a transverse deflecting rf structure for sub-micrometer ... · a transverse deflecting rf structure...

24
A Transverse Deflecting RF Structure for Sub-Micrometer Bunches at 5 to 50 MeV LOLA (Greg Loew, Rudy Larsen and Otto Altenmueller) REGAE (Relativistic Eelectron Gun for Atomic Exploration) a first idea about numbers REGAE bunch TDS (Transverse Deflecting Structure) measurement two examples rf structures Remarks / other ideas literature

Upload: others

Post on 26-Jan-2021

13 views

Category:

Documents


0 download

TRANSCRIPT

  • A Transverse Deflecting RF Structure for

    Sub-Micrometer Bunches at 5 to 50 MeV

    LOLA (Greg Loew, Rudy Larsen and Otto Altenmueller)

    REGAE (Relativistic Eelectron Gun for Atomic Exploration)

    a first idea about numbers

    REGAE

    bunch

    TDS (Transverse Deflecting Structure) measurement

    two examples

    rf structures

    Remarks / other ideas

    literature

  • LOLA in the FLASH facility

    transverse deflecting structures are standard diagnostic devices in FELS

    (there is no FEL without them)

    1 TDS in FLASH

    1 in PITZ

    x in LCLS, SACLA, Swiss FEL, FERMI, …

    3 in European XFEL

  • from Christopher Behrens, Groemitz 2010, Betriebsseminar

  • LOLA setup: horizontal plane

    TDS: vertical plane

  • from Christopher Behrens, Groemitz 2010, Betriebsseminar

    OTR-2 → longitudinal phase space

    compressed bunch uncompressed bunch

  • REGAE

    gun

    buncher

    waveguide (3 GHz) longitudinal focus

    bunch length

    (Relativistic Eelectron Gun for Atomic Exploration)

  • Astra calculation

    bunch length

    energy

    longitudinal phase space

    nm 253sim =σ nm 190sim =σ nm 256sim =σ nm 568sim =σ

  • (a first discussion with Klaus Flöttmann)

    not the last!

    first idea about numbers

    Q ≈ 100 fC

  • TDS measurement without spectrometer magnet

    TDS drift + screen

    1s

    3y

    length L, strength K’ length D

    drift + screen

    223 yDyy ′+=

    ( ) ( ) 1113 2 sKLDLyDLyy ′++′++=→

    1 2 3

    1

    1

    1

    1

    δs

    y

    y

    ′→

    2

    2

    2

    2

    δs

    y

    y

  • ′≈

    δδs

    y

    y

    K

    K

    s

    y

    y

    dZ

    d

    0

    1

    ′′′

    ′′

    =

    16/2/

    0100

    010

    02/1

    322

    2

    LKLKLK

    LK

    LKz

    T

    1→2: (period averaged) equation of motion in TDS

    E

    yEeK

    λπ2=′with

    ′=

    ′→

    1

    1

    1

    1

    2

    2

    2

    2

    δδs

    y

    y

    Ts

    y

    y

    with

    ( ) sKpsEev

    sFvdZ

    dpzy

    zy

    z

    y ′≈

    ≈≈λπ2

    sin11

    z

    y

    p

    py

    dZ

    dy =′=

    notation: uppercase Z for beam line coordinate

    lowercase s for bunch coordinate

    transport matrix

  • δδ

    σσσ CCCCCC

    e

    syys

    e

    yyyyyye LL44 344 21

    LL4444 34444 21

    LLL

    2vert-long,

    2vert,

    2 +++++= ′′′′

    ( ) ( ) 1113 2 sKLDLyDLyy ′++′++=more general

    ′=

    1

    1

    1

    1

    3

    δs

    y

    y

    wy

    measured

    ( )22

    ,1

    ,1

    ,1

    ,1

    ,1

    ,1

    ,1

    ,1

    2,3

    23 me

    t

    t

    fw

    C

    s

    y

    y

    s

    y

    y

    wy σσ

    δδ

    σ

    ν

    ν

    ν

    ν

    ν

    ν

    ν

    ν

    ν +×=

    ′==

    44 344 21

    with 2,12

    νσ sm = ( )( )22 KLDLf ′+=

    systematic error

    and

    vertical optics (~ spot size without deflection)

    vertical - longitudinal correlation

    correlation matrix

    what we want to know

    ν is particle index

    correlations with energy

    ( )4321 wwwww =with coefficients

  • error from vertical phase space

    ( ) ( )( )( ) KLDL

    DLDL yyyyve ′+

    +++−=

    2

    2 22

    ,

    γαβεσ

    vertical emittance and Twiss parameters

    velocity effects: additional error from uncorrelated energy spread

    δδ σγσ

    2/

    3/

    2 2, LD

    LDL

    re +

    +≈ uncorrelated (relative) energy spread δδδσ C=2

  • period averaged equation of motion in TDS

    with velocity effects (γ−2 terms)

    ′≈

    ′−

    δγ

    δs

    y

    y

    K

    K

    s

    y

    y

    dZ

    d

    r2

    1

    ( )442746353

    4232

    2534232

    3635242

    2

    322

    2

    24/5040/720/120/

    24/6/2/

    2/120/24/6/

    6/720/120/24/

    1

    16/2/

    0100

    010

    02/1

    −+

    ′′′′′′′

    ′′′′′′′′

    +

    ′′′

    ′′

    = rr

    O

    LKLKLKLK

    LLKLKLK

    LKLKLKLK

    LKLKLKLK

    LKLKLK

    LK

    LKL

    T γγ

  • two examples

    bunch

    aperture rfλ∝A

    Ayx

  • Example 1:(not optimized)

    w = ���� � �� ����

    beam width

    z/m

    y/m

    � 0

    relative focus

    s = 0

    aperture

    aperture:

    � ����

    A = 0.6 mm

    L = 5 mmz/m

    � �

    � � �/2mm 3≈λ

  • w = ���� � �� ����

    beam width

    z/m

    y/m

    � 0 s = 0

    aperture

    relative focus

    � �

    � � �/2

    DL +

    L

    Example 2:(not optimized)

    aperture:

    � ����

  • rf structures

    Massimo Dal Forno, et. Al.

    rf breakdown tests of mm-wave metallic accelerating structures

    Phys. Rev. Accel. Beams 19, 011301 – Published 6 January 2016

    f = 115 .. 140 GHz

    Eacc < 0.3 GV/m

    Esurface < 1.5 GV/m

    pulse length 2.4 nsec

    accelerating structure from

  • P. Arcioni, M. Bressan, F. Broggi, G. Conciauro, L. Perregrini, P. Pierini:

    The Groove Guide as an Interaction Structure for Microwave FEL

    Nuclear Instruments and Methods in Physics Research, Section A 358, pp. 108-111, 1995

    H-type groove waveguide from

    might overcome the aperture limitation (for x direction)

    but: linear range is still small!

  • remarks

    time resolution limited by: maximal field

    length/γ2 and aperture

    open: working point, frequency, SW or TW regime

    structure technology

    rf source

    couplers

    even the method

    increase energy (ACC+TDS?) or reduce resolution

    TDS focus changes with K’

  • other ideas ???

    external field self-field + geometry

    observe beam effect

    observe field resonator → radiationundulator → radiation

    TDS + screen wake + instability

    +screen ~ Q2

    observe

    stimulate

    sa σγ >

    resonator → radiationundulator → radiation

    22

    2

    ph 2

    21~2

    γλλ

    γλπσ uus

    K ≈+=

    required undulator period su σπγλ22~

    µm 60nm 100102 2 ≈⋅⋅π1002 6mm 1mm/100yes!

    no!

  • short magnet + spectrometer

    take one magnet from the undulator → coherent short magnet radiation

    multichannel infrared spectrometer

    ph~2nm 200 λπσ s<

    optical spectrometer

  • literature

    Klaus Floettmann and Valentin V. Paramonov

    Beam dynamics in transverse deflecting rf structures

    Phys. Rev. ST Accel. Beams 17, 024001 – Published 5 February 2014

    Benno Zeitler, Klaus Floettmann, and Florian Grüner

    Linearization of the longitudinal phase space without higher harmonic field

    Phys. Rev. ST Accel. Beams 18, 120102 – Published 30 December 2015

    ragae:

    tds:R. Akre, L. Bentson, P. Emma, P. Krejcik

    Bunch length measurements using a transverse rf deflecting structure in the SLAC linac

    SLAC-PUB-9241, PAC2002

    structures:

    P. Arcioni, M. Bressan, F. Broggi, G. Conciauro, L. Perregrini, P. Pierini:

    The Groove Guide as an Interaction Structure for Microwave FEL

    Massimo Dal Forno, et. Al.

    rf breakdown tests of mm-wave metallic accelerating structures

  • funny beam dynamics:

    −=

    ′ 0001.0001.0

    1

    1

    y

    y

    =

    0

    0

    1

    1

    δs

    =

    ′ 0001.0

    1

    1

    y

    y

    −=

    ′ 0002.0001.0

    1

    1

    y

    y

    ′≈

    δδs

    y

    y

    K

    K

    s

    y

    y

    dZ

    d

    0

    1

    ( )Zy

    Z

    =

    0

    0

    1

    1

    δs

    =

    0

    0

    1

    1

    δs

    ′≈

    ′−

    δγ

    δs

    y

    y

    K

    K

    s

    y

    y

    dZ

    d

    r2

    1

    parameters as for example 2

    ( )22

    1 −∞ ++= r

    r

    OTTT γγ γ

    ( ) ( ) 1XZTZX =