71 kN / mat one support upward and at other support downward 5.50

(+ve) moment at centre due to formation of this couple = 70.71 x 5.50 = 194.46 kNm2.00

(-ve) moment at centre due to formation of this couple = -70.71 x 5.50 = -194.46 kNm2.00

2.00

Page 71: Abutment Well

Copy of Abutment_well

Sagging moment at center due to well cap = 264.78 x 5.50 ^2 = 266.99 kN.m30.00

Hogging moment at center due to well cap = 264.78 x 5.50 ^2 = -133.49 kN.m60.00

Transverse Hogging moment if well cap considered is inscribed square :

Outer dia of well = 6.50 m

Side of inscribed square = 6.50 = 4.60 m2.00

Max. projection of cantilever = 10.25 -4.60 = 2.83 m2.00

Hogging moment at center due to well cap = 264.78 x 2.83 ^2 = -1057.98 kN.m2.00

Total Sagging moment at centre = 266.99 + 194.46 = 461.45 kN.m

Total Hogging moment at centre = 133.49 or -1057.98 = 1057.98 kN.m

Longitudnal Analysis

Total Longitudnal moment through abutment = 5407.23 kN.m

Total Longitudnal moment transfered from backfill = 1810.87 x -0.69 = -1256.29 kN.m

Total Longitudnal moment transfered from frontfill = 209.96 x 2.03 = 426.14 kN.m

Total Longitudnal moment = 5407.23 + -1256.29 + 426.14 = 4577.08 kN.m

Total Longitudinal moment through abutment / m length = 4577.08 = 893.09 kN.m / m5.13

To resist this moment a couple will be formed with reaction = 893.09 = 162.38 kN / mat one support upward and at other support downward 5.50

(+ve) moment at centre due to formation of this couple = 162.38 x ( 5.50 -1.00 ) = 365.35 kNm2.00

(+ve) moment at centre due to formation of this couple = -162.38 x ( 5.50 -1.00 ) = -365.35 kNm2.00

Page 72: Abutment Well

Copy of Abutment_well

Sagging moment at center due to well cap = 264.78 x 5.50 ^2 = 266.99 kN.m30.00

Hogging moment at center due to well cap = 264.78 x 5.50 ^2 = -133.49 kN.m60.00

Total Sagging moment at centre = 266.99 + 365.35 = 632.34 kN.m

Total Hogging moment at centre = 133.49 = 133.49 kN.m

Design Sagging moment = 632.34 kN.m

Design Hogging moment = 1057.98 kN.m

Assume dia of bar = 25.00 Dia of bar

Effect of load upto abutment shaft bottom = 2000.00 -75.00 -25.00 -12.50 = 1887.50 mm

Required effective depth = 1057.98 x 1000000.00 = 757.46 < 1887.50 mm1.84 x 1000.00 Hence OK

Ast required = 1057.98 x 1000000.00 = 3192.02 mm^2 /m200.00 x 0.88 x 1887.50

Provide 25.00 mm dia @ 150.00 c/c in both direction at top and bottom, provided 3272.49 mm^2 Hence OK

Check for shear

Total udl on well cap = 28.00 + 236.78 = 264.78 kN / m^2Shear will be checked at a distance of effective depth from the face of the steining.

Distance of section to be checked for shear(from centre) = 0.363 m

Width of abutment = 1.00 m

The section for the check of shear is under the Abutment

Total load on well cap = 3.14 x ( 5.06 + 0.13 ) x 264.78 = 4320.45 kN4320.45

Perimeter of the dia = 2.00 x 3.14 x ( 2.75 + -2.39 ) = 2.28 m

Load / m = 4320.45 = 1896.89 kN / m2.28

Load /m due to moment = 70.71 kN / m

Total shear force = 1896.89 + 70.71 = 1967.60 kN

Shear stress = 1967.60 x 1000.00 = 1.04 N / mm^2 > 0.1991887.50 x 1000.00 Shear Reinforcement Required

Page 73: Abutment Well

Copy of Abutment_well

Permissible Shear Stress :

Area of tension reinforcement = 100.00 x 3272.49 = 1000.00 x 1887.50

Here, Asx100/ bxd = 0.17 For As x 100 / b x d = 0.15 c = 0.19For As x 100 / b x d = 0.25 c = 0.23

So,for Asx100/ bxd = 0.17 c = 0.199

From IRC:21-2000, Table 12B,Permissible Shear Stress, c = 0.199

From IRC:21-2000, Table 12C, K = 1.00 (for overall depth of cap is greater than 300mm)

So, permissible shear stress, = K x c= 0.199

Assume Shear Reinforcement provided @ 150.00 mm spacing along the length of well Cap.

Shear Reinforcement shall be provided to carry a shear Vs=V-c.b.d

= 1967.60 - 0.199 x 1.888 x 1.000

= 1591.32 kN

Shear Reinforcement Required = 1591.32 x 1000.00 x 150.00 = 632.31 mm^2200.00 x 1887.50

Provide 2.00 legged 16.00 dia bar @ 150.00 mm along the Length of Well Cap.( Providing 402.12 mm^2)

Page 74: Abutment Well

Copy of Abutment_well

Calculation of Bearing Capacity of Well Foundation

Available Data

Well Cap Top Level = 75.990 m Well Cap Bottom Level = 73.99 mFoundation Level = 52.000 m MSL = 67.013 mDiameter of well at foundation Lvl = 6.650 m Factor of Safety = 2.5

MSL Found. Lvl.p Le Df. = 67.013 - 52.000 = 15.013 m

Soil Parameters available at Foundation Level

= 25 degree N c = 20.72c = 0.00 kN/m^2 N q = 10.66' = 8 kN/m^2 N 10.88

(radians) = 0.436

N tan(45 + = 1.570

Overburden Surc q = 8.000 x 15.013 = 120.104 kN/m^2 = 12.01 t/m^2 ' x Df. )

Shape Factors :- ( For circular base ) Inclination Factors :-

s c = 1.300 i c = 1.000s q = 1.200 i q = 1.000s = 0.600 i = 1.000

Depth Factors( For circular base )

d c = 1.000 + 0.200 x Df x N B

1.000 + 0.200 x 15.013 x 1.5706.650

d c = 1.709

As 25 ) > 10 deg.

d q = 1.000 + 0.100 x Df x N B

1.000 + 0.100 x 15.013 x 1.5706.650

d q = 1.354

d 1.000 + 0.100 x Df x N B

1.000 + 0.100 x 15.013 x 1.5706.650

d 1.354

w ' = 0.5 ( As per Cl: 5.1.2.4 of IS: 6403-1984 )

Net Ultimate Bearing Capacity ( for cohesionless Soil )

q d = q . (Nq - 1) . sq . dq . iq + (1/2) . B sv . dv . iv . w'

= 12.010 x ( 10.6621424 - 1 ) x 1.200 x 1.354 x 1.000

+ 5.320 x 10.876 x 0.600 x 1.354 x 1.000 x 0.52

= 188.604 + 11.755 = 200.359 t/m^2

SBC = q d = 200.358529 = 80.143 t/m^2FOS 2.500