a geometric interpretation for growing networks

28
A geometric interpretation for growing networks 孙孙孙 2016.12.28

Upload: sun-peiyuan

Post on 12-Apr-2017

26 views

Category:

Science


6 download

TRANSCRIPT

Page 1: A geometric interpretation for growing networks

A geometric interpretation for growing networks

孙佩源2016.12.28

Page 2: A geometric interpretation for growing networks

Real Networks

Page 3: A geometric interpretation for growing networks

• scale free• 节点度分布满足幂律分布

• strong clustering• 与同一节点连接的节点对有较大概率连接

• significant community structure• 通常节点出现集聚现象

Real Networks

Page 4: A geometric interpretation for growing networks

Previous Work

• Erdos-Renyi Model [Erdos and Renyi, 1959]

• 假设任意两点之间的连接为独立同分布的伯努利随机变量• Erdos-Renyi 通常只是作为一个基准模型

• Stochastic Block Model [Nowicki and Snijders, 2001]

• 假设任意两点之间的连接依赖于一个表述节点所属类型的隐变量• 只具有集群现象

Page 5: A geometric interpretation for growing networks

Previous Work

• Preferential Attachment Model [Barabasi and Albert, 1999]

• 网络中新加入节点与已有节点连接的概率与其度成正比• 最成功的地方在于发现 citation 网络中的幂律指数为 3

• Preferential Linking Model [Dorogovtsev, 2000]

• 在 Barabasi 的基础上加入了节点的初始 attractiveness

• 最成功的地方在于获得了初始 attractiveness 与幂律指数的关系表达式

Page 6: A geometric interpretation for growing networks

Geometry Framework• Hyperbolic Geometry Model [Krioukov and Papadopoulos, 2010]

Page 7: A geometric interpretation for growing networks

Geometry Framework

• Hyperbolic Geometry Model [Krioukov and Papadopoulos, 2010]

• 网络节点由极坐标描述 : (angular coordinate, radial coordinate)

• 不同于传统的 Euclidean 空间, Hyperbolic Space 中两点距离为:2' ln

2x r r

节点极半径 = K 两节点角度差

Page 8: A geometric interpretation for growing networks

Geometry Framework

• Hyperbolic Geometry Model [Krioukov and Papadopoulos, 2010]

• 假设我们可以将现实网络中的节点映射到 Hyperbolic Space 中• 两点间产生连接的概率为:

• 则简单推导即可得:( ) ( )p x R x

距离小于 R 的连接概率为 1

12 1,2

( ) ,12,2

p k k r

节点度满足幂律分布

Page 9: A geometric interpretation for growing networks

Geometry Framework

• Hyperbolic Geometry Model [Krioukov and Papadopoulos, 2010]

• 进一步地,如果假设连接概率为:

• 则更进一步的推导可得: 1/

1( )1Tp x

x

与集群系数成反比T

Page 10: A geometric interpretation for growing networks

Geometry Framework

• Hyperbolic Geometry Model [Krioukov and Papadopoulos, 2010]

假设网络节点位于 Hidden Hyperbolic Space 和特定连接概率即可得1. 生成网络中节点度服从幂律分布2. 通过调节连接概率参数可以控制集群系数

Geometry Framework 非常简单并且满足现实网络的特性

Page 11: A geometric interpretation for growing networks

Geometry Framework

• Popularity versus Similarity Model [Papadopoulos, Krioukov etc, 2012]

• 前述模型只考虑了 popularity ,而忽略了 similarity

e.g :新的微博用户除了关注大 V ,还关注与自己兴趣相近的用户• 前述模型只考虑了静态网络,没有考虑网络的动态增长

Page 12: A geometric interpretation for growing networks

Geometry Framework

• Popularity versus Similarity Model [Papadopoulos, Krioukov etc, 2012]

1. 初始网络为空2. 在时刻 : (a) 节点 的极坐标为: ,角坐标为: (b) 早于 的节点更新极坐标为:

3. 新加入节点与已经存在节点连接概率为:

1,2, ,i t 2 lnir i

[0,2 ]U ii

( ) (1 )j j ir i r r

( )2

1( )1 ij i

ijx R

T

p xe

Page 13: A geometric interpretation for growing networks

Geometry Framework

• Node coordinate inference [Papadopoulos, Krioukov etc, 2015]

1. 基于链接的推断算法逐节点使用 MLE 求解 :

原理为:2. 基于公共邻居的推断算法求出公共邻居节点的概率分布,然后使用 MLE 求解似然度函数

1

1

( ) [1 ( )]ij ijiL ij ij

j i

L p x p x

( ) ( , )ij ij i ip x r

https://bitbucket.org/dk-lab/2015_code_hypermap

Page 14: A geometric interpretation for growing networks

Geometry Framework

• Geometric correlations in multiplex network [Kleineberg, 2016]

主要结论:1. 多层网络重叠节点在不同层的极坐标具有很强的相关性

Page 15: A geometric interpretation for growing networks

Geometry Framework

• Geometric correlations in multiplex network [Kleineberg, 2016]

主要结论:2. 多层网络重叠节点在不同层的角坐标具有很强的相关性

Page 16: A geometric interpretation for growing networks

Geometry Framework

• Geometric correlations in multiplex network [Kleineberg, 2016]

主要结论:3. 多层网络节点间链接概率具有很强的关联性

Page 17: A geometric interpretation for growing networks

some preliminary experiments• 数据集

序号 事件 总结点数 总边数 MCC节点 MCC边 节点比例1 郭美美 153744 435515 67680 158551 44.02%

2 李庄 40989 70444 16216 30249 39.56%

3 钱云会 64596 165066 24882 53027 38.52%

4 夏俊峰 56405 79163 21567 29712 38.24%

5 药家鑫 215316 372219 79852 129829 37.09%

6 房价 525083 1292306 192383 432974 36.64%

7 9级地震 173700 286229 49076 75433 28.25%

8 钱明奇 44390 65206 10281 13550 23.16%

9 王功权 173619 165362 27701 32593 15.96%

10 中石化 86504 98116 11442 12832 13.23%

11 李刚 110523 128589 14291 15913 12.93%

12 宜黄 12886 8775 1534 1533 11.90%

13 邓玉娇 18739 16507 2155 2431 11.50%

14 个税起征点 51267 40115 3211 3269 6.26%

15 胶州路大火 107825 113908 5605 5790 5.20%

Page 18: A geometric interpretation for growing networks

some preliminary experiments• 各层重叠节点分布

Page 19: A geometric interpretation for growing networks

some preliminary experiments•验证转发网络是否满足 Hyperbolic 结构( 1)是否满足幂律分布(原图)

Page 20: A geometric interpretation for growing networks

some preliminary experiments•验证转发网络是否满足 Hyperbolic 结构( 1)是否满足幂律分布(最大连通子图)

Page 21: A geometric interpretation for growing networks

some preliminary experiments•验证转发网络是否满足 Hyperbolic 结构( 2)集群系数是否满足(极大连通子图)

Page 22: A geometric interpretation for growing networks

some preliminary experiments•验证转发网络是否满足 Hyperbolic 结构( 2)集群系数是否满足(极大连通子图, 10bin)

Page 23: A geometric interpretation for growing networks

some preliminary experiments•验证转发网络是否满足 Hyperbolic 结构( 3) Hyperbolicity 是否满足(极大连通子图) [Tree-like structure in large social and information networks, 2013, ICDM]

指出:可以使用树分解衡量图的 hyperbolicity ,树分解得到的 tree width越低, hyperbolicity越强

Page 24: A geometric interpretation for growing networks

some preliminary experiments•验证转发网络是否满足 Hyperbolic 结构( 3)双曲性是否满足(极大连通子图)

Page 25: A geometric interpretation for growing networks

some preliminary experiments•验证转发网络是否满足 Hyperbolic 结构( 3)双曲性是否满足(极大连通子图)

Page 26: A geometric interpretation for growing networks

some preliminary experiments•几个事件的 Polar图

Page 27: A geometric interpretation for growing networks

Reference1. Krzysztof Nowicki and Tom A B Snijders. Estimation and prediction for

stochastic blockstructures. Journal of the American Statistical Association, 96(455):1077–1087, 2001.

2. A.L. Barabási and R. Albert, Science 286, 509 (1999).3. S.N.Dorogovtsev, J.F.F.Mendes and A.N. Samukhin, PRL, 2000.4. Krioukov D, Papadopoulos F, Kitsak M, et al. Hyperbolic geometry of

complex networks[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2010, 82(3 Pt 2):98-118.

5. Papadopoulos F, Aldecoa R, Krioukov D. Network Geometry Inference using Common Neighbors[J]. Computer Science, 2015, 92(2).

6. Kleineberg K K, Boguñá M, Serrano M Á, et al. Hidden geometric correlations in real multiplex networks[J]. Nature Physics, 2016.

Page 28: A geometric interpretation for growing networks

谢谢大家!