a quantum potential approach to spin superposition in neutron interferometry

6
Volume 121, number 3 PHYSICS LETTERS A 13 April 1987 A QUANTUM POTENTIAL APPROACH TO SPIN SUPERPOSITION IN NEUTRON INTERFEROMETRY C.DEWDNEY Department ofApplied Physics, Portsmouth Polytechnic, Park Building, King Henry I Street, Portsmouth P01 2DZ, UK P.R. HOLLAND and A. KYPRIANIDIS Inst itut Henri Poincaré, Laboratoire de Physique Theorique, 11, rue Pierre et Marie Curie, 75231 Paris Cedex 05, France Received 12 January 1987; accepted for publication 6 February 1987 The causal interpretation of the Pauli equation is shown to provide an understanding of spin superposition in neutron interfer- ometry in terms of well-defined individual particle trajectories with continuously variable spin vectors. In a recent paper [1] it was shown that the causal depicted in fig. I. A beam polarized in the z-direc- interpretation of quantum mechanics [2] can pro- tion (defined by a guide field B into the paper) enters vide a clear understanding of the spatial interference the device and is split into an upper (II) and a lower observed in neutron interferometers. The simple (I) component. The upper beam is passed through a mode used to facilitate this description consisted in device which inverts the spin. The two beams with replacing the sets of crystal planes with square poten- opposite spin converge on the last semi-transparent tial barriers, in order to simulate the action of semi- surface where each beam is split once more. Conse- transparent surfaces, and the use of numerical meth- quently the emerging forward and deviated beams ods to solve the appropriate time-dependent Schrö- both contain a coherent superposition of compo- dinger equation. nents of opposite spin. Representing the effect of the In this contribution the aim is to show how the semi-transparent surface by a square potential V we causal interpreation can also account for the spin may write the appropriate Pauli hamiltonian as superposition experiments carried out with neutron H— (h 2/2m )V2 + V+ 0 interferometers [31which have confirmed the well- I12 known theoretical result that the superposition of spin where B is the uniform guide field, and p is the neu- up and spin down beams (in the z-direction) results tron magnetic moment. The initial two-component in a polarization vector lying in the xy plane. We have spinor (that is, just before the final semi-transparent already demonstrated [4] how the causal interpre- surface) is a superposition of two wavepackets asso- tation of the Pauli equation [5] can be applied to ciated with the spin up and down beams: elementary spin phenomena. These calculations have / qi shown how quantum phenomena associated with spin q’ 0 ( lo may be explained in terms of ensembles of individ- \ e 5 ual particle trajectories with well-defined but contin- Here x is the relative phase difference (introduced uously variable spin vectors subject to the spin by an aluminium sheet) which may be varied by dependent quantum potential and quantum torque. rotating the sheet so that it presents different thick- In order to calculate the trajectories and spin vec- nesses to each beam component, and tor orientations in the context of the simple model referred to above, we consider the interferometer as !Pi~ =A exp [ (x— 0.5)2 /4o~ + ik 0x] 0375-960l/87/$ 03.50 © Elsevier Science Publishers B.V. 105 (North-Holland Physics Publishing Division)

Upload: c-dewdney

Post on 21-Jun-2016

220 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: A quantum potential approach to spin superposition in neutron interferometry

Volume 121, number3 PHYSICSLETTERSA 13 April 1987

A QUANTUM POTENTIAL APPROACH TO SPIN SUPERPOSITIONIN NEUTRON INTERFEROMETRY

C.DEWDNEYDepartmentofAppliedPhysics,PortsmouthPolytechnic,ParkBuilding, KingHenryIStreet,PortsmouthP012DZ, UK

P.R. HOLLAND andA. KYPRIANIDISInstitut HenriPoincaré,LaboratoiredePhysiqueTheorique,11, rue PierreetMarie Curie, 75231Paris Cedex05, France

Received12 January1987; acceptedfor publication6 February1987

Thecausalinterpretationof thePauliequationis shownto provideanunderstandingof spin superpositionin neutroninterfer-ometryin termsofwell-definedindividual particletrajectorieswith continuouslyvariablespin vectors.

In a recentpaper[1] it wasshownthat the causal depictedin fig. I. A beampolarizedin the z-direc-interpretationof quantummechanics[2] canpro- tion (definedby aguidefield B intothepaper)entersvide a clearunderstandingof thespatialinterference thedeviceandissplit into anupper(II) anda lowerobserved in neutron interferometers.The simple (I) component.Theupperbeamis passedthroughamodeusedto facilitate this descriptionconsistedin devicewhich inverts the spin. The two beamswithreplacingthesetsof crystalplaneswith squarepoten- oppositespin convergeon the lastsemi-transparenttial barriers,in orderto simulatetheactionof semi- surfacewhereeachbeamis split oncemore.Conse-transparentsurfaces,andtheuseof numericalmeth- quently the emergingforward anddeviatedbeamsodsto solvethe appropriatetime-dependentSchrö- both contain a coherentsuperpositionof compo-dingerequation. nentsofoppositespin.Representingtheeffectof the

In this contributionthe aim is to show how the semi-transparentsurfaceby a squarepotential V wecausal interpreationcan also account for the spin maywrite theappropriatePaulihamiltonianassuperpositionexperimentscarriedoutwith neutron H— — (h 2/2m)V2+ V+ 0

interferometers[31which haveconfirmedthewell- — I12

knowntheoreticalresultthatthesuperpositionofspin whereB is the uniform guidefield, andp is theneu-up andspindown beams(in thez-direction)results tron magneticmoment.The initial two-componentin a polarizationvectorlying in thexyplane.Wehave spinor (thatis, justbeforethefinal semi-transparentalreadydemonstrated[4] how the causalinterpre- surface)is a superpositionof two wavepacketsasso-tation of the Pauli equation [5] canbe appliedto ciatedwith thespin up anddownbeams:elementaryspinphenomena.Thesecalculationshave / qi

shownhowquantumphenomenaassociatedwithspin q’0 ( lo

maybe explainedin termsof ensemblesof individ- \ e5

ualparticletrajectorieswithwell-definedbutcontin- Herex is the relativephasedifference(introduceduously variable spin vectors subject to the spin by an aluminium sheet)which may be varied bydependentquantumpotentialandquantumtorque. rotatingthe sheetsothat it presentsdifferent thick-

In orderto calculatethetrajectoriesandspin vec- nessesto eachbeamcomponent,andtor orientationsin the contextof the simplemodelreferredto above,we considerthe interferometeras !Pi~=A exp[ — (x— 0.5)2 /4o~+ ik

0x]

0375-960l/87/$03.50© ElsevierSciencePublishersB.V. 105(North-HollandPhysicsPublishingDivision)

Page 2: A quantum potential approach to spin superposition in neutron interferometry

Volume 121, number3 PHYSICSLETTERSA i3 April 1987

yFig. I. Neutron interferometermodelwith onespinrotatingcoil andphaseshifter.

qiulo=A exp[—(x—l)2/4c~—i(k0x+~)], ~h(Th~i/at+cos0oØ/at)+~mv

2+Q+H0+ V=0,

whereA is a constant,a0 is the initial half width, where Q= — (h2/2m)V2R/R is the usual quantum

k~/2misthe incident energyandC1 isa constantfac- potentialandtor introducedtosymmetrizethetwo wavefunctions H

0 = (h2/8m)[(V 0)2 + sin20(V 0)2] — (2pI1~)s~B

with respectto thepotential.To determinetheevolutionof the spinvectorand is a spin-dependentaddition.The particleenergyis

positionof a particlewe first note that the internal givenbydegreesof freedommaybe representedby the Euler — ~h(8~/8t+cos 0 aØ/at)angles0(x, t), Ø(x, t), ~t’(x,t) in termsofwhich thespinorfield at time t takestheform which, like thevelocity (2), containsa spindepend-

ent contribution.

aw/2(

cos(0/2)e”~2‘\

~(x, t) =R e sin(0/2) e_~2) (1) A quantumforcemdv/dt=—V(V+Q)—(2pIh)(VBk)sk

whereR(x, t) is a realamplitudefunction.Thespinvectoris given by — (h2/4mp)ö~[p(V 0 0k° +sin2OVO äkØ)]

qit

0qJ

s=~h k=l,2,3,p

thusactswhich introducesa new form of spin—orbit

= ~h(sin 0 sin0, sin0 cos 0, cos 0) couplinggiving riseto trajectorieswhich dependonthe spin even in the absenceof external magnetic

with p= = R2andthe velocity,derivedfrom the fields.The equationof motionof thespinvectormay

Paulicurrent,by bewritten

v=(h/2m)(V~v+cos0 VØ). (2) ds/dt=T+(2p/h)BXs,

In termsof thevariablesp,0, 0, ~ thePauliequation whereimpliesa continuityequation T= (l/mp)sxôk(pôkS)

op/at+div(pv)=0,is an additionalquantummechanicaltorquewhich

anda Hamilton—Jacobiequation: similarly maygive risetonon-stationaryspinvectors

106

Page 3: A quantum potential approach to spin superposition in neutron interferometry

Volume 121, number3 PHYSICSLETTERSA 13 April 1987

I I I I

1.05 -

0.45

0 40 I I I I I I I I I0 00 2 00 4 00 6.00 8 00 10.00 12 00 14.00 16 00 15 00

1010

NEUTRON TRAJECTORIES SPIN SUPERPOSITIONFig.2. Particletrajectoriesatthelast semi-transparentsurface.

evenin theabsenceof magneticfields. figuresallowsustoseetheway inwhich thespinori-FromthenumericalsolutionofthePauliequation entationchangesin a continuousmannerduringthe

we may calculatethe spin vectororientationsfrom scatteringfrom the final semi-transparentsurface.(1) andthetrajectoriesfrom (2) by writingv= dx/dt Fig. 4 showstheazimuthalangle0 andin this figureandspecifyingthe initial position (which of course we haveneglectedthe purely classicalprecessionofin practiceis unknown). In fig. 2 ~ we displaythe the spin vector about the guide field. Clearly thetrajectoriesfrom thegaussiandistribution of initial averagevalueof the spin isconserved.Changingthepositionsin eachcomponentbeam.The horizontal relativephasedoesnotaffectthepolaranglebutdoes,lines indicatethe position of the squarepotential. asis shown in fig. 5, causethe final directionof theNoticethatall thetrajectoriesoriginatingin theupper spinvectorin the xyplaneto be rotated.How this(lower) beam inside the interferometerenterthe arisescanbeseenif wewriteupper(lower) beamoutside.This leadsasexpected / R ~ ~

to an equalcountratein thetwo detectorsindepen- ~= ( 1S2/h •~

dentof therelativephase. \R2 e eThe spin orientationfields 0(x, I) andØ(x, t) are .andcomparewith (1). Thisgives

shown in figs. 3 and 4. In the emergingbeamsthespinvectorliesin thexy plane(0=x/2) asshown in 0=2tan~(R2/R1),fig. 3. Superposingthetrajectoriesmentally on these

çti=(S1 +S2)/h+it/2+X,

0 Inthefiguresweputh= 1, m=O.5,~~=O.O5,k0=50E.

107

Page 4: A quantum potential approach to spin superposition in neutron interferometry

Volume 121, number3 PHYSICSLETTERSA 13 April 1987

1.10 I 1’ 1 1 1 1 ~‘ I~ ~

I 1 1 1 1 1 1 I 1 1 1 \—I’-’-

1 1 1 1 111 Itt ~

1 1 1 1 111 Itt \\—---—---‘~——————

1 1 1 I 1 1 1 1 1 \

1.00 1 I 1 1 1 1 1 1 \~.~‘/

11 1 1 1 11 11 1 I 1 1 1 1 1 \1 1 I 1 1 1 1 tIlt \

II II It II0-to I I I I I I I I I I I t.\’—’ t /

I I 1 1 1 1 1 1 1 1 1 1 1 1 \ \‘.———

1 I 1 1 1 1 1 1 1 1 1 1 1 \ \ \I 1 1 1 1 1 1 1 1 1 1 1 1 1 \ \ \‘~.

1 1 1 I I I 111 tt\\0.50 1 1 1 1 1 1 111 1 \\\~‘---—-—-‘/ I 1/’

1 1 1 I 1 1 1 11 11111 \ \\\‘~~-

I I I I I I I I I I III / I / I I / ‘ ~-‘~0.70 It t ii 1 II I 1171 I///.’——-~--’.\\\\’.

I I I I I I t I I 1/It I I I I t I I I It//I’I I I I I I I 1 7 1 11 / / 1’

I t I I I I I I I I I II / / /—-——‘——‘.

0_SO I t I I I I I I I I I I 1/ / — ‘~. I ‘.

I t I I I I I I 1 1 1 1 II /I I I I I I I I I I 111/1 1 t t I I’ I I I I I I I P 1—————

I I I I t I I I I I I I I P /—‘.\

0-so I t I I I I I I I I I I I I—\\It t I I I I I I I I 1 1 7 I—--------It I I I I I III IIIII/—-~~~--—------—-.1111 It t t t III ~

I t I t I t I I I I I I I I I /~\‘..-‘--~-‘-‘-

0.45 1 t t t I I I I I I I / I / ~

2.00 4.00 600 600 1000 1200 1400 1500 1500,ol 0-~NEUTRON INTERFEROMETRY SPINSUP THETA

Fig. 3. Thepolarorientationangleof thespin vector0(x, t) plottedon a meshof pointsassociatedwith fig. 2.

I I I I I1.10

•“ I / .‘ ~‘. ~/ / ~0 I — I ~.. ~ I “- —I I I \ — .- I I - — - . - . .

I.00

‘I I /~../ \—/ I \——.‘ 1 1 1 t ~ I I \—— I 1

0,90 1 / 1 1--—I \ ~————-—.‘ / I I I “——-—1 / I I \ I \ ‘-.

--/1I I t\.----’1—/1 I\~\\\\\\\~’ ‘~‘.-‘-—-“———‘//I Ill.——“ ‘I t t I I I It I I \ \ I ‘.‘.~—.-~‘-.—— / / I I 1 1~’-.1 t I / / / / / / / / / / P I I t I I I I \‘..—..-—-—— / 1 1 1 \ ‘~

0.90 ///~‘~~____,,,,,/,,,/,,,,,,_..__.__________.___.

,/ /, // / // ///___‘__._ ~

0,70 \IIIIIIII’-——--.-—.-.-—.-.---------———------———

I I I I I I I I I I I I I I 1 1 1 1 1 1 / /~~——‘~-\ 1 1 1//I —“. I I / I I I I / /11/ ~ I I I I /\—\4///’-~——\\tI1/-’~”

0.60 1 1—1 1 —~—I / .-~—-—-~‘-‘. I 1 1 1 / /.——~.\ I I t I I / /‘-

0.50 /1—t—t/I,\I/--~.II/l///

1I”.—’.I I—Ill ~0,40 II/I—t/I/I’-I,\/1~-~\l-11///////--

2,00 4 00 6 00 6,00 10,00 2,00 14.00 16,00 18,00

,dONEUTRON INTERFEROMETRY SPINSUP PHI

Fig.4. Theazimuthalorientationangleof thespin vectorØ(x, t) associatedwith fig. 2.

108

Page 5: A quantum potential approach to spin superposition in neutron interferometry

Volume121, number3 PHYSICSLETTERSA 13 April 1987

1.10 lI/’~~—~———~t/—l—\—I—I\—/1

i/—I Il—Ill I—’/—/\—l——1 I\~—/J ~

.00

/11 I.-\—I\—/l \~—---/I I \‘~——/l ~I\1/\—/1’~--/1 1\\’~——-//I\\—.—-/I\-.—~,III,,I/////I/f//f//////

0.80 .‘-.\/1-—’I\~——-/11 I 11\~’..~——//I1\\

I \ -—--—--————.--— ~// / I I 1 1 \“---.—..‘/ / / / / I / / / fl//Il / / f/I/I / / 1 1 1 1‘1 J~—--—’///1 I1\——--’/////I//l/IIf///I//II///

0-soii I//Ill//If//I / / I / PIt I I I I 1 1 1 1111111 11 11 II I I I IIHPPPIIFI /

—.———-.‘-.--“‘/// / II / / / / / / / / I / / 111111 I I I I I I I I I I I I I11111111111111111111111/1 I1I1////////////////’—~.-.-.-.——‘/1/IIIIIII/11/I///////.-.-— __._._._/.,‘/////////

0,70 •//////\‘~~/1111IlII11/////////////11 .“.\\I\II I P/’—-.\\tlI 111111////////////////f~,I\-~-.’,’,\II\\ 11 1//’——-’..\t Ill I1I////////I////////////

/—-. I I I I I I I II 1 1 1 1 / / -——--“. 1 1 1 1 1 1 / / / / / / / / 1 1 1 1 / / / 1 / / / / / / / / / /\~-I—’.tI---II II III/’-—-----’~\tII//.-——,//lIII/I//I1/////,///////

0.40 .1—1—1 1 /—I I / / ‘-.——-‘~\ I 1 1 / /——--“. I I I I I 1 1 /1/1 1 1 1 1 1 1 1 1 / / / / / / / / /1—~—t—t/—’~I/’—---~-’~.\II//——-—’.I Il—lI 1111 IIIIII///I/I/II//////I I——.- I — L/-\ I ‘—“.1 11/ /——--I I / ‘~~S~\ I1II1II111/1/ 11 1 1 / 1 1 /1/ / / / /

- It /1-1.-1 I -~—\ 11 /——‘.\ I Il——I 11 1/ 11 1 1 I 111111111111 1 II / / / 1// -I I ‘/ I ~‘. / 1 ‘—1 / -‘—-\ I I I--.\ 1 1 // I I I I 1 1 1 1 1 1111/1/I 1 / 1 1 / / / /

0-50 — I I I /‘ I “./I I— I /—\ 1 1 I-—’.II/—” I \ I I I I I I 1 1 1 11111111111 1 1 / / 1.—/f’I/—//\1—\/-~I/\I1/.--’~I/---\ III11I1I1 11111 11111111111‘It———I’——I I~/~/-I-~’.I /——‘~I I’-.\ I I I I I I I II I 1 111111111111111I I\—t——1———-/I—1--I—\/—I I—---~. I//I III I III I II1l111II1l/1/11I~’——I—’.--I—~.——/\—1—I—\/—\I————I 1111 11111 114 11111111/1111

0.40 —/1 I\’s1\’’,.\\ \-‘~—II—~I.--I—~I/—I I/Ill 111 III II 114 I IIIIIIIIIII/

2.00 4.00 6,00 8,00 10,00 12.00 14.00 18.00 18,00ol 0

NEUTRON INTERFEROMETRY SPINSUP 10 PHI

Fig. 5. Theazimuthalorientationangleof thespin vectorwith anadditionalrelativephasex~introducedby rotatingthephaseplate.

0 (S1 S2)/hit/2~. thetimethewave packetpassed.

However, if the spin rotationon beamII is carried By measuringthespinina directionin thexy planeoutwith a time-dependentradiofrequencyspin flip or, as is in fact done,in the z-directionafter a ~tf2coil [7] the situationis ratherdifferent.Theuseof spin turn coil, anintensityvariationwith respecttosucha deviceintroducesanenergyexchangebetween therelativephasemaybeobserved.Sucha measure-the neutronandthe coil, an effect notpresentwith ment could in principle be carried out using astatic magnetic fields, and this raises interesting Stern—Gerlachapparatus,butweshouldguardagainstproblemsof interpretationdiscussedelsewhere[8]. unwarrantedinferencesfreomsuchresults.If thespinIt also producesa time-dependentrelative phase. is measuredin the z-directionoutsidethe interfero-Eachneutronpassingthroughtheapparatuswill suf- meter,in theabsenceof~t/2spinturncoils, theresultfer a differentphaseshift dependingon the phaseof is not relatedto which beampath the neutrontookthe coil as it passes.Thetotal relativephaseis then insidetheinterferometer,asmaybenaivelyexpected

x — w~t. Thedirectionof the spinvectoroutsidethe from the extensionof classicalideasinto this quan-interferometerthusrotatesin thexyplane,requiring tumphenomenon.Accordingtothecalculationspre-a detectionprocesssynchronizedwith the phaseof sentedhereboth resultsspin up andspin down canthecoil torevealthesuperposition.Thesimplemodel be achievedwith neutronsthathavetravelledalongusedheredescribeseventsafterthespinflip hastaken eitherpath,andthe spin measurementprocesscanplace,thusa time-dependentrelativephasecanonly be accountedfor in a deterministicmanner.Eachbesimulatedin a seriesof “stills” eachwith a differ- emergingneutronhasawell-definedspinvectorlyingent relativephase.Of course,eachindividual neu- in the xy planeand a definite position within thetron,apartfrom theprecessionabouttheguidefield, beamas it entersthe Stern—Gerlachapparatus.Thehasa staticspin vectororientationoutsidetheinter- interactionwith the inhomogeneousfield producesferometerwhich dependson the stateof the coil at two separatingbeams,the neutronenteringoneor

109

Page 6: A quantum potential approach to spin superposition in neutron interferometry

Volume 121, number3 PHYSICSLETTERSA 13 April 1987

the other depending on its initial position at the the Royal Society, the SERCand the French Gov-entranceslit. As the beamsseparatethe quantum ernmentrespectively for grants which made thistorquerotatesthe spinvectorto lie alongor opposed researchpossible,andthe IHP for its hospitality.to thefield gradient.Thuswemaychooseto measurethe spin in the z-direction or in a perpendiculardirection afterthe neutronhasenteredthe appara- Referencestus.Thequentumpotentialapproachshowsthatthereis no needto concludethat the choiceof what to [1] C. Dewdney,Phys.Lett. A 109 (1985) 377.

observehasanyinfluenceon what happenedin the [2] D. Bohm,Phys.Rev.85 (1952) 166, 180;pastanda uniqueoutcomewill follow uniquelyspec- L. deBrogue,Non-linearwavemechanics(Elsevier,Amster-

dam, 1960);ified initial conditions. This is important to bear in

J.P. Vigier,Astron. Nachr. 303 (1982) 55.mind when considering“delayed choice” experi- [3] J. Summhammer,G. Badurek, H. Rauchand U. Kischko.

ments[9] which aredesignedto showthat theact of Phys.Lett.A 90(1982)110;

observationcan affect the set of events occurring G. Badurek,H. Rauch,J. Summhammer,U. KischkoandA.

priorto thatact. Zeilinger,J. Phys.A 16 (1983) 1133;J.Summhammer,G. Badurek,H. Rauch,U. KischkoandA.

In the precedingwe havedemonstratedthat the Zeilinger, Phys. Rev. A 27 (1983) 2523.

phenomenaassociatedwith spin superpositionneu- [4] C. Dewdney,P.R.HollandandA. Kyprianidis,Phys.Lett. A

tron interferometryexperimentscanbe describedin 119 (1986) 259.

the causalinterpretationin termsof individual tra- [5] D. Bohm,R.SchillerandJ. Tiomno, Suppi. Nuovo Cimento

jectorieswith well-definedbutcontinuouslyvariable 1 (1955) 48.[6] T. Takabayasi,Prog.Theor.Phys.14 (1955)283;

spinvectorswithoutambiguityorcontradiction.The T. TakabayasiandJ.P. Vigier, Prog.Theor. Phys.18 (1957)

behaviourof eachneutronin the regionof superpo- 573.

sition, its position, spin vector andenergy,reflects [7] G. Badurek,H. RauchandJ. Summhammer,Phys.Rev.Lett.

theglobalpropertiesof thewholeapparatusthrough 51(1983)1015.

the local propagationof information by the spinor [8] C. Dewdney,A. Garuccio,A. Kypnanidisand J.P. Vigier,Phys.Lett. A 104 (1984) 325.

wave acting through the spin-dependentquantum [9] J.A. Wheeler, in: Mathematicalfoundationsof quantum

potentialandquantumtorque. mechanics,ed. A.R. Marlow (AcademicPress,New York,1978).

TheauthorsC.D.,P.R.H.,andA.K. wishto thank

110