81932337 etf analiza zoran mitrovic

161
MATEMATI ˇ CKA ANALIZA 1 Zoran Mitrovi´ c Elektrotehniˇ cki fakutet u Banjaluci

Upload: kemal-gusic

Post on 26-Jul-2015

630 views

Category:

Documents


10 download

DESCRIPTION

math

TRANSCRIPT

Page 1: 81932337 Etf Analiza Zoran Mitrovic

MATEMATICKA ANALIZA 1

Zoran Mitrovic

Elektrotehnicki fakutet u Banjaluci

Page 2: 81932337 Etf Analiza Zoran Mitrovic

2

Page 3: 81932337 Etf Analiza Zoran Mitrovic

Sadrzaj

1 Uvod 71.1 Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Elementi matematicke logike . . . . . . . . . . . . . . . . 71.1.2 Elementi teorije skupova . . . . . . . . . . . . . . . . . . . 91.1.3 Relacije i funkcije . . . . . . . . . . . . . . . . . . . . . . . 101.1.4 Elementarne funkcije . . . . . . . . . . . . . . . . . . . . . 14

1.2 Skupovi N,Z,Q,R i C . . . . . . . . . . . . . . . . . . . . . . . . 151.2.1 Skupovi N,Z i Q . . . . . . . . . . . . . . . . . . . . . . . 151.2.2 Skup R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.2.3 Skup C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Zadaci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Granicne vrijednosti 272.1 Granicna vrijednost niza . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Osnovni pojmovi . . . . . . . . . . . . . . . . . . . . . . . 272.1.2 Neke osobine konvergentnih nizova . . . . . . . . . . . . . 292.1.3 Monotoni nizovi . . . . . . . . . . . . . . . . . . . . . . . 342.1.4 Kosijevi nizovi . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Granicna vrijednost funkcije . . . . . . . . . . . . . . . . . . . . . 382.2.1 Tacka nagomilavanja . . . . . . . . . . . . . . . . . . . . . 382.2.2 Granicna vrijednost funkcije . . . . . . . . . . . . . . . . . 392.2.3 Osobine granicnih vrijednosti funkcija . . . . . . . . . . . 41

2.3 Neprekidne funkcije . . . . . . . . . . . . . . . . . . . . . . . . . 442.3.1 Neprekidne funkcije . . . . . . . . . . . . . . . . . . . . . 442.3.2 Vrste prekida . . . . . . . . . . . . . . . . . . . . . . . . . 472.3.3 Osobine neprekidnih funkcija . . . . . . . . . . . . . . . . 482.3.4 Uniformna neprekidnost . . . . . . . . . . . . . . . . . . . 49

2.4 Zadaci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Diferencijalni racun 533.1 Prvi izvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Definicija prvog izvoda . . . . . . . . . . . . . . . . . . . . 533.1.2 Osobine prvog izvoda . . . . . . . . . . . . . . . . . . . . 553.1.3 Geometrijska interpretacija prvog izvoda . . . . . . . . . . 57

3

Page 4: 81932337 Etf Analiza Zoran Mitrovic

4 SADRZAJ

3.1.4 Diferencijal . . . . . . . . . . . . . . . . . . . . . . . . . . 583.2 Teoreme o srednjoj vrijednosti i primjene . . . . . . . . . . . . . 61

3.2.1 Teoreme o srednjoj vrijednosti . . . . . . . . . . . . . . . 613.2.2 Monotonost funkcije . . . . . . . . . . . . . . . . . . . . . 653.2.3 Lopitalovo pravilo . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Izvodi viseg reda . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.3.1 Izvod reda n . . . . . . . . . . . . . . . . . . . . . . . . . 683.3.2 Drugi izvod i konveksnost . . . . . . . . . . . . . . . . . . 703.3.3 Tejlorova formula . . . . . . . . . . . . . . . . . . . . . . . 723.3.4 Ispitivanje funkcija . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Zadaci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Integralni racun 834.1 Odredjeni integral . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Definicija odredjenog integrala . . . . . . . . . . . . . . . 834.1.2 Osobine odredjenog integrala . . . . . . . . . . . . . . . . 85

4.2 Neodredjeni integral . . . . . . . . . . . . . . . . . . . . . . . . . 884.2.1 Definicija neodredjenog integrala . . . . . . . . . . . . . . 884.2.2 Osobine neodredjenog integrala . . . . . . . . . . . . . . . 904.2.3 Integracija nekih klasa funkcija . . . . . . . . . . . . . . . 92

4.3 Nesvojstveni integral . . . . . . . . . . . . . . . . . . . . . . . . . 1024.3.1 Nesvojstveni integral prve vrste . . . . . . . . . . . . . . . 1024.3.2 Nesvojstveni integral druge vrste . . . . . . . . . . . . . . 105

4.4 Primjene odredjenog integrala u geometriji . . . . . . . . . . . . 1074.4.1 Povrsina figure u ravni . . . . . . . . . . . . . . . . . . . . 1074.4.2 Duzina luka krive . . . . . . . . . . . . . . . . . . . . . . . 1074.4.3 Zapremina i povrsina obrtnog tijela . . . . . . . . . . . . 108

4.5 Zadaci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Redovi 1135.1 Numericki redovi . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.1.1 Osnovni pojmovi . . . . . . . . . . . . . . . . . . . . . . . 1135.1.2 Redovi sa pozitivnim clanovima . . . . . . . . . . . . . . . 1175.1.3 Alternativni redovi . . . . . . . . . . . . . . . . . . . . . . 121

5.2 Funkcionalni nizovi i redovi . . . . . . . . . . . . . . . . . . . . . 1235.2.1 Funkcionalni nizovi . . . . . . . . . . . . . . . . . . . . . . 1235.2.2 Funkcionalni redovi . . . . . . . . . . . . . . . . . . . . . 1255.2.3 Stepeni redovi . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Zadaci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Diferencijalne jednacine 1336.1 Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1.1 Osnovni pojmovi . . . . . . . . . . . . . . . . . . . . . . . 1336.1.2 Egzistencija i jedinstvenost rjesenja . . . . . . . . . . . . . 134

6.2 Neki integrabilni tipovi diferencijalnihjednacina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Page 5: 81932337 Etf Analiza Zoran Mitrovic

SADRZAJ 5

6.2.1 Jednacina sa razdvojenim promjenljivim . . . . . . . . . . 1386.2.2 Homogena jednacina . . . . . . . . . . . . . . . . . . . . . 1396.2.3 Linearna jednacina prvog reda . . . . . . . . . . . . . . . 1416.2.4 Bernulijeva jednacina . . . . . . . . . . . . . . . . . . . . 1426.2.5 Rikatijeva jednacina . . . . . . . . . . . . . . . . . . . . . 1436.2.6 Jednacine Lagranza i Klera . . . . . . . . . . . . . . . . . 145

6.3 Linearne diferencijalne jednacine viseg reda . . . . . . . . . . . . 1476.3.1 Homogena jednacina . . . . . . . . . . . . . . . . . . . . . 1476.3.2 Nehomogena jednacina. Metod varijacije konstanti . . . . 1506.3.3 Homogena jednacina sa konstantnim koeficijentima . . . . 153

6.4 Zadaci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Literatura 161

Page 6: 81932337 Etf Analiza Zoran Mitrovic

6 SADRZAJ

Page 7: 81932337 Etf Analiza Zoran Mitrovic

Glava 1

Uvod

1.1 Uvod

1.1.1 Elementi matematicke logike

Iskaz je potvrdna recenica koja ima smisla i koja je ili tacna ili netacna.Na primjer :

• 2 < π je tacan iskaz,

• 2 + 2 > 4 je netacan iskaz,

• x + 5 = 10 nije iskaz jer nije potvrdna recenica.

Iskazi se obicno oznacavaju malim slovima p, q, r, . . . , koji se zovu iskaznaslova. Dva ili vise iskaza se povezuju logickim operacijama. Logicke op-eracije su : konjunkcija, disjunkcija, implikacija, ekvivalencija i negacija.

• Konjunkcija dva iskaza p i q se oznacava sa p ∧ q, cita se p i q. To jeiskaz koji je tacan ako i samo ako su oba iskaza p i q tacna.

• Disjunkcija dva iskaza p i q se oznacava sa p ∨ q, cita se p ili q. To jeiskaz koji je tacan ako i samo ako je bar jedan od iskaza p i q tacan.

• Implikacija dva iskaza p i q se oznacava sa p ⇒ q, cita se p implicira qili ako p onda je q ili iz p slijedi q. To je iskaz koji je netacan ako i samoako je iskaz p tacan, a iskaz q netacan.

• Ekvivalencija dva iskaza p i q se oznacava sa p ⇔ q, cita se p je ekviva-lentno sa q . To je iskaz koji je tacan ako i samo ako su oba iskaza p i qtacna ili oba iskaza p i q netacna.

• Negacija iskaza p se oznacava sa ¬p, cita se sa ne p i tacan je iskaz akoje iskaz p netacan, a netacan iskaz ako je iskaz p tacan.

7

Page 8: 81932337 Etf Analiza Zoran Mitrovic

8 GLAVA 1. UVOD

Tacan iskaz se oznacava sa >, cita se te, a netacan iskaz sa ⊥, cita se ne te.Napomenimo da se tacan iskaz oznacava i sa 1, a netacan iskaz sa 0.Prethodno receno mozemo zapisati i u obliku tablica. Te tablice se nazivajutablice istinitosti.

p q p ∧ q p ∨ q p ⇒ q p ⇔ q> > > > > >> ⊥ ⊥ > ⊥ ⊥⊥ > ⊥ > > ⊥⊥ ⊥ ⊥ ⊥ > >

p ¬p> ⊥⊥ >

Simbole > i ⊥ zovemo logickim konstantama. Skup {>,⊥} sa operacijama∧,∨,⇒,⇔,¬ cini iskaznu algebru.Iskazne formule su :

1. iskazna slova i logicke konstante,

2. A ∧B, A ∨B, A ⇒ B,A ⇔ B,¬A, ako su A i B iskazne formule,

3. iskazne formule se dobijaju konacnom primjenom iskaznih formula iz 1. i 2.

Tautologija je iskazna formula koja je tacna za sve vrijednosti svojih iskaznihslova.

Primjer 1.1. Iskazna formula

(p ⇒ q) ⇔ (¬p ∨ q)

je tautologija.

p q p ⇒ q ¬p ∨ q (p ⇒ q) ⇔ (¬p ∨ q)> > > > >> ⊥ ⊥ ⊥ >⊥ > > > >⊥ ⊥ > > >

Primjeri tautologija :

• p ⇒ p, refleksivnost implikacije,

• p ∨ ¬p, zakon iskljucenja treceg,

• p ⇔ ¬¬p, princip dvojne negacije,

• (p ∧ q) ⇔ (q ∧ p) komutativnost logicke operacije, ∧,

• (p ∨ q) ⇔ (q ∨ p) komutativnost logicke operacije, ∨,

• ((p ∧ q) ∧ r) ⇔ (p ∧ (q ∧ r)) asocijativnost logicke operacije, ∧,

• ((p ∨ q) ∨ r) ⇔ (p ∨ (q ∨ r)) asocijativnost logicke operacije, ∨,

Page 9: 81932337 Etf Analiza Zoran Mitrovic

1.1. UVOD 9

• (p ∧ (q ∨ r)) ⇔ ((p ∨ r) ∧ (p ∨ r)) distributivnost ∨ prema ∧,

• (p ∨ (q ∧ r)) ⇔ ((p ∧ r) ∨ (p ∧ r)) distributivnost ∧ prema ∨,

• ¬(p ∧ q) ⇔ (¬p ∨ ¬q),¬(p ∨ q) ⇔ (¬p ∧ ¬q), De Morganovi zakoni,

• (p ⇒ q) ⇔ (¬q ⇒ ¬p), zakon kontrapozicije,

• [(p ⇒ q) ∧ (q ⇒ r)] ⇒ (p ⇒ r), zakon silogizma.

1.1.2 Elementi teorije skupova

Skup je osnovni pojam u matematici. Skupovi se oznacavaju velikim slovimaA,B, C, . . . ,X, Y, Z, . . .Elemente skupa oznacavamo malim slovima, a, b, c, . . . , x, y, z, . . .Ako elemenat x pripada (ne pripada) skupu X, to oznacavamo sa

x ∈ X (x /∈ X).

Skup elemenata sa osobinom P se oznacava sa

{x : P (x)}.Kvantifikatori su ∀, cita se za svako i ∃, cita se postoji. Kvantifikatori sekoriste radi simbolickog zapisa.Skup X je podskup skupa Y i to oznacavamo sa X ⊂ Y ako vrijedi

(∀x) x ∈ X ⇒ x ∈ Y.

Prazan skup je skup koji nema elemenata i oznacavamo ga sa ∅.Pri radu sa skupovima se koriste sljedece operacije :

• unija skupova X i Y , X ∪ Y = {x : x ∈ X ∨ x ∈ Y },• presjek skupova X i Y , X ∩ Y = {x : x ∈ X ∧ x ∈ Y },• razlika skupova X i Y , X \ Y = {x : x ∈ X ∧ x /∈ Y },• komplement skupa X , XC = {x : x /∈ X}.

Za operacije sa skupovima vrijede sljedece osobine :

• A ∪B = B ∪A, komutativnost operacije unija,

• A ∩B = B ∩A, komutativnost operacije presjek,

• A ∪ (B ∪ C) = (A ∪B) ∪ C, asocijativnost operacije unija,

• A ∩ (B ∩ C) = (A ∩B) ∩ C, asocijativnost operacije presjek,

• A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), distributivnost unije prema presjeku,

• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), distributivnost presjeka prema uniji,

• (A ∪B)C = AC ∩BC , (A ∩B)C = AC ∪BC , De Morganovi zakoni.

Page 10: 81932337 Etf Analiza Zoran Mitrovic

10 GLAVA 1. UVOD

1.1.3 Relacije i funkcije

Uredjeni par (x, y) se definise sa

(x, y) = {{x}, {x, y}}.

Iz definicije uredjenog para dobijamo

(x1, y1) = (x2, y2) ⇔ x1 = x2 ∧ y1 = y2.

Dekartov proizvod skupova X i Y se oznacava sa X × Y i definise sa

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

Ako je n > 2 uredjena n−torka (x1, x2, . . . , xn−1, xn) se definise sa

(x1, x2, . . . , xn) = ((x1, x2, . . . , xn−1), xn).

Binarna relacija relacija ρ na nepraznom skupu X je podskup skupa X ×X.Ako uredjeni par (x, y) pripada relaciji ρ to pisemo i xρy.Za binarnu relaciju ρ na skupu X kazemo da je :

• refleksivna, ako vrijedi (∀x ∈ X) xρx,

• simetricna, ako vrijedi (∀x ∈ X)(∀y ∈ X) xρy ⇒ yρx,

• antisimetricna, ako vrijedi (∀x ∈ X)(∀y ∈ X) xρy ∧ yρx ⇒ x = y,

• tranzitivna, ako vrijedi (∀x ∈ X)(∀y ∈ X)(∀z ∈ X) xρy ∧ yρz ⇒ xρz.

Binarna relacija je relacija ekvivalencije ako je refleksivna, simetricna i tranz-itivna.Binarna relacija je relacija poretka ako je refleksivna, antisimetricna i tranz-itivna.

Primjer 1.2. Relacija = je relacija ekvivalencije, a relacija ≤ je relacija poretka.

Neka je ρ relacija ekvivalencije na skupu X i x ∈ X. Skup

C(x) = {y : (x, y) ∈ ρ}

je klasa ekvivalencije za elemenat x. Moze se pokazati da je⋃

x∈X

C(x) = X,

C(x) i C(y) se poklapaju ili su disjunktne.

Primjer 1.3. Pokazati da je relacija ρ definisana na skupu Z na sljedeci nacin

(x, y) ∈ ρ ⇔ (∃k ∈ Z) x− y = 3k

Page 11: 81932337 Etf Analiza Zoran Mitrovic

1.1. UVOD 11

relacija ekvivalencije i odrediti klase ekvivalencije.Relacija ρ je refleksivna jer vrijedi

(x, x) ∈ ρ ⇔ x− x = 0 · 3.

Dalje, relacija ρ je simetricna. Naime,

(x, y) ∈ ρ ⇔ (∃k ∈ Z) x− y = 3k ⇔ (∃k ∈ Z) y − x = 3(−k) ⇔ (y, x) ∈ ρ.

Na kraju iz((x, y) ∈ ρ) ∧ ((y, z) ∈ ρ) ⇒

((∃k1 ∈ Z) x− y = 3k1) ∧ ((∃k2 ∈ Z) y − z = 3k2) ⇒ x− z = 3(k1 + k2)),

pa (x, z) ∈ ρ. Dakle, relacija ρ je tranzitivna.Klase ekvivalencije su skupovi

C(1) = {3k + 1 : k ∈ Z},C(2) = {3k + 2 : k ∈ Z},

C(3) = {3k : k ∈ Z}.Dacemo sada definiciju funkcije ili preslikavanja. Vidjecemo da je to speci-

jalan slucaj relacije.Neka su A i B neprazni skupovi. Pridruzivanje (korespodencija, pravilo ) f

koje svakom elementu x skupa A dodjeljuje tacno jedan elemenat f(x) nazivase funkcija ili preslikavanje. Koristeci pojam relacije prethodnu definicijumozemo iskazati i na sljedeci nacin : Relacija f ⊂ A×B je funkcija ako vrijedesljedeca dva uslova

• (∀x ∈ A)(∃y ∈ B)(x, y) ∈ f,

• (∀x ∈ A)(∀y1 ∈ B)(∀y2 ∈ B) (x, y1) ∈ f ∧ (x, y2) ∈ f ⇒ y1 = y2.

Skup A je domen ili oblast definisanosti, a skup B kodomen funkcije f . Skupvrijednosti funkcije f je

f(A) = {f(x) : x ∈ A}.Ocigledno vrijedi

f(A) ⊂ B.

Funkciju f ciji je domen skup A, a kodomen skup B zapisujemo i na sljedecinacin

f : A → B.

Cinjenicu da je elementu x pridruzen element f(x) oznacavamo ovako

x 7→ f(x).

Dvije funkcijef : A → B, g : C → D,

su jednake ako i samo ako vrijedi

A = C, B = D i f(x) = g(x) (∀x ∈ A).

Page 12: 81932337 Etf Analiza Zoran Mitrovic

12 GLAVA 1. UVOD

Primjer 1.4. Funkcije f : R → R, g : R → R, date sa f(x) = x, x ∈ R ig(x) =

√x2, x ∈ R nisu jednake, jer nemaju iste skupove vrijednosti. Naime,

f(R) = R, g(R) = {x ∈ R : x ≥ 0}.Grafik funkcije f : A → B je skup

G(f) = {(x, y) : (x, y) ∈ A×B, y = f(x)}.Za funkciju f : A → B kazemo da je injekcija ako vrijedi

(∀x1 ∈ A)(∀x2 ∈ A) f(x1) = f(x2) ⇒ x1 = x2.

Funkcija f : A → B za koju vrijedi

(∀y ∈ B)(∃x ∈ A) y = f(x)

se zove sirjekcija.Funkcija f : A → B je bijekcija ako je i injekcija i sirjekcija.Neka su date funkcije f : A → B, g : B → C, funkcija

g ◦ f : A → C

data sa(g ◦ f)(x) = g(f(x)), za sve x ∈ A,

naziva se kompozicija funkcija f i g.

Primjer 1.5. Neka je f(x) =√

x + 1, x > 0 i g(x) = 1x , x > 0.

Tada je

(f ◦ g)(x) =

√1x

+ 1,

(g ◦ f)(x) =1√

x + 1.

Iz prethodnog primjera vidimo da u opstem slucaju ne vrijedi

f ◦ g = g ◦ f.

Medjutim, operacija ◦ je asocijativna, to jest ako su date funkcije

f : A → B, g : B → C, h : C → D,

tada je(h ◦ g) ◦ f = h ◦ (g ◦ f).

Neka je funkcija f : A → B bijekcija, funkcija f−1 : A → B, za koju vrijedi

(∀y ∈ B) f−1(y) = x ⇔ f(x) = y

naziva se inverzna funkcija funkcije f . Za grafik inverzne funkcije f−1 vrijedi

G(f−1) = {(y, x) : (y, x) ∈ B ×A, y = f(x)}.Dakle, grafik funkcije f−1 je inverzan grafiku funkciju f u odnosu na pravuy = x.

Page 13: 81932337 Etf Analiza Zoran Mitrovic

1.1. UVOD 13

Primjer 1.6. Inverzna funkcija funkcije f : R → R date sa f(x) = 2x + 3 jefunkcija f−1 : R→ R za koju vrijedi x = 2f−1(x) + 3, to jest f−1(x) = x−3

2 .

Neka je X ⊆ R i Y ⊆ R. Za funkciju f : X → Y kazemo da je parna(neparna) ako vrijedi

(∀x ∈ X) f(x) = f(−x)

((∀x ∈ X) f(x) = −f(−x)).

Primjer 1.7. Funkcija f(x) = x2, x ∈ R je parna, a funkcija f(x) = x − x3,je neparna.

Funkcija f : X → Y je ogranicena odozgo (odozdo) ako postoji konstantaM ∈ R (m ∈ R) takva da vrijedi

(∀x ∈ X) f(x) ≤ M

((∀x ∈ X) m ≤ f(x)).

Funkcija je ogranicena ako je ogranicena odozgo i odozdo.

Primjer 1.8. Funkcija f(x) = 1x , x > 0 je ogranicena odozdo, jer je 1

x > 0, zasve x > 0, ali nije ogranicena odozgo, jer ne postoji konstanta M > 0 takva daje 1

x ≤ M.Funkcija f(x) = x

x2+1 , x ∈ R, je ogranicena. Naime, vrijedi

∣∣∣∣x

x2 + 1

∣∣∣∣ ≤12, za sve x ∈ R.

Funkcija f : X → Y je periodicna ako postoji realan broj p 6= 0 takav davrijedi

(∀x ∈ X) x + p ∈ X, f(x + p) = f(x).

Broj p se naziva period funkcije f . Najmanji pozitivan period funkcije f senaziva osnovni period funkcije f .

Primjer 1.9. Funkcija f(x) = 2 sin(3x − 5), x ∈ R, je periodicna. Osnovniperiod ove funkcije je 2π

3 .

Funkcija F : X → Y je monotono rastuca (neopadajuca, opadajuca,nerastuca) ako za sve x1, x2 ∈ X vrijedi

x1 < x2 ⇒ f(x1) < f(x2)

(x1 < x2 ⇒ f(x1) ≤ f(x2), x1 < x2 ⇒ f(x1) > f(x2), x1 < x2 ⇒ f(x1) ≥ f(x2)).

Za funkciju se kaze da je monotona funkcija ako ima jednu od navedenihosobina.

Page 14: 81932337 Etf Analiza Zoran Mitrovic

14 GLAVA 1. UVOD

Primjer 1.10. Funkcija f(x) = x3, x ∈ R je monotono rastuca. Naime, nekaje x1 < x2 tada je

f(x2)− f(x1) = x22 − x3

1 = (x2 − x1)(x22 + x2x1 + x2

1).

Kako je

x22 + x2x1 + x2

1 =(x2 +

x1

2

)2

+3x2

1

4> 0,

imamof(x2)− f(x1) > 0,

to jestf(x1) < f(x2).

1.1.4 Elementarne funkcije

Osnovne elementarne funkcije su :

• stepena funkcija, f(x) = xn, x ∈ R, n ∈ N,

• eksponencijalna funkcija, f(x) = ax, x ∈ R, a > 0 a 6= 1,

• logaritamska funkcija, f(x) = loga x, x > 0, a > 0, a 6= 1,

• trigonometrijske funkcije,

f(x) = sin x, x ∈ R,

f(x) = cosx, x ∈ R,

f(x) = tg x, x ∈ R \{

(2k + 1)π2

: k ∈ Z}

,

f(x) = ctg x, x ∈ R \ {kπ : k ∈ Z},

• inverzne trigonometrijske funkcije,

f(x) = arcsin x, x ∈ [−1, 1],

f(x) = arccos x, x ∈ [−1, 1],

f(x) = arctg x, x ∈ R,

f(x) = arcctg x, x ∈ R.

Elementarne funkcije se dobijaju primjenom konacnog broja algebarskih op-eracija : sabiranja, oduzimanja, mnozenja i dijeljenja, kao i primjenom konacnomnogo operacija kompozicije, na osnovne elementarne funkcije.

Page 15: 81932337 Etf Analiza Zoran Mitrovic

1.2. SKUPOVI N,Z,Q,R I C 15

1.2 Skupovi N,Z,Q,R i C1.2.1 Skupovi N,Z i Q

Skup prirodnih brojeva oznacavamo sa N i vrijedi N = {1, 2, 3, . . .}. Skupprirodnih brojeva ima sljedece dvije bitne osobine :

• ima najmanji elemenat to je broj 1,

• ako n ∈ N tada n + 1 ∈ N.

U skupu N vazi princip matematicke indukcije:Neka je X podskup skupa N tako da je

• 1 ∈ X,

• (∀n ∈ N) n ∈ X ⇒ n + 1 ∈ X,

tada je X = N.Princip matematicke indukcije koristimo za dokaz raznih tvrdnji P (n) koje seticu prirodnih brojeva. Obicno se postupa na sljedeci nacin :

• dokaze se P (1),

• dokaze se niz implikacija (∀n ∈ N) P (n) ⇒ P (n + 1).

Primjer 1.11. Dokazati da za sve prirodne brojeve n vrijedin∑

k=1

k2 =n(n + 1)(2n + 1)

6.

Rjesenje. Oznacimo gornju formulu sa P (n). Formula P (1) je ociglednotacna. Naime,

12 =1 · 2 · 3

6.

Ostaje da se dokaze

(∀n ∈ N)n∑

k=1

k2 =n(n + 1)(2n + 1)

6⇒

n+1∑

k=1

k2 =(n + 1)(n + 2)(2n + 3)

6.

Kako vrijedi

(∀n ∈ N)P (n) ⇒n∑

k=1

k2 + (n + 1)2 =n(n + 1)(2n + 1)

6+ (n + 1)2,

(∀n ∈ N)P (n) ⇒n∑

k=1

k2 + (n + 1)2 =n(n + 1)(2n + 1) + (n + 1)2

6,

(∀n ∈ N)P (n) ⇒n∑

k=1

k2 + (n + 1)2 =(n + 1)(n + 2)(2n + 3)

6,

imamo(∀n ∈ N)P (n) ⇒ P (n + 1).

Page 16: 81932337 Etf Analiza Zoran Mitrovic

16 GLAVA 1. UVOD

Koristeci metod matematicke indukcije se mogu dokazivati i razne nejed-nakosti.Bernulijeva nejednakost.Za svaki prirodan broj n i svaki realan broj h ≥ −1 vrijedi

(1 + h)n ≥ 1 + nh.

Za n = 1 imamo1 + h ≥ 1 + h,

sto je ocigledno tacno.Dokazimo da vrijedi

(∀n ∈ N) (1 + h)n ≥ 1 + nh ⇒ (1 + h)n+1 ≥ 1 + (n + 1)h.

Vrijedi

(∀n ∈ N) (1 + h)n ≥ 1 + nh ⇒ (1 + h)n+1 ≥ (1 + h)(1 + nh),

pa je

(∀n ∈ N) (1 + h)n ≥ 1 + nh ⇒ (1 + h)n+1 ≥ 1 + (n + 1)h + nh2.

Kako je(∀n ∈ N) 1 + (n + 1)h + nh2 ≥ 1 + (n + 1)h

imamo

(∀n ∈ N) (1 + h)n ≥ 1 + nh ⇒ (1 + h)n+1 ≥ 1 + (n + 1)h.

Binomna formulaPrije nego sto dokazemo binomnu formulu uvescemo prvo pojam binomnog ko-eficijenta.

Binomni koeficijent(

nk

), n ∈ N, k ∈ {0, 1, 2, . . . , n} je definisan sa

(nk

)=

n!k!(n− k)!

,

gdje je 0! = 1, n! = n · (n− 1)!, n ∈ N (simbol n! se cita n faktorijel ).Nije tesko pokazati da vrijede sljedece osobine binomnih koeficijenata:

1.(

nk

)=

n(n− 1)(n− 2) · · · (n− k + 1)1 · 2 · 3 · · · · · k ,

2.(

nk

)=

(n

n− k

),

3.(

n0

)=

(nn

)= 1,

Page 17: 81932337 Etf Analiza Zoran Mitrovic

1.2. SKUPOVI N,Z,Q,R I C 17

4.(

nk

)+

(n

k − 1

)=

(n + 1

k

).

Pokazimo na primjer osobinu 4.Vrijedi,

n(n− 1)(n− 2) · · · (n− k + 1)1 · 2 · 3 · · · · · k +

n(n− 1)(n− 2) · · · (n− k + 2)1 · 2 · 3 · · · · · k · k

k=

n(n− 1)(n− 2) · · · (n− k + 1 + k)1 · 2 · 3 · · · · · k =

(nk

),

Binomna formula je jednakost

(a + b)n =n∑

k=0

(nk

)an−kbk,

koja vrijedi za sve a, b ∈ R i sve n ∈ N.Binomnu formulu dokazujemo pomocu matematicke indukcije.Za n = 1 imamo

(a + b)1 =(

10

)a1−0b0 +

(11

)a1−1b1.

sto je tacno.Iz pretpostavke da je formula tacna za prirodan broj n imamo

(a + b)n+1 = (a + b)(a + b)n = (a + b)n∑

k=0

(nk

)an−kbk

=n∑

k=0

(nk

)an+1−kbk +

n∑

k=0

(nk

)an−kbk+1

=n∑

k=0

(nk

)an+1−kbk +

n+1∑

k=1

(n

k − 1

)an+1−kbk.

Dakle,

(a+b)n+1 =(

n0

)an+1b0+

n∑

k=0

[(nk

)+

(n

k − 1

)]an+1−kbk+

(nn

)a0bn+1.

Kako je (nk

)+

(n

k − 1

)=

(n + 1

k

),

imamo

(a + b)n+1 =n+1∑

k=0

(n + 1

k

)an+1−kbk,

Page 18: 81932337 Etf Analiza Zoran Mitrovic

18 GLAVA 1. UVOD

a to je i trebalo dokazati.Svarcova nejednakost.Vrijedi

(x1y1 + · · ·+ xnyn)2 ≤ (x21 + · · ·+ x2

n)(y21 + · · ·+ y2

n) (1.1)

gdje su x1, . . . , xn, y1, . . . , yn, realni brojevi.Za n = 1 formula 1.1 je tacna, to jest:

(x1y1)2 ≤ x21y

21 .

Kako vrijedi

(x1y1 + · · ·+ xn+1yn+1)2 = (x1y1 + · · ·+ xnyn)2+

2(x1y1 + · · ·+ xnyn)xn+1yn+1 + x2n+1y

2n+1 (1.2)

i2ab ≤ a2 + b2,

stavljajucia = xkyn+1, b = xn+1yk

i sumirajuci za k = 1, 2, . . . , n, dobijamo

2(x1y1 + · · ·+ xn+1yn+1)xn+1yn+1 ≤ (x11 + · · ·+ x2

n)y2n+1+

(y11 + · · ·+ y2

n)x2n+1.

Sada,koristeci (1.1) i (1.2) imamo

(x1y1 + · · ·+xn+1yn+1)2 ≤ (x21 + · · ·+x2

n)(y21 + · · ·+ y2

n)+ (x21 + · · ·+x2

n)y2n+1+

(y21 + · · ·+ y2

n)x2n+1 + x2

n+1y2n+1.

Odavde je

(x1y1+· · ·+xn+1yn+1)2 ≤ (x21+· · ·+x2

n)(y21 +· · ·+y2

n+1)+(y21 +· · ·+y2

n+1)x2n+1,

to jest

(x1y1 + · · ·+ xn+1yn+1)2 ≤ (x21 + · · ·+ x2

n+1)(y21 + · · ·+ y2

n+1).

Zbir prirodnih brojeva je prirodan broj, medjutim njihova razlika ne morabiti. To namece potrebu da se skup prirodnih brojeva prosiri. Ako se skupprirodnih brojeva prosiri sa nulom i negativnim brojevima −1,−2,−3, . . . , do-bijamo skup cijelih brojeva koji oznacavamo sa Z.

Dakle, skup cijelih brojeva je

Z = {0, 1,−1, 2,−2, 3,−3, . . .}.Primjetimo da u skupu cijelih brojeva jednacina

m + x = n, m, n ∈ N,

Page 19: 81932337 Etf Analiza Zoran Mitrovic

1.2. SKUPOVI N,Z,Q,R I C 19

ima rjesenje, dok to nije vrijedilo u skupu prirodnih brojeva. U skupu cijelihbrojeva za elemenat 0 vrijedi

(∀m ∈ Z) m + 0 = 0 + m = m.

Kaze se da je 0 neutralni elemenat za sabiranje. Osim toga vrijedi

(∀m ∈ Z) m + (−m) = (−m) + m = 0.

Broj −m je inverzan broju m u odnosu na sabiranje.Jednacina

nx = m, m ∈ Z, n ∈ N,

nema uvijek rjesenje u skupu cijelih brojeva, zbog toga skup cijelih brojevaprosirujemo skupom racionalnih brojeva koga oznacavamo sa Q. Dakle, skupracionalnih brojeva je

Q ={m

n: m ∈ Z, n ∈ N

}.

1.2.2 Skup RMoze se pokazati da ne postoje prirodni brojevi m i n takvi da je

√2 = m

n .Dakle, postoje brojevi koji se ne mogu predstaviti pomocu razlomka. Takvibrojevi se nazivaju iracionalni brojevi. Takvi su na primjer

√3,√

5,√

6.

Skup realnih brojeva je unija skupa racionalnih i iracionalnih brojeva.Skup realnih brojeva oznacavamo sa R. U skupu realnih brojeva vrijedi sljedecaosobina koja se zove aksioma neprekidnosti :Neka su X i Y neprazni podskupovi skupa realnih brojeva takvi da

(∀x ∈ X)(∀y ∈ Y ) x ≤ y

tada postoji c ∈ R takav da

(∀x ∈ X)(∀y ∈ Y ) x ≤ c ≤ y.

Napomenimo da aksioma neprekidnosti ne vrijedi u skupu racionalnih brojeva.Pored aksiome neprekidnosti u skupu R vrijede i sljedece aksiome :

• (∀x ∈ R)(∀y ∈ R) x + y = y + x,

• (∀x ∈ R)(∀y ∈ R)(∀z ∈ R) x + (y + z) = (x + y) + z,

• (∀x ∈ R) 0 + x = x + 0 = x,

• (∀x ∈ R) (−x) + x = x + (−x) = 0,

• (∀x ∈ R)(∀y ∈ R) x · y = y · x,

Page 20: 81932337 Etf Analiza Zoran Mitrovic

20 GLAVA 1. UVOD

• (∀x ∈ R)(∀y ∈ R)(∀z ∈ R) x · (y · z) = (x · y) · z,

• (∀x ∈ R) 1 · x = x · 1 = x,

• (∀x ∈ R\{0}) x−1 · x = x · x−1 = 1,

• (∀x ∈ R)(∀y ∈ R)(∀z ∈ R) x · (y + z) = x · y + x · z,

• (∀x ∈ R) vazi tacno jedna od relacija :

x < 0, x = 0, x > 0,

• (∀x ∈ R)(∀y ∈ R) ((0 < x ∧ 0 < y) ⇒ (0 < x + y ∧ 0 < x · y)),

• (∀x ∈ R)(∀y ∈ R) x < y ⇔ 0 < (−x) + y.

Kazemo jos i da je (R, +, ·, <) uredjeno polje.

Primjedba 1.1. Oznaku R koristimo za prosireni skup realnih brojeva.Naime, skup R prosirujemo simbolima +∞ i−∞ koje nazivamo plus beskonacnoi minus beskonacno. Dakle,

R = R ∪ {+∞,−∞}.Definicija 1.1. Broj a ∈ R je donja (gornja) medja skupa S ⊂ R ako vrijedi

(∀x ∈ S) a ≤ x ((∀x ∈ S) x ≤ a).

Skup svih donjih (gornjih) medja skupa S oznacavamo sa S∗ (S∗). Skup S jeogranicen odozdo (odozgo) ako vrijedi S∗ 6= ∅ (S∗ 6= ∅). Za skup koji jeogranicen odozdo i odozgo kazemo da je ogranicen.

Definicija 1.2. Neka je dat skup S ⊂ R. Supremum (infimum) skupa S seoznacava sa sup S (inf S) i definise sa

supS = a ⇔ (a ∈ S∗ ∧ (∀s ∈ S∗) a ≤ s)

(inf S = a ⇔ (a ∈ S∗ ∧ (∀s ∈ S∗) s ≤ a)).

Teorema 1.1. Svaki odozgo (odozdo ) ogranicen skup ima supremum (infimum)u skupu R.

Neka su A,B ⊂ R i λ ∈ R skupove λA i A+B definisemo na sljedeci nacin :

λA = {λa : a ∈ A}, A + B = {a + b : a ∈ A, b ∈ B}.Teorema 1.2. Neka su A,B ⊂ R i λ ∈ R vrijedi sljedece :

(i)inf A = − sup(−A),

(ii)A ⊂ B ⇒ supA ≤ sup B ∧ inf A ≥ inf B.

Page 21: 81932337 Etf Analiza Zoran Mitrovic

1.2. SKUPOVI N,Z,Q,R I C 21

(iii)

inf(λA) ={

λ inf A, λ > 0λ supA, λ < 0

(iv)inf(A + B) = inf A + inf B.

Definicija 1.3. Ako inf S ∈ S (sup S ∈ S) kazemo da je inf S (sup S) mini-malni (maksimalni) elemenat skupa S. U tom slucaju umjesto inf S (sup S)koristimo oznaku minS (maxS).

Apsolutna vrijednost realnog broja a se oznacava sa |a| i definise sa

|a| ={

a, a ≥ 0−a, a < 0

Apsolutna vrijednost realnog broja ima sljedece osobine :

1. |a| = 0 ⇔ a = 0,

2. | − a| = |a|,3. −|a| ≤ a ≤ |a|,4. |a + b| ≤ |a|+ |b|,5. |a| − |b| ≤ |a− b| ≤ |a|+ |b|,6. |a · b| = |a| · |b|,7.

∣∣ab

∣∣ = |a||b| , b 6= 0,

gdje su a, b proizvoljni realni brojevi. Nejednakost 3. je poznata kao nejednakosttrougla. Iz definicije apsolutne vrijednosti slijedi da ako je realan broj ε > 0tada je

|x− a| < ε ⇔ x ∈ (a− ε, a + ε).

Interval (a− ε, a + ε) naziva se ε okolina tacke a.

1.2.3 Skup CJednacina x2 + 1 = 0 nema rjesenja u skupu realnih brojeva. Njena rjesenja

su kompleksni brojevi i i −i. Kompleksan broj i =√−1 nazivamo imaginarna

jedinica. Skup kompleksnih brojeva oznacavamo sa C. Vrijedi

C = {x + iy : x, y ∈ R}.Broj x zovemo realni, a broj y imaginarni dio kompleksnog broja z = x + iy.To pisemo x = Rez, y = Imz. Konjugovana vrijednost kompleksnog brojaz = x + iy je kompleksni broj z = x − iy. Broj

√x2 + y2 zovemo moduo

kompleksnog broja z i znacavamo ga sa |z|. Neka su z1 = x1+iy1 i z2 = x2+iy2

dati kompleksni brojevi. Operacije sabiranja, oduzimanja, mnozenja i dijeljenjase vrse na sljedeci nacin :

Page 22: 81932337 Etf Analiza Zoran Mitrovic

22 GLAVA 1. UVOD

• Zbir dva kompleksna broja je

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2).

• Razlika dva kompleksna broja je

(x1 + iy1) + (x2 + iy2) = (x1 − x2) + i(y1 − y2).

• Proizvod dva kompleksna broja je

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1).

• Kolicnik dva kompleksna broja je

(x1 + iy1)(x2 + iy2)

=(x1x2 + y1y2)

x22 + y2

2

+ i(x2y1 − x1y2)

x22 + y2

2

, x22 + y2

2 6= 0.

Primjer 1.12. Dati su kompleksni brojevi z1 = 1 + i i z2 = 2 + 3i. Odreditinjihov zbir, proizvod i kolicnik. Imamo

z1 + z2 = 3 + 4i, z1z2 = −1 + 5i,z1

z2=

1 + i

2 + 3i=

(1 + i)(2− 3i)4 + 9

=513− i

13.

Kompleksnom broju z = x + iy u Dekartovom koorinatnom sistemu mozemopridruziti tacku A sa koordinatama (x, y). Neka je ρ duzina duzi 0A, a φ ugaokoji poluprava odredjena tackama 0 i A zatvara sa pozitivnim smjerom x−ose.Vrijedi sljedece

x = ρ cos φ, y = ρ sin φ.

Duzinaρ =

√x2 + y2

je moduo kompleksnog broja z, a ugao

φ = arg z ∈ [0, 2π)

se naziva argument kompleksnog broja z. Dakle, broj z = x + iy mozemopisati u sljedecem trigonometrijskom obliku

z = ρ(cosφ + i sin φ).

Koristi se i oznakaz = ρeiφ,

to je eksponencijalni oblik kompleksnog broja.

Primjer 1.13. Predstaviti sljedece kompleksne brojeve u trigonometrijskom ob-liku :

Page 23: 81932337 Etf Analiza Zoran Mitrovic

1.2. SKUPOVI N,Z,Q,R I C 23

(a) 1 + i, (b) − 1 + i√

3.Rjesenje : (a)

|1 + i| =√

2, φ =π

4, 1 + i =

√2

(cos

π

4+ i sin

π

4

),

(b)

| − 1 + i√

3| = 2, φ =2π

3, −1 + i

√3 = 2

(cos

3+ i sin

3

),

Teorema 1.3. Ako su dati kompleksni brojevi

z1 = ρ1(cos φ1 + i sin φ1) i z2 = ρ2(cosφ2 + i sin φ2)

tada je

(a)z1z2 = ρ1ρ2(cos(φ1 + φ2) + i sin(φ1 + φ2)),

(b)z1

z2=

ρ1

ρ2(cos(φ1 − φ2) + i sin(φ1 − φ2)),

(c)(ρ1(cos φ1 + i sin φ1))n = ρn

1 (cos nφ1 + i sin nφ1),

(d)

n√

(ρ1(cos φ1 + i sin φ1) = n√

ρ1

(cos

(φ1 + 2kπ

n

)+ i sin

(φ1 + 2kπ

n

)),

za k = 0, 1, . . . , n− 1.

Formule (c) i (d) se nazivaju Moavrove formule.

Primjer 1.14. Izracunati :

(a) (−√3− i)7, (b)(

1−i1+i

)12

.

Rjesenje :(a)

(−√

3− i)7 = 27

(cos

(−5π

6

)+ i sin

(−5π

6

))7

= 27

(cos

(−35π

6

)+ i sin

(−35π

6

))

= 27(cos

π

6+ i sin

π

6

)= 27

(√3

2+ i

12

)= 26(

√3 + i).

(b)1− i

1 + i=

√2

(cos

(−π4

)+ i sin

(−π4

))√

2(cos π

4 + i sin π4

) = cos(−π

2

)+ i sin

(−π

2

).

Page 24: 81932337 Etf Analiza Zoran Mitrovic

24 GLAVA 1. UVOD

Koristeci Moavrovu formulu imamo(

1− i

1 + i

)12

=(cos

(−π

2

)+ i sin

(−π

2

))12

= cos(−12π

2

)+ i sin

(−12π

2

)= 1.

1.3 Zadaci

1. Pomocu tablica istinitosti ispitati da li su formule tautologije :

(i) [(p ⇒ q) ∧ (r ⇒ s) ∧ (p ∨ r) ⇒ (q ∨ r)] ⇒ (q ∨ s),

(ii) (p ⇒ (q ⇒ r)) ⇔ ((p ⇒ q) ∧ (p ⇒ r)),

(iii) (¬p ⇒ (q ∧ ¬q)) ⇒ p, ova formula se naziva svodjenje na apsurd.

2. Odrediti skupove A i B ako vrijedi

A ∪B = {x ∈ N : x ≤ 6}, A ∩B = {x ∈ N : x ≤ 4}, {4, 6} * A,

{5, 6} * B \A.

3. Neka su dati skupovi A,B, C. Dokazati da je :

(i) A \B = A \ (A ∩B) = (A ∪B) \B,

(ii) (A ∪B) \ C = (A \ C) ∪ (B \ C).

4. Neka jeA = {x ∈ R : |x− 1| < 2},

B = {x ∈ R :x− 1x− 2

> 1}.

Odrediti A ∪B, A ∩B, AC , BC .

5. Pokazati da je relacija ρ uvedena na skupu Z na sljedeci nacin

(x, y) ∈ ρ ⇔ postoji k ∈ Z takav da je x− y = n · k,

gdje je n ≥ 2 prirodan broj, relacija ekvivalencije i odrediti klase ekviva-lencije.

6. Rijesiti

(i) jednacinu|x− 1|+ |x− 2| = 5,

(ii) nejednacinu ∣∣∣∣3x2 − 7x + 8

x2 − 1

∣∣∣∣ ≤ 2.

Page 25: 81932337 Etf Analiza Zoran Mitrovic

1.3. ZADACI 25

7. Neka jef(x) =

√x + 1 i g(x) = x2 − 2.

Odrediti domene funkcija f i g. Naci f ◦ g i g ◦ f . Sta su domeni funkcijaf ◦ g i g ◦ f?

8. Naci inverznu funkciju ako je :

(i) f(x) = x + 1,

(ii) f(x) = 2x − 2,

(iii) f(x) = ln(

1 +x2 − 1x2 + 1

).

9. Pokazati da je

(i)(

n0

)+

(n1

)+ · · ·+

(nn

)= 22,

(ii)(

n0

)−

(n1

)+ · · · ±

(nn

)= 0.

10. Naci racionalne sabirke u razvoju

( 4√

x3 + 3√

x)10.

11. Koliko racionalnih clanova ima u razvoju

(√

2 + 4√

3)100?

12. Naci koeficijent od x2 u razvoju

(x2 + 2x−1)6.

13. Dokazati da je 11 · 102n + 1 djeljivo sa 3.

14. Dokazati :

(i)

12 + 32 + 52 + · · ·+ (2n− 1)2 =n(4n2 − 1)

3,

(ii)1

1 · 4 +1

4 · 7 +1

7 · 10+ · · ·+ 1

(3n + 1)(3n + 4)=

n + 13n + 4

.

15. Dokazati da za svaki prirodan n i svaki realan broj h ≥ −1 vrijedi nejed-nakost

(1 + h)n ≥ 1 + nh +n(n− 1)

2h2 +

n(n− 1)(n− 2)6

h3.

Page 26: 81932337 Etf Analiza Zoran Mitrovic

26 GLAVA 1. UVOD

14. Neka je z1 = 4 + 2i, z2 = −2− 4i. Odrediti

z1 · z2, z1 · z2,z1

z2, |z1|.

16. Odrediti eksponencijalni oblik kompleksnih brojeva −2 + 3i, −1 + i.

17. Naci12√

2 + 2i i (√

3 + i)12.

19. Rijesiti jednacinuz6 + 1 = 0.

20. Rijesiti jednacinuz2 + (1− 2i)z − 2i = 0.

Page 27: 81932337 Etf Analiza Zoran Mitrovic

Glava 2

Granicne vrijednosti

2.1 Granicna vrijednost niza

2.1.1 Osnovni pojmovi

Definicija 2.1. Preslikavanje x : N → R nazivamo niz x. Broj x(n) se nazivan−ti clan niza i oznacava se sa xn. Broj n je indeks clana. Niz x : N → R seobicno oznacava sa {xn} ili (xn).

Primjer 2.1. xn = n2, yn = 1 + 1n , zn = (−1)n.

U prethodnom primjeru nizovi su eksplicitno dati formulom. Tako na prim-jer, x3 = 9, y5 = 6

5 , z10 = 1. Da bi bio poznat neki niz on ne mora da budezadan eksplicitnom formulom.

Primjer 2.2. Niz {xn} za koji vrijedi

x1 = 1, x2 = 1, xn+2 = xn+1 + xn, n ∈ N,

se naziva Fibonacijev niz. Njegovi clanovi se odredjuju iz rekurzivne formule.Tako na primjer x3 = 2, x4 = 3, x5 = 5, x6 = 8.

Za proucavanje niza od interesa je odrediti ponasanje njegovih clanova kadanjihov indeks raste. To dovodi do pojma granicne vrijednosti niza.

Definicija 2.2. Realan broj x je granicna vrijednost niza {xn} ako vrijedi

(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0) |xn − x| < ε. (2.1)

To oznacavamo salim

n→+∞xn = x

ilixn → x, kad n → +∞.

Realan broj x zovemo granicna vrijednost ili limes niza {xn}. Kaze se i daniz {xn} konvergira ka x ili da tezi ka x kad n tezi ka plus beskonacno.Za niz koji ne konvergira kazemo da divergira.

27

Page 28: 81932337 Etf Analiza Zoran Mitrovic

28 GLAVA 2. GRANICNE VRIJEDNOSTI

Primjedba 2.1. U nejednakosti (2.1) umjesto znaka < se moze staviti i znak ≤ .

Primjer 2.3. Neka je xn = 1n tada je lim

n→+∞xn = 0.

Naime, za dato ε > 0 vrijedi

1n

< ε ⇔ n >1ε.

Stavimo da je

n0 =⌊

⌋+ 1,

gdje je bac oznaka za najveci cio broj manji od broja a.Dakle, vrijedi

(∀ε > 0)(∃n0 =⌊

⌋+ 1 ∈ N)(∀n ≥ n0) |xn − 0| < ε.

Definicija 2.3. Niz {xn} divergira ka plus beskonacno (minus beskonacno)ako vrijedi

(∀K > 0)(∃n0 ∈ N)(∀n ≥ n0) xn > K,

((∀K > 0)(∃n0 ∈ N)(∀n ≥ n0) xn < −K),

to oznacavamo salim

n→+∞xn = +∞

( limn→+∞

xn = −∞).

Primjer 2.4. Niz an = qn, q > 1, divegira ka plus beskonacno.Kako je q > 1 postoji h > 0 takav da je q = 1 + h. Sada koristeci Bernulijevunejednakost dobijamo

qn ≥ 1 + nh, n ∈ N.

Neka je dat K > 0 tada za

n0 =⌊

K − 1h

⌋+ 1

vrijedi(∀n ≥ n0) xn > K.

Svaki realan niz se moze svrstati u jednu od sljedecih klasa :

• Konvergentan niz,

• Divergentan niz, divergira ka plus beskonacno,

• Divergentan niz, divergira ka minus beskonacno,

• Divergentan niz, nema ni konacnu ni beskonacnu granicnu vrijednost.

Page 29: 81932337 Etf Analiza Zoran Mitrovic

2.1. GRANICNA VRIJEDNOST NIZA 29

Primjer 2.5. (i) xn = 1 + 1n je konvergentan niz, lim

n→+∞xn = 1,

(ii) niz xn = n divergira ka plus beskonacno,

(iii) niz xn = −n divergira ka minus beskonacno,

(iv) niz xn = (−1)n je divergentan niz, ali nema granicnu vrijednost.

2.1.2 Neke osobine konvergentnih nizova

Ranije smo definisali pojam ε okoline neke tacke. Pod okolinom tackepodrazumijevamo svaki otvoreni interval koji sadrzi tu tacku. Iz definicije kon-vergentnog niza slijedi da niz {xn} konvergira ka x ∈ R ako i samo ako se usvakoj okolini tacke x nalaze skoro svi clanovi niza {xn}, to jest u svakoj okolinitacke x se ne nalazi samo konacno mnogo clanova niza {xn}.Teorema 2.1. Konvergentan niz ima jedinstvenu granicnu vrijednost.

Dokaz. Pretpostavimo da postoje razliciti realni brojevi x i y takvi da je

limn→+∞

xn = x i limn→+∞

xn = y.

Mozemo pretpostaviti da je x < y. Neka je

ε =y − x

2.

Iz definicije granicne vrijednosti niza zakljucujemo da postoji prirodni broj n0

takav da vrijedi(∀n ≥ n0) |xn − x| < ε

i(∀n ≥ n0) |xn − y| < ε,

pa je

(∀n ≥ n0) y +y − x

2< xn < x +

y − x

2,

odavde dobijamo3y − x

2<

y + x

2,

to jesty < x,

sto je nemoguce.

Definicija 2.4. Za niz {xn} kazemo da je ogranicen ako postoji realan brojM takav da je

(∀n ∈ N) |xn| ≤ M.

Page 30: 81932337 Etf Analiza Zoran Mitrovic

30 GLAVA 2. GRANICNE VRIJEDNOSTI

Ovo je ekvivalentno sa

(∃M ∈ R)(∃m ∈ R)(∀n ∈ N) m ≤ xn ≤ M.

Primjer 2.6. Niz

xn = 1 +122

+132

+ · · ·+ 1n2

,

je ogranicen.Vrijedi

xn > 0,

osim toga

xn < 1 +1

1 · 2 +1

2 · 3 + · · ·+ 1(n− 1) · n,

pa je

xn < 1 +(

1− 12

)+

(12− 1

3

)+ · · ·+

(1

n− 1− 1

n

),

to jest

xn < 2− 1n

< 2.

Dakle, niz je ogranicen.

Teorema 2.2. Svaki konvergentan niz je ogranicen.

Dokaz. Neka je dat konvergentan niz {xn} kod koga je granicna vrijednost x ∈R. Ako uzmemo da je ε = 1, zakljucujemo da postoji prirodan broj n0 takav davrijedi

(∀n ≥ n0) |xn − x| < 1.

Tada je

(∀n ∈ N) min{x− 1, x1, x2, . . . , xn0} ≤ xn ≤ max{x + 1, x1, x2, . . . , xn0}.

Primjer 2.7. Niz

xn = 1 +1√2

+1√3

+ · · ·+ 1√n

je divergentan.Kako je

1√k≥ 1√

n, k = 1, 2, . . . , n,

imamoxn ≥ n · 1√

n=√

n,

pa niz {xn} nije ogranicen. Dakle, nije ispunjen potreban uslov za konvergencijuniza, pa je dati niz divergentan.

Page 31: 81932337 Etf Analiza Zoran Mitrovic

2.1. GRANICNA VRIJEDNOST NIZA 31

Teorema 2.3. Neka su dati nizovi {xn} i {yn} takvi da je

limn→+∞

xn = x, limn→+∞

yn = y,

gdje su x, y ∈ R i neka je λ ∈ R. Tada vrijedi :

(i) limn→+∞

(xn + yn) = x + y,

(ii) limn→+∞

λxn = λx,

(iii) limn→+∞

(xn · yn) = x · y,

(iv) limn→+∞

xn

yn=

x

y, ako je yn 6= 0 i y 6= 0.

Dokaz. (i) Neka je dat ε > 0. Iz definicije granicne vrijednosti zakljucujemo dapostoji prirodni broj n0 takav da

(∀n ≥ n0) |xn − x| < ε

2,

(∀n ≥ n0) |yn − y| < ε

2.

Sada imamo

(∀n ≥ n0) |xn + yn − (x + y)| ≤ |xn − x|+ |yn − y| < ε

2+

ε

2= ε,

(ii)Ako je λ = 0 tvrdjenje je ocigledno. Pretpostavimo da je λ 6= 0. Neka je datε > 0. Zakljucujemo da

(∃n0 ∈ N)(∀n ≥ n0) |xn − x| < ε

|λ| .

Sada(∃n0 ∈ N)(∀n ≥ n0) |λxn − λx| < |λ| · ε

|λ| = ε.

(iii) Kako je niz {yn} konvegentan on je i ogranicen, pa postoji M > 0 takavda je

(∀n ∈ N) |yn| ≤ M.

Neka jeM1 = max{M, |x|}.

Iz definicije granicne vrijednosti zakljucujemo da postoji n0 ∈ N takav da

(∀n ≥ n0) |xn − x| < ε

2M1

i(∀n ≥ n0) |yn − y| < ε

2M1.

Page 32: 81932337 Etf Analiza Zoran Mitrovic

32 GLAVA 2. GRANICNE VRIJEDNOSTI

Kako je

|xn · yn − x · y| ≤ |xnyn − xyn + xyn − xy| ≤ |yn| · |xn − x|+ |x| · |yn − y|,imamo

(∀n ≥ n0) |xn · yn − x · y| < M1 · ε

2M1+ M1 · ε

2M1= ε.

(iv) Dokaz je slican kao u (iii).

Na slican nacin se dokazuje i sljedeca teorema.

Teorema 2.4. Neka su dati nizovi {xn} i {yn} takvi da je

limn→+∞

xn = x ∈ R i limn→+∞

yn = +∞.

Tada vrijedi :

(i) limn→+∞

(xn + yn) = +∞,

(ii) limn→+∞

(xn · yn) = sgnx · ∞, x 6= 0,

(iii) limn→+∞

xn

yn= 0,

(iv) limn→+∞

(xn)a = xa, ako je x > 0, a ∈ R i xn > 0, za sve n ∈ N.

Primjer 2.8. Naci granicnu vrijednost niza

xn =2n + 17n + 3

.

U ovom slucaju koristeci pogodne transformacije odredjujemo granicnu vrijed-nost niza.

limn→+∞

2n + 17n + 3

= limn→+∞

2 + 1n

7 + 3n

=lim

n→+∞2 + 1

n

limn→+∞

7 + 3n

=27.

Primjer 2.9. Naci granicnu vrijednost niza

xn =√

2n + 10−√3n + 11.

Imamo sljedece

√2n + 10−√3n + 11 =

√n

(√2 +

10n−

√3 +

11n

)

Odavde zakljucujemo da je

limn→+∞

xn = limn→+∞

√n

(√2 +

10n−

√3 +

11n

)= −∞.

Page 33: 81932337 Etf Analiza Zoran Mitrovic

2.1. GRANICNA VRIJEDNOST NIZA 33

Sljedeca teorema je poznata kao teorema o dva zandara.

Teorema 2.5. Neka su nizovi {xn}, {yn} i {zn} takvi da je

limn→+∞

xn = limn→+∞

zn = x.

Ako je(∀n ∈ N) xn ≤ yn ≤ zn

tada jelim

n→+∞yn = x.

Dokaz. Neka jelim

n→+∞xn = lim

n→+∞zn = x,

tada za dati ε > 0 postoji prirodan broj n0 takav da je

(∀n ≥ n0) x− ε < xn < x + ε

i(∀n ≥ n0) x− ε < zn < x + ε.

Kako je(∀n ∈ N) xn ≤ yn ≤ zn,

imamo(∀n ≥ n0) x− ε < yn < x + ε.

Dakle, niz {yn} je konvergentan i vrijedi limn→+∞

yn = x.

Primjer 2.10. Pokazati da je granicna vrijednost niza, ciji je opsti clan

xn =1√

n2 + 1+

1√n2 + 2

+ · · ·+ 1√n2 + n

,

jednaka 1.Iz nejednakosti

1√n2 + n

≤ 1√n2 + k

≤ 1√n2 + 1

, k = 1, 2, . . . , n,

imamon · 1√

n2 + n≤ xn ≤ n · 1√

n2 + 1,

limn→+∞

1√1 + 1

n

≤ xn ≤ 1√1 + 1

n2

.

Sada zakljucak slijedi iz

limn→+∞

1√1 + 1

n

= limn→+∞

1√1 + 1

n2

= 1.

Page 34: 81932337 Etf Analiza Zoran Mitrovic

34 GLAVA 2. GRANICNE VRIJEDNOSTI

Primjer 2.11. Pokazati da je

limn→+∞

n√

n = 1.

Kako je na osnovu binomne formule

n = (1 + ( n√

n− 1))n = 1 + n( n√

n− 1) +n(n− 1)

2( n√

n− 1)2 + · · ·+ ( n√

n− 1)n

>n(n− 1)

2( n√

n− 1)2,

imamon√

n− 1 <

√2

n− 1, n > 1.

Osim toga, ocigledno je0 ≤ n

√n− 1.

Dakle,

0 ≤ n√

n− 1 <

√2

n− 1, n > 1.

Sada, kako je

limn→+∞

√2

n− 1= 0,

zakljucujemo da jelim

n→+∞n√

n = 1.

2.1.3 Monotoni nizovi

Definicija 2.5. Niz {xn} je monotono rastuci (neopadajuci, opadajuci,nerastuci) ako za svako n ∈ N vrijedi

xn+1 > xn (xn+1 ≥ xn, xn+1 < xn, xn+1 ≤ xn).

Za niz se kaze da je monoton niz ako ima jednu od navedenih osobina.

Primjer 2.12. (i) Niz xn = 1− 1n , n ∈ N je monotono rastuci.

(ii) Niz x1 = 1, xn+1 = xn + 1 + (−1)n, n ∈ N je monotono neopadajuci.

Monotoni nizovi imaju znacajne osobine u pogledu konvergencije. Naime,vrijedi sljedeca teorema.

Teorema 2.6. Monotono neopadajuci (nerastuci) niz ogranicen odozgo (odozdo)je konvergentan.

Moze se pokazati da ako je {xn} monotoni niz ogranicen odozgo (odozdo)tada je

limn→+∞

xn = sup{xn : n ∈ N}(

limn→+∞

xn = inf{xn : n ∈ N})

.

Page 35: 81932337 Etf Analiza Zoran Mitrovic

2.1. GRANICNA VRIJEDNOST NIZA 35

Primjer 2.13. Niz, {xn}, ciji je opsti clan

xn =(

1 +1n

)n

je konvergentan.Pokazacemo da je niz {xn} monotono neopadajuci i ogranicen odozgo.Vrijedi

xn+1

xn=

(1 + 1

n+1

)n+1

(1 + 1

n

)n =

(n+2n+1

)n+1

(n+1

n

)n

=n + 2n + 1

(n(n + 2)(n + 1)2

)n

=n + 2n + 1

(1− 1

(n + 1)2

)n

.

Koristeci Bernulijevu nejednakost dobijamo

xn+1

xn≥ n + 2

n + 1

(1− n

(n + 1)2

)≥ 1.

Dakle, vrijedixn+1 ≥ xn za sve n ∈ N,

pa je niz {xn} monotono neopadajuci.Pokazimo da je niz {xn} ogranicen odozgo.Iz binomne formule slijedi

xn =n∑

k=0

(nk

)1nk

=n∑

k=0

n!k!(n− k)!

1nk

=n∑

k=0

1k!

(n− k + 1) · (n− k + 2) · · · (n− 1) · nnk

.

Dakle,

xn =n∑

k=0

1k!

(1− k − 1

n

)·(

1− k − 2n

)· · ·

(1− 1

n

).

Kako je(

1− k − 1n

)·(

1− k − 2n

)· · ·

(1− 1

n

)< 1, k = 2, 3, . . . , n,

imamo

xn ≤ 2 +n∑

k=2

1k!

.

Dalje, zbog nejednakosti

1k!≤ 1

2k−1, k = 2, 3, . . . n,

Page 36: 81932337 Etf Analiza Zoran Mitrovic

36 GLAVA 2. GRANICNE VRIJEDNOSTI

dobijamo

xn ≤ 2 +n∑

k=2

12k−1

≤ 2 +12

1− 12

= 3.

Definicija 2.6. Granicna vrijednost

limn→+∞

(1 +

1n

)n

se naziva broj e i ozxnacava simbolom e

Broj e iracionalan broj. Njegova priblizna vrijednost je e ≈ 2.718281828.

Primjer 2.14. Vrijedi

limn→+∞

(1− 1

n

)n

=1e.

Naime,

1− 1n

=n− 1

n=

1n

n−1

=1

1 + 1n−1 ,

pa je

limn→+∞

(1− 1

n

)n

=1

limn→+∞

(1 + 1

n−1

)n

=1

limn→+∞

(1− 1

n−1

)n−1 ·1

limn→+∞

(1− 1

n−1

) =1e.

Definicija 2.7. Neka su dati realni nizovi {xn} i {yn} takvi da je

x1 ≤ x2 ≤ x3 ≤ · · · ≤ y3 ≤ y2 ≤ y1 i limn→+∞

(yn − xn) = 0.

Familija zatvorenih intervala [xn, yn], n ∈ N, naziva se familija umetnutihintervala.

Teorema 2.7. Svaka familija umetnutih intervala ima jednu i samo jednu za-jednicku tacku.

Dokaz. Neka je data familija umetnutih intervala [xn, yn], n ∈ N. Iz definicije2.7 zakljucujemo da je niz {xn} monotono neopadajuci i ogranicen odozgo,a niz {yn} monotono nerastuci i ogranicen odozdo. Na osnovu teoreme 2.6zakljucujemo da su ovi nizovi kovergentni. Iz uslova

limn→+∞

(yn − xn) = 0,

imamo da postoji c ∈ R takav da je

limn→+∞

xn = limn→+∞

yn = c.

Page 37: 81932337 Etf Analiza Zoran Mitrovic

2.1. GRANICNA VRIJEDNOST NIZA 37

Dalje, vrijedic = sup xn = inf yn,

pa jexn ≤ c ≤ yn, n ∈ N.

Dakle, tacka c pripada svim intevalima. Dokazimo da je ona jedina tacka kojapripada svim intervalima.Neka je tacka d tacka koja pripada svim intervalima za koju vrijedi d 6= c. Tadaimamo

|d− c| ≤ |yn − xn|, za sve n ∈ N,

pa zakljucujemo da je d = c, a ovo je nemoguce. Dakle, tacka c je jedinazajednicka tacka familije umetnutih intervala.

2.1.4 Kosijevi nizovi

Vidjeli smo da je svaki monoton i ogranicen niz konvergentan. Medjutim,obrnuto nije tacno.

Primjer 2.15. Niz, ciji je opsti clan

xn =(−1)n

n

nije monoton ali je konvergentan.

Dakle, monotonost i ogranicenost niza je dovoljan uslov za konvergenciju,ali nije i potreban. Od interesa je odrediti potreban i dovoljan uslov za konver-genciju niza. To nas dovodi do pojma Kosijevog niza.

Definicija 2.8. Niz {xn} je Kosijev niz ako vrijedi

(∀ε > 0)(∃n0 ∈ N)(∀n ∈ N)(∀p ∈ N) n ≥ n0 ⇒ |xn+p − xn| < ε. (2.2)

Uslov (2.2) se cesto pise i u sljedecem ekvivalentnom obliku.

(∀ε > 0)(∃n0 ∈ N)(∀n ∈ N)(∀m ∈ N) n, m ≥ n0 ⇒ |xm − xn| < ε. (2.3)

Teorema 2.8. Potreban i dovoljan uslov da je niz konvergentan je da je Kosijevniz.

Primjer 2.16. Ispitati konvergenciju nizova ciji su opsti clanovi

(i) xn = 1 +122

+132

+ · · ·+ 1n2

,

(ii) xn = 1 +12

+13

+ · · ·+ 1n

.

Rjesenje.(i) Vrijedi

|xn+p − xn| = 1(n + 1)2

+1

(n + 2)2+ · · ·+ 1

(n + p)2.

Page 38: 81932337 Etf Analiza Zoran Mitrovic

38 GLAVA 2. GRANICNE VRIJEDNOSTI

Kako je

1(n + k)2

≤ 1(n + k − 1)(n + k)

=1

n + k − 1− 1

n + k, k = 1, 2, . . . , p,

dobijamo

|xn+p − xn| ≤ 1n + 1

− 1n + p

≤ 1n + 1

.

Sada za dati ε > 0 mozemo uzeti n0 =⌊

⌋+ 1, pa zakljucujemo da je dati niz

konvergentan, jer je Kosijev niz.(ii) Uzmimo u definiciji Kosijevog niza u uslovu (2.2) p = n. Tada je

|x2n − xn| = 1n + 1

+1

n + 2+ · · ·+ 1

2n.

Kako je1

n + k≥ 1

2n, k = 1, 2, . . . , n,

imamo|x2n − xn| ≥ n · 1

2n=

12,

pa za ε < 12 ne mozemo odrediti prirodan broj n0 takav da vrijedi uslov (2.2).

Dakle, dati niz je divergentan.

Primjedba 2.2. Niz ciji je opsti clan

xn = 1 +12p

+13p

+ · · ·+ 1np

,

gdje je p ∈ R naziva se hiperharmonijski niz. Moze se pokazati da je onkonvergentan za p > 1 i divergentan za p ≤ 1. Za p = 1 taj niz se zoveharmonijski niz.

2.2 Granicna vrijednost funkcije

2.2.1 Tacka nagomilavanja

Definicija 2.9. Neka je skup X ⊂ R. Tacka x0 je tacka nagomilavanja skupaX ako vrijedi

(∀ε > 0)(∃x ∈ X \ {x0}) x ∈ (x0 − ε, x0 + ε). (2.4)

Za tacku koja nije tacka nagomilavanja skupa X se kaze da je izolovana tackaskupa X.

Uslov (2.4) se moze iskazati na sljedeci nacin : svaka ε okolina tacke x0 sadrzibar jednu tacku iz skupa X razlicitu od tacke x0.Nije tesko vidjeti da je x0 tacka nagomilavanja skupa X ako i samo ako se usvakoj okolini tacke x0 nalazi bar jedna tacka iz skupa X razlicita od x0.Skup ne mora da ima tacke nagomilavanja.

Page 39: 81932337 Etf Analiza Zoran Mitrovic

2.2. GRANICNA VRIJEDNOST FUNKCIJE 39

Primjer 2.17. Skup {0, 1} nema tacaka nagomilavanja. Njegove tacke su izolo-vane tacke.

Moze se pokazati da svaki konacan skup nema tacaka nagomilavanja. Stavise,ni beskonacan skup me mora imati tacaka nagomilavanja.

Primjer 2.18. Skup N nema tacaka nagomilavanja.

Tacka nagomilavanja ne mora da pripada datom skupu.

Primjer 2.19. Tacke nagomilavanja intervala (0, 1] su sve tacke iz intervala[0, 1].

Sljedeca teorema daje potreban i dovoljan uslov kada skup ima tacku nagomila-vanja.

Teorema 2.9. Tacka x0 je tacka nagomilavanja skupa X ako i samo ako postojiniz {xn} takav da vrijedi

(∀n ∈ N) xn ∈ X

ilim

n→+∞xn = x0.

Primjer 2.20. Sve tacke skupa R su njegove tacke nagomilavanja.

2.2.2 Granicna vrijednost funkcije

Definicija 2.10. Neka je data funkcija f : X → R i neka je tacka x0 ∈ X tackanagomilavanja skupa X. Realan broj L je granicna vrijednost funkcije f utacki x0 ako vrijedi

(∀ε > 0)(∃δ > 0)(∀x ∈ X) 0 < |x− x0| < δ ⇒ |f(x)− L| < ε. (2.5)

To oznacavamo sa

limx→x0

f(x) = L ili f(x) → L kada x → x0.

Primjer 2.21. Pokazati da je za svako x0 ∈ Rlim

x→x0x2 = x2

0.

Imamo

|x2 − x20| = |x− x0||x− x0 + 2x0| ≤ |x− x0|2 + 2|x0||x− x0|,

odavde je|x2 − x2

0| ≤ |x− x0|(|x− x0|+ 2|x0|). (2.6)

Neka je ε > 0 treba odrediti δ > 0 tako da vrijedi (2.5). Zbog (2.6) dovoljno jenaci δ > 0 tako da je

δ(δ + 2|x0|) < ε. (2.7)

Page 40: 81932337 Etf Analiza Zoran Mitrovic

40 GLAVA 2. GRANICNE VRIJEDNOSTI

Zakljucujemo da za

δ = min{

1,ε

1 + 2|x0|}

,

vrijedi (2.7) i time je pokazano da je

limx→x0

x2 = x20.

Definicija 2.11. Neka je data funkcija f : X → R i neka je tacka x0 tackanagomilavanja skupa X. Realan broj L je desna (lijeva) granicna vrijednostfunkcije f u tacki x0 ako vrijedi

(∀ε > 0)(∃δ > 0)(∀x ∈ X) x0 < x < x0 + δ ⇒ |f(x)− L| < ε (2.8)

((∀ε > 0)(∃δ > 0)(∀x ∈ X) x0 − δ < x < x0 ⇒ |f(x)− L| < ε.) (2.9)

To oznacavamo salim

x→x0+f(x) = L,

( limx→x0−

f(x) = L).

Primjer 2.22. Neka je f : R→ R, data sa

f(x) =

0, x < 012 , x = 01, x > 0.

Tada jelim

x→0+f(x) = 1 i lim

x→0−f(x) = 0.

Teorema 2.10. Ako postoji lijeva i desna granicna vrijednost tada je potrebani dovoljan uslov da funkcija f : X → R ima granicnu vrijednost u tacki x0

jednaku L

limx→x0+

f(x) = limx→x0−

f(x) = L.

Definicija 2.12. Neka je data funkcija f : X → R i neka je tacka x0 tackanagomilavanja skupa X. Funkcija f tezi ka plus (minus) beskonacno kadax → x0 ako vrijedi

(∀K > 0)(∃δ > 0)(∀x ∈ X) 0 < |x− x0| < δ ⇒ f(x) > K (2.10)

((∀K > 0)(∃δ > 0)(∀x ∈ X) 0 < |x− x0| < δ ⇒ f(x) < −K.) (2.11)

To oznacavamo salim

x→x0f(x) = +∞,

( limx→x0

f(x) = −∞).

Page 41: 81932337 Etf Analiza Zoran Mitrovic

2.2. GRANICNA VRIJEDNOST FUNKCIJE 41

Primjer 2.23. Za funkciju f : R→ R,

f(x) ={

1x , x 6= 00, x = 0,

vrijedilim

x→0+f(x) = +∞ i lim

x→0−f(x) = −∞.

Definicija 2.13. Neka je data funkcija f : X → R i neka je skup X neogranicenodozgo (odozdo). Realan broj L je granicna vrijednost funkcije f kada x →+∞ (x → −∞) ako vrijedi

(∀ε > 0)(∃K > 0)(∀x ∈ X) x > K ⇒ |f(x)− L| < ε. (2.12)

(∀ε > 0)(∃K > 0)(∀x ∈ X) x < −K ⇒ |f(x)− L| < ε. (2.13)

To oznacavamo salim

x→+∞f(x) = L

( limx→−∞

f(x) = L.)

Primjer 2.24. Pokazati da je

limx→+∞

x2 − 1x2 + 1

= 1.

Neka je dat ε > 0. Treba naci K > 0 takav da vrijedi

(∀x ∈ R) x > K ⇒∣∣∣∣x2 − 1x2 + 1

− 1∣∣∣∣ < ε.

Kako je ∣∣∣∣x2 − 1x2 + 1

− 1∣∣∣∣ < ε ⇔ x2 >

2− ε

ε,

imamo da u slucaju ε ≥ 2 mozemo izabrati proizvoljan K > 0, a u slucaju da jeε < 2 mozemo uzeti na primjer,

K =

√2− ε

ε+ 1.

2.2.3 Osobine granicnih vrijednosti funkcija

U sljedecoj teoremi dajemo neke osobine granicnih vrijednosti funkcija. Onesu analogne osobinama granicnih vrijednosti nizova, pa ih dajemo bez dokaza.

Teorema 2.11. Neka su date funkcije f, g : X → R i neka je x0 ∈ X tackanagomilavanja skupa X. Pretpostavimo da je

limx→x0

f(x) = L1, limx→x0

g(x) = L2, L1, L2 ∈ R,

tada vrijedi :

Page 42: 81932337 Etf Analiza Zoran Mitrovic

42 GLAVA 2. GRANICNE VRIJEDNOSTI

(i) limx→x0

(f(x) + g(x)) = L1 + L2,

(ii) limx→x0

(λ · f(x)) = λ · L1, za svaki λ ∈ R,

(iii) limx→x0

(f(x) · g(x)) = L1 · L2,

(iv) limx→x0

f(x)g(x) = L1

L2, ako je L2 6= 0 i g(x) 6= 0.

Primjer 2.25. Odrediti granicnu vrijednost

limx→+∞

x3 + 2x2 − 1x3 + 5

.

Rjesenje.

limx→+∞

x3 + 2x2 − 1x3 + 5

= limx→+∞

1 + 2x − 1

x3

1 + 5x3

= 1.

Sljedeci rezultat je poznat kao teorema o smjeni promjenljivih kod granicnihvrijednosti.

Teorema 2.12. Neka je

limx→x0

f(x) = y0 i limx→y0

g(x) = L.

Ako je u nekoj okolini tacke x0

f(x) 6= y0 za svaki x 6= x0

tada jelim

x→x0g(f(x)) = L.

Primjer 2.26. Naci

limx→+∞

3x2

3x2+1 .

Stavimo

f(x) =x2

3x2 + 1i g(x) = 3x.

Kako vrijedilim

x→+∞f(x) = 1 i lim

x→1g(x) = 3,

na osnovu prethodne teoreme imamo

limx→+∞

3x2

3x2+1 = 1.

Teorema 2.13. Ako za funkciju f : X → R vrijedi

(∀x ∈ X \ {x0}) f(x) ∈ (a, b), limx→x0

f(x) = L,

gdje je x0 tacka nagomilavanja skupa X, tada L ∈ [a, b].

Page 43: 81932337 Etf Analiza Zoran Mitrovic

2.2. GRANICNA VRIJEDNOST FUNKCIJE 43

Teorema 2.14. Ako za funkcije f, g : X → R vrijedi

(∀x ∈ X \ {x0}) f(x) ≤ g(x), limx→x0

f(x) = L1, limx→x0

f(x) = L2,

gdje je x0 tacka nagomilavanja skupa X, tada je L1 ≤ L2.

Primjer 2.27. Pokazati da je

limx→0

sin x

x= 1.

Pokazacemo prvo da vrijede nejednakosti

cos x <sin x

x< 1, x ∈

(−π

2, 0

)∪

(0,−π

2

). (2.14)

Neka je dat krug sa centrom u koordinatnom pocetku 0, poluprecnika r. Dalje,ne-ka je data tacka A(r, 0), a tacka B na krugu takva da poluprave 0A i 0B zaklapajuostri ugao x ∈ (

0, π2

). Sa C oznacimo presjecnu tacku poluprave 0A i tangente

na krug u tacki A. Povrsina trougla 0AB je manja od povrsine kruznog isjecka0AB, a ova povrsina je manja od povrsine trougla 0AC. Kako su ove povrsine

12r2 sin x,

12r2x,

12r2 tg x,

respektivno, imamo12r2 sin x <

12r2x <

12r2 tg x,

za sve x ∈ (0, π

2

).

Odavde dobijamosinx < x < tg x, (2.15)

za sve x ∈ (0, π

2

). U slucaju da je x ∈ (−π

2 , 0), vrijedi

− sin x < −x < − tg x. (2.16)

Iz nejednakosti (2.15) i (2.16) dobijamo nejednakosti (2.14). Sada koristeciteoremu 2.13 i teoremu 2.14 zakljucujemo da je

limx→0

cosx ≤ limx→0

sin x

x≤ 1. (2.17)

Kako je

|1− cos x| = 2∣∣∣sin2 x

2

∣∣∣ ≤ 2∣∣∣x2

∣∣∣2

,

zbog teoreme 2.14 zakljucujemo da je

limx→0

cos x = 1,

pa odavde i iz (2.17) slijedi

limx→0

sin x

x= 1.

Page 44: 81932337 Etf Analiza Zoran Mitrovic

44 GLAVA 2. GRANICNE VRIJEDNOSTI

Primjer 2.28. Izracunati

(i) limx→0

1− cos x

x2, (ii) lim

x→+∞x · sin 1

x.

(i) Kako je1− cos x = 2 sin2 x

2,

koristeci primjer 2.27 i teoremu o smjeni granicnih vrijednosti dobijamo

limx→0

1− cos x

x2= lim

x→0

12

(sin x

2x2

)2

=12.

(ii) Uvodeci smjenu t = 1x i koristeci primjer 2.27 zakljucujemo da je

limx→+∞

x · sin 1x

= limt→0

sin t

t= 0.

Primjedba 2.3. Koristeci teoremu 2.12, teoremu 2.14 i

limn→+∞

(1 +

1n

)n

= e,

moze se pokazati da je

limx→+∞

(1 +

1x

)x

= e. (2.18)

Teorema 2.15. Neka je x0 ∈ R tacka nagomilavanja skupa X. Za funkciju f :X → R vrijedi lim

n→x0f(x) = L, L ∈ R ako i samo ako je lim

n→+∞f(xn) = f(x0),

za svaki niz {xn}, takav da je limn→+∞

xn = x0 i xn ∈ X \ {x0}, n ∈ N,

2.3 Neprekidne funkcije

2.3.1 Neprekidne funkcije

Definicija 2.14. Neka je data funkcija f : X → R i neka je x0 ∈ X tackanagomilavanja skupa X. Za funkciju f kazemo da je neprekidna u tacki x0

ako vrijedi

(∀ε > 0)(∃δ > 0)(∀x ∈ X) |x− x0| < δ ⇒ |f(x)− f(x0)| < ε. (2.19)

Ako je funkcija f neprekidna u svakoj tacki skupa A ⊂ X onda kazemo da jeneprekidna na skupu A.

Primjedba 2.4. Uslov (2.19) je ekvivalentan

limx→x0

f(x) = f(x0). (2.20)

Page 45: 81932337 Etf Analiza Zoran Mitrovic

2.3. NEPREKIDNE FUNKCIJE 45

Primjer 2.29. Funkcija f : R→ R,

f(x) = 2x + 3,

je neprekidna na skupu R.Neka je tacka x0 ∈ R i ε > 0. Iz jednakosti

|2x + 3− (2x0 + 3)| = 2|x− x0|,

zakljucujemo da za δ mozemo uzeti δ = ε2 , jer tada vrijedi

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

Primjer 2.30. Funkcija f : R→ R,

f(x) ={

x, x ≤ 0x + 1, x > 0.

nije neprekidna u tacki 0.Ako uzmemo ε = 1

2 tada zbog

|f(x)− f(0)| = |x + 1| > 1 za x > 0,

ne mozemo naci δ > 0 takvo da

|x− x0| < δ ⇒ |f(x)− f(x0)| < 12.

U sljedecoj teoremi su date neke osobine neprekidnih funkcija. One suanalogne osobinama granicnih vrijednosti nizova odnosno osobinama granicnihvrijednosti funkcija.

Teorema 2.16. Neka su date funkcije f, g : X → R i neka je x0 tacka nagomila-vanja skupa X. Ako su funkcije f i g neprekidne u tacki x0, to jest ako je

limx→x0

f(x) = f(x0), limx→x0

g(x) = g(x0),

tada vrijedi :

(i) limx→x0

(f(x) + g(x)) = f(x0) + g(x0),

(ii) limx→x0

(f(x) · g(x)) = f(x0) · g(x0),

(iii) limx→x0

f(x)g(x)

=f(x0)g(x0)

, ako je g(x0) 6= 0 i g(x) 6= 0.

Dakle, ako su funkcije f i g neprekidne u tacki x0 onda su takve i funkcije :

• zbir, f + g,

Page 46: 81932337 Etf Analiza Zoran Mitrovic

46 GLAVA 2. GRANICNE VRIJEDNOSTI

• f + λ, λ ∈ R,

• λf, λ ∈ R,

• proizvod, f · g,

• kolicnik, fg , ako je g(x0) 6= 0, g(x) 6= 0.

Primjer 2.31. Osnovne elementarne funkcije su neprekidne na svom domenu.Pokazacemo na primjer, da su stepena, eksponencijalna i sinusna funkcija nepre-kidne.

• Stepena funkcija : Neprekidnost stepene funkcije slijedi iz neprekidnostifunkcije f(x) = x i prethodne teoreme, (neprekidnost proizvoda neprekid-nih funkcija).

• Eksponencijalna funkcija : Neka je x0 ∈ R i neka je ε > 0. Pretpostavimoda je 0 < ε < ex0 . Iz

|ex0 − ex| < ε ⇔ ex0 − ε < ex < ex0 + ε ⇔ log(ex0 − ε) < x < log(ex0 + ε),

zakljucujemo da za δ > 0 takvo da je

(x0 − δ, x0 + δ) ⊂ (log(ex0 − ε), log(ex0 + ε)),

vrijedi

|x− x0| < δ ⇒ |ex − ex0 | < ε,

pa je funkcija f(x) = ex neprekidna u svakoj tacki x0.

• Sinusna funkcija : Koristeci nejednakosti (2.15) i (2.16) dobijamo da vri-jedi

| sin x| < |x|, x ∈ R \ {0},

odavde na osnovu formule

sin x− sin y = 2 sinx− y

2cos

x + y

2

i cinjenice da je apsolutna vrijednost kosinusa manja ili jednaka od 1,imamo

| sinx− sin x0| ≤ |x− x0|. (2.21)

Iz posljednje nejednakosti slijedi neprekidnost sinusne funkcije. Naime, zadati ε > 0 mozemo uzeti δ = ε.

Page 47: 81932337 Etf Analiza Zoran Mitrovic

2.3. NEPREKIDNE FUNKCIJE 47

2.3.2 Vrste prekida

Ako funkcija f nije neprekidna u tacki x0 kazemo da funkcija f u tacki x0

ima prekid. Ova situacija moze nastupiti iz vise razloga. Vrste prekida su dateu sljedecoj definiciji.

Definicija 2.15. Neka je funkcija f : X → R i x0 ∈ X tacka nagomilavanjaskupa X. Kazemo da funkcija f u tacki x0 ima :

• prividan ili otklonjiv prekid, ako postoji konacan limx→x0

f(x)

ali je limx→x0

f(x) 6= f(x0).

• prekid prve vrste slijeva (zdesna), ako postoji konacan limx→x0−

f(x)

( limx→x0+

f(x)) ali je limx→x0−

f(x) 6= f(x0) ( limx→x0+

f(x) 6= f(x0)).

• prekid druge vrste slijeva (zdesna) ako lijeva (desna) granicna vrijed-nost ne postoji ili je beskonacna.

Primjer 2.32. Funkcija

f(x) ={

sin xx , x 6= 00, x = 0,

ima prividan prekid u tacki x = 0, jer

limx→0

sin x

x= 1 6= f(0).

Primjer 2.33. Funkcija

f(x) ={

x, x ≤ 01, x > 0,

ima prekid prve vrste zdesna u tacki x = 0, jer je

limx→0+

f(x) = 1 6= f(0) = 0.

Primjer 2.34. Funkcija

f(x) ={

1x , x 6= 01, x = 0,

ima prekid druge vrste u tacki x = 0, jer je

limx→0+

f(x) = +∞, limx→0−

f(x) = −∞.

Page 48: 81932337 Etf Analiza Zoran Mitrovic

48 GLAVA 2. GRANICNE VRIJEDNOSTI

2.3.3 Osobine neprekidnih funkcija

Iz teoreme 2.15 neposredno slijedi sljedeca teorema.

Teorema 2.17. Neka je x0 tacka nagomilavanja skupa X. Funkcija f : X → Rje neprekidna u tacki x0 ako i samo ako je

limn→+∞

xn = x0 ⇒ limn→+∞

f(xn) = f(x0),

gdje je xn ∈ X za sve n ∈ N.

Primjer 2.35.lim

n→+∞n√

a = 1, a > 0.

Kako je eksponencijalna funkcija neprekidna imamo

limx→0

ax = a0 = 1.

Sada na osnovu teoreme 2.17 dobijamo da za niz xn = 1n vrijedi

limn→+∞

axn = alim

n→+∞xn

= 1.

Dalje, iz teoreme o smjeni granicnih vrijednosti (teorema 2.12) dobijamo daje kompozicija neprekidnih funkcija neprekidna.

Primjer 2.36. Funkcija

f(x) = esin xn

, x ∈ R,

je neprekidna funkcija, jer je kompozicija sljedecih neprekidnih elementarnihfunkcija :

x 7→ xn, x 7→ sin x, x 7→ ex, x ∈ R.

Teorema 2.18. Neprekidna funkcija na zatvorenom i ogranicenom intervaludostize svoj maksimum i minimum.

Znaci, ako je f : [a, b] → R neprekidna funkcija, tada postoje tacke

xmin, xmax ∈ [a, b]

takve da jef(xmin) ≤ f(x) ≤ f(xmax), za sve x ∈ [a, b].

Primjer 2.37. Funkcija definisana na [−1, 1] sa

f(x) =

1− x2, −1 ≤ x < 0,0, x = 0,

x2 − 1, 0 < x ≤ 1,

ne dostize minimalnu i maksimalnu vrijednost na intervalu [−1, 1]. Naime, onaima prekid u tacki x = 0. Ovde je

supx∈[−1,1]

f(x) = 1, infx∈[−1,1]

f(x) = −1.

Page 49: 81932337 Etf Analiza Zoran Mitrovic

2.3. NEPREKIDNE FUNKCIJE 49

Primjedba 2.5. Uslov da je funkcija neprekidna na zatvorenom i ogranicenomintervalu je dovoljan, ali nije i potreban da funkcija dostize minimalnu i maksi-malnu vrijednost.

Primjer 2.38. Funkcija definisana na [−1, 1] sa

f(x) ={

x + 1, −1 ≤ x ≤ 0,−x, 0 < x ≤ 1,

ima prekid u tacki x = 0, ali dostize minimalnu vrijednost u tacki x = 1,f(1) = −1 i maksimalnu vrijednost u tacki x = 0, f(0) = 1.

Teorema 2.19. Neka je funkcija f definisana i neprekidna na segmentu [a, b],i neka je f(a)f(b) < 0. Tada postoji tacka c ∈ (a, b) takva da je f(c) = 0.

Primjer 2.39. Jednacina

x4 − 3x2 + 2x− 1 = 0,

ima bar jednu nulu na segmentu [1, 2].Kako je funkcija f(x) = x5 − 3x3 + 2x2 − 1 = 0 neprekidna na segmentu [1, 2]i vrijedi f(1) = −1 < 0, f(2) = 15 > 0 na osnovu teoreme 2.19 dobijamoda postoji tacka c ∈ (1, 2) takva da je f(c) = 0. Dakle, tacka c je nula datejednacine.

2.3.4 Uniformna neprekidnost

Definicija 2.16. Za funkciju f : X → R kazemo da je uniformno ili ravnom-jerno neprekidna na skupu X ako vrijedi

(∀ε > 0)(∃δ > 0)(∀x1, x2 ∈ X) |x1 − x2| < δ ⇒ |f(x1)− f(x2)| < ε. (2.22)

Primjer 2.40. Funkcije(i) f(x) = −4x + 7,(ii) f(x) = sin x

2 .su uniformno neprekidne na skupu R.(i) Neka je dat ε > 0 izaberimo δ = ε

4 . Tada iz nejednakosti |x1 − x2| < δslijedi |f(x1)− f(x2)| = 4|x1 − x2| < ε.(ii) Neka je dat ε > 0. U ovom slucaju izaberimo δ = 2ε. Kako vrijedinejednakost (2.21), to jest

| sinx1 − sin x2| ≤ |x1 − x2|,

Iz nejednakosti |x1 − x2| < δ slijedi

|f(x1)− f(x2)| = |x1 − x2|2

< ε.

Page 50: 81932337 Etf Analiza Zoran Mitrovic

50 GLAVA 2. GRANICNE VRIJEDNOSTI

Ako u relaciji (2.22) uzmemo da je δn = 1n , zakljucujemo da funkcija f nije

uniformno neprekidna ako i samo ako postoje dva niza {xn} i {yn} takva davrijedi

limn→+∞

|xn − yn| = 0 i limn→+∞

|f(xn)− f(yn)| 6= 0.

Dakle, vrijedi sljedeca teorema.

Teorema 2.20. Funkcija f : X → R je uniformno neprekidna na skupu X akoi samo ako

limn→+∞

|f(xn)− f(yn)| = 0,

za svaka dva niza tacaka {xn} i {yn} iz skupa X takva da je

limn→+∞

|xn − yn| = 0.

Primjer 2.41. Funkcija f(x) = 1x nije uniformno neprekidna na intervalu

(0, 1).Neka je ε = 1

2 i uzmimo nizove xn = 1n i yn = 1

n+1 . Imamo sljedece

limn→+∞

|xn − yn| = limn→+∞

1n(n + 1)

= 0

i

limn→+∞

|f(xn)− f(yn)| = limn→+∞

∣∣∣∣∣11n

− 11

n+1

∣∣∣∣∣ = limn→+∞

|n− (n + 1)| = 1.

Primjer 2.42. Funkcija f(x) = x2 nije uniformno neprekidna na skupu R.Neka je ε = 1

2 i uzmimo nizove xn =√

n i yn =√

n + 1. Imamo sljedece

limn→+∞

|xn − yn| = limn→+∞

1√n +

√n + 1

= 0

ilim

n→+∞|f(xn)− f(yn)| = lim

n→+∞|n− (n + 1)| = 1.

Teorema 2.21. Ako je funkcija f neprekidna na segmentu [a, b] tada je ona iuniformno neprekidna na tom segmentu.

Primjer 2.43. Funkcija f(x) = ln x, je uniformno neprekidna na segmentu[a, b] ⊂ (0, 1), ali nije uniformno neprekidna na intervalu (0, 1).Funkcija f(x) = ln x je neprekidna na [a, b]. Zbog teoreme 2.21 zakljucujemoda je ona i uniformno neprekidna na [a, b]. Pokazimo da data funkcija nijeuniformno neprekidna na intevalu (0, 1). Izaberimo nizove xn = 1

n i xn = 12n .

Tada je

limn→+∞

|xn − yn| = limn→+∞

∣∣∣∣1n− 1

2n

∣∣∣∣ = limn→+∞

12n

= 0

i

limn→+∞

|f(xn)− f(yn)| = limn→+∞

∣∣∣∣ln1n− ln

12n

∣∣∣∣ = ln 2 6= 1.

Page 51: 81932337 Etf Analiza Zoran Mitrovic

2.4. ZADACI 51

2.4 Zadaci

1. Odrediti

(i) limn→+∞

n4 + n2 − 112n4 + 120n3 − 11n

, (ii) limn→+∞

n2 + 11n + 105n3 + 2n2 + 2n

,

(iii) limn→+∞

n5 + 2n3 − 137n6 + n3 + n2

, (iv) limn→+∞

(1 +

12

+ · · ·+ 12n

).

2. Odrediti

(i) limn→+∞

(√

n + 1−√n), (ii) limn→+∞

(n2 + 1n− 1

− 2n2

2n + 5

),

3. Koristeci definiciju granicne vrijednosti pokazati da je

limn→+∞

3n + 2n + 2

= 3.

Naci broj n0 ∈ N tako da je

(∀n ≥ n0)∣∣∣∣3n + 2n + 2

− 3∣∣∣∣ ≤ 0.01.

4. Naci

limn→+∞

(1n2

+2n2

+ · · ·+ n− 1n2

).

5. Dokazati da je

limn→+∞

n2

2n= 0.

6. Ispitati konvergenciju nizova

(i) xn = 1 + 1 +12!

+13!

+ · · ·+ 1n!

,

(ii) xn =1

n + 1+

1n + 2

+ · · ·+ 12n

.

7. Pokazati da je

limn→+∞

n√

an + bn = max{a, b}, a, b ≥ 0.

8. Izracunati(i) lim

x→0

tg x

x, (ii) lim

x→0

sin 7x + sin 5x

sin 6x.

9. Pokazati da je

limx→0

tg x− sin x

x3=

12.

Page 52: 81932337 Etf Analiza Zoran Mitrovic

52 GLAVA 2. GRANICNE VRIJEDNOSTI

10. Pokazati na osnovu definicije granicne vrijednosti da je

limx→1

2(x− 2)2

= +∞.

11. Izracunati

(i) limx→1

x2 − 1x3 − 1

, (ii) limx→1

xn − 1xm − 1

, n, m ∈ N.

12. Izracunati

limx→0

n√

1 + x− 1x

, n ∈ N.

13. Izracunati

limx→+∞

(x2 + 1x2 − 1

)x2

.

14. Pokazati da je

limx→0

ax − 1x

= ln a.

15. Pokazati da funkcija

f(x) ={

x3−1x−1 , x 6= 14 x = 1,

ima prekid u tacki x = 1. Ispitati vrstu prekida.

16. Ispitati vrste prekida funkcije

f(x) =2

x2 − 16.

17. Funkcija f nije definisana u tacki x = 0. Odrediti vrijednost f(0) tako dafunkcija f bude neprekidna u tacki x = 0, ako je

(i) f(x) =√

1 + x− 13√

1 + x− 1, (ii) f(x) =

3√

1 + 3x− 1sinx

.

18. Pokazati da jednacina

2 sin4 x + 5 sin3 x− 2 = 0,

ima bar jedno rjesenje na segmentu[0, π

2

].

19. Ispitati uniformnu neprekidnost funkcije f(x) =√

x, na skupu [0, +∞).

20. Pokazati da funkcija f(x) = x sin x, nije uniformno neprekidna na skupu[0, +∞).

Page 53: 81932337 Etf Analiza Zoran Mitrovic

Glava 3

Diferencijalni racun

3.1 Prvi izvod

3.1.1 Definicija prvog izvoda

Definicija 3.1. Neka je funkcija f definisana u nekoj okolini tacke x0. Akopostoji granicna vrijednost

f′(x0) = lim

x→x0

f(x)− f(x0)x− x0

= limh→0

f(x0 + h)− f(x0)h

,

kazemo da je f′(x0) prvi izvod ili izvod funkcije f u tacki x0. Za funkciju

koja ima konacan izvod u tacki x0 kaze se da je diferencijabilna u tacki x0.Ako je funkcija diferencijabilna u svakoj tacki nekog skupa kaze se da je onadiferencijabilna na tom skupu.

Primjer 3.1. Odrediti izvode sljedecih funkcija :(i) f(x) = c, (c = const),(ii) f(x) = xn, n ∈ N,(iii) f(x) = sin x,(iv) f(x) = ln x,(v) f(x) = ex.Rjesenje.

(i) f′(x) = lim

h→0

f(x + h)− f(x)h

= 0,

(ii) Kako je na osnovu binomne formule

(x + h)n − xn = xn + nxn−1h +(

n2

)xn−2h2 + · · ·+ hn − xn

= h

(nxn−1 +

(n2

)xn−2h + · · ·+ hn−1

),

imamo

f′(x) = lim

h→0

f(x + h)− f(x)h

= nxn−1.

53

Page 54: 81932337 Etf Analiza Zoran Mitrovic

54 GLAVA 3. DIFERENCIJALNI RACUN

(iii) Vrijedi sljedece

sin(x + h)− sin x

h=

sin h2 cos 2x+h

2h2

.

Kako je

limh→0

sin h2

h2

= 1 i limh→0

cos2x + h

2= cos x.

Na slican nacin se moze pokazati da je (cosx)′= − sin x.

(iv)Vrijediln(x + h)− ln x

h= ln

(1 +

h

x

) 1h

,

sada koristeci formulu (2.18) dobijamo da je (lnx)′= 1

x .(v)

ex+h − ex

h=

eh − 1h

· ex.

Ako uvedemo smjenu t = eh − 1, imamo

eh − 1h

=t

ln(1 + t)=

1ln(1 + t)

1t

,

pa kao i u (iv) zakljucujemo da je (ex)′= ex.

Definicija 3.2. Ako postoji granicna vrijednost

f′−(x0) = lim

h→0−f(x0 + h)− f(x0)

h,

(f′+(x0) = lim

h→0+

f(x0 + h)− f(x0)h

),

kazemo da funkcija f u tacki x0 ima lijevi (desni) izvod.

Funkcija ima izvod u tacki x0 ako i samo ako ima lijevi i desni izvod i akosu oni jednaki.

Primjer 3.2. Funkcija f(x) = |x|, x ∈ R, nema izvod u tacki x = 0. Njen lijeviodnosno desni izvod je

f′−(0) = lim

h→0−f(h)− f(0)

h= lim

h→0−−h

h= −1,

f′+(0) = lim

h→0+

f(h)− f(0)h

= limh→0+

h

h= 1.

U prethodnom primjeru smo vidjeli da neprekidna funkcija ne mora biti difer-encijabilna. Prirodno pitanje je da li je diferencijabilna funkcija i neprekidna.Odgovor na to pitanje daje sljedeca teorema.

Page 55: 81932337 Etf Analiza Zoran Mitrovic

3.1. PRVI IZVOD 55

Teorema 3.1. Svaka funkcija diferencijabilna u tacki x0 ∈ R je i neprekidna utoj tacki.

Dokaz. Neka je funkcija f diferencijabilna u tacki x0. Tada postoji konacan

f′(x0) = lim

x→x0

f(x)− f(x0)x− x0

,

odavde dobijamo

limx→x0

(f(x)− f(x0)) = limx→x0

f′(x0)(x− x0) = 0.

Dakle,lim

x→x0f(x) = f(x0),

a ovo znaci da je funkcija f neprekidna u tacki x0.

3.1.2 Osobine prvog izvoda

Nalazenje izvoda po definiciji moze da bude komplikovano. Ovde dajemoneke osobine prvog izvoda na osnovu kojih je taj posao olaksan.

Teorema 3.2. Ako su funkcije f i g diferencijabilne u tacki x tada je :

(i)(αf(x) + βg(x))

′= αf

′(x) + βg

′(x),

za sve α, β ∈ R,

(ii)(f(x)g(x))

′= f

′(x)g(x) + f(x)g

′(x),

(iii) (f(x)g(x)

)′

=f′(x)g(x)− f(x)g

′(x)

g2(x),

gdje je g(t) 6= 0 za svako t u nekoj okolini tacke x.

Dokaz. Dokazacemo samo tvrdjenje (iii). Tvrdjenja (i) i (ii) se dokazuju slicno.Iz

f(x + h)g(x + h)

− f(x)g(x)

=f(x + h)g(x)− f(x)g(x + h)

g(x + h)g(x),

dijeljeci sa h i pustajuci da h tezi 0 dobijamo trazenu formulu.

Primjedba 3.1. Iz formule (i) slijedi da je

(f(x) + g(x))′= f

′(x) + g

′(x),

(f(x)− g(x))′= f

′(x)− g

′(x).

Page 56: 81932337 Etf Analiza Zoran Mitrovic

56 GLAVA 3. DIFERENCIJALNI RACUN

Primjer 3.3. Koristeci pravilo o izvodu kolicnika funkcija dobijamo

(tg x)′=

(sinx)′cosx− sin x(cos x)

cos2 x=

cos2 x + sin2 x

cos2 x=

1cos2 x

,

(ctg x)′=

(cos x)′sin x− cosx(sinx)

sin2 x=− sin2 x− cos2 x

sin2 x= − 1

sin2 x.

Primjedba 3.2. Funkcije f + g, fg, fg mogu biti diferencijabilne, a da takve nisu

funkcije f i g.

Primjer 3.4. Naci :(i) (f(x) + g(x))

′, ako je f(x) = |x|, g(x) = −|x|,

(ii) (f(x)g(x))′, ako je f(x) = g(x) = |x|,

(iii)(

f(x)g(x)

)′

, ako je f(x) = g(x) = |x|+ 1.

Rjesenje.Funkcija x 7→ |x| nije diferencijabilna u tacki 0, (primjer 3.2). Med-jutim, imamo sljedece :(i) (f(x) + g(x))

′= 0,

(ii) (f(x)g(x))′= (x2)

′= 2x,

(iii)(

f(x)g(x)

)′

= 0.

Sljedeca teorema daje pravilo za izvod slozene funkcije.

Teorema 3.3. Neka je funkcija g diferencijabilna u tacki x0 i funkcija f difer-encijabilna u tacki g(x0) tada je funkcija f ◦g diferencijabilna u tacki x0 i vrijedi

((f ◦ g)(x0))′= f

′(g(x0))g

′(x0).

Primjer 3.5. Naci izvod funkcije h(x) = ex2.

Rjesenje. Vrijedi h(x) = (f ◦ g)(x), gdje je f(x) = ex i g(x) = x2. Na osnovuprethodne teoreme je

h′(x) = f

′(g(x))g

′(x) = ex2

2x.

Primjer 3.6. Naci izvod funkcije h(x) = xx.Rjesenje. Vrijedi h(x) = (f ◦ g)(x), gdje je f(x) = ex i g(x) = x log x. Sadaimamo

h′(x) = ex log x(log x + 1) = xx(log x + 1).

Primjedba 3.3. Na slican nacin kao u prethodnom primjeru se moze odrediti iizvod funkcije h(x) = f(x)g(x), f(x) > 0. Taj postupak diferenciranja se nazivalogaritamskim diferenciranjem.

Teorema 3.4. Neka je funkcija f diferencijabilna u tacki x0 i strogo monotonau nekoj okolini tacke x0. Tada je inverzna funkcija f−1 diferencijabilna u tackiy0 = f(x0) i vrijedi

(f−1(y0))′=

1f ′(x0)

.

Page 57: 81932337 Etf Analiza Zoran Mitrovic

3.1. PRVI IZVOD 57

Primjer 3.7. Neka je y = sin x. Na osnovu prethodne teoreme imamo da je

(arcsin y)′=

1(sinx)′

=1

cosx=

1√1− y2

.

Na slican nacin dobijamo

(arccos y)′= − 1√

1− y2.

Dalje, ako stavimo y = tg x, dobijamo

(arctg y)′=

1(tg x)′

= cos2 x =1

1 + y2.

Na slican nacin dobijamo

(arcctg y)′= − 1

1 + y2.

Na osnovu primjera 3.1, 3.3 i 3.7, kao i na osnovu pravila diferenciranjaimamo tablicu izvoda osnovnih elementarnih funkcija.

Funkcija izvod Funkcija izvod

xa axa−1 1xa

− a

xa+1

sin x cosx cosx − sin x

tg x1

cos2 xctg x

1sin2 x

arcsinx1√

1− x2arccosx − 1√

1− x2

arctg x1

1 + x2arcctg x − 1

1 + x2

ax ax log a ex ex

loga x1

x log alog x

1x

shx ch x ch x shx

3.1.3 Geometrijska interpretacija prvog izvoda

Neka je data kriva y = f(x) i neka tacke M(x0, f(x0)) i N(x0 +h, f(x0 +h))odredjuju sjecicu MN te krive. Koeficijent pravca sjecice MN je dat sa

tg α =f(x0 + h)− f(x0)

h.

Ako pustimo da h → 0 tada tacka N tezi tacki M . Dakle, u granicnom slucajudobijamo tangentu kroz tacku M . Znaci, koeficijent pravca tangente krivey = f(x) u tacki M(x0, f(x0)) je

f′(x0) = lim

h→0

f(x0 + h)− f(x0)h

.

Page 58: 81932337 Etf Analiza Zoran Mitrovic

58 GLAVA 3. DIFERENCIJALNI RACUN

Dakle, jednacina tangente krive y = f(x) u tacki M(x0, f(x0)) je

y − y0 = f′(x0)(x− x0).

Ako vrijedi uslov f′(x0) 6= 0, jednacina

y − y0 = − 1f ′(x0)

(x− x0),

predstavlja jednacinu normale krive y = f(x) u tacki M(x0, f(x0)).

Primjer 3.8. Odrediti jednacinu tangente krive y = sin x u tacki(

π4 ,√

22

).

Rjesenje. Kako je

y′ (π

4

)= cos

π

4=√

22

,

dobijamo da je jednacina tangente

y −√

22

=√

22

(x− π

4

).

3.1.4 Diferencijal

Neka je data diferencijabilna funkcija f . Relaciju

f′(x0) = lim

h→0

f(x0 + h)− f(x0)h

,

mozemo pisati i na sljedeci nacin

f(x0 + h)− f(x0) = f′(x0)h + λ(h)h, (3.1)

pri cemu limh→0

λ(h) = 0.

Ako uvedemo oznake

∆f(x0) = f(x0 + h)− f(x0), ∆x0 = x0 + h− x0 = h,

dobijamo∆f(x0) = f

′(x0)∆x0 + λ(h)h.

Sada za male h imamo∆f(x0) ≈ f

′(x0)∆x0. (3.2)

Izraz ∆x0 nazivamo prirastaj argumenta x u tacki x0, a izraz ∆f(x0) prira-staj funkcije f u tacki x0. Dakle, relacija (3.2) znaci da je prirastaj funkcijef u tacki x0 priblizno jednak f

′(x0)∆x0.

Primjer 3.9. Koristeci formulu (3.2) izracunati pribliznu vrijednost funkcije

f(x) = 5

√2− x

2 + x

Page 59: 81932337 Etf Analiza Zoran Mitrovic

3.1. PRVI IZVOD 59

u tacki x0 = 0.15.Rjesenje. Vrijedi sljedece

f ′(x) =−4 5

√2−x2+x

5(4− x2)= − 4f(x)

5(4− x2),

∆f(x) ≈ f′(x)∆x = − 4f(x)∆x

5(4− x2).

Ako stavimo x = 0, f(x) = 1 i ∆x = 0.15, dobijamo ∆f(x) ≈ − 4·0.155·4 = −0.03.

Dakle, f(0.15) = f(0) + ∆f(x) ≈ 1− 0.03 = 0.97.Tacna vrijednost na cetiri decimale je 0.9704.

Primjer 3.10. Izracunati pribliznu vrijednost sin 290.Rjesenje. Iz formule (3.2) dobijamo

sin 300 − sin 290 ≈ cos 300 · π

180,

pa je

sin 290 ≈ 12− π

√3

360≈ 0.484.

Tacna vrijednost na cetiri decimale je 0, 4848.

Teorema 3.5. Funkcija f je diferencijabilna u tacki x0 ako i samo ako postojikonstanta A ∈ R takva da je

f(x0 + h)− f(x0) = Ah + λ(h), (3.3)

pri cemu je limh→0

λ(h) = 0.

Ako vazi (3.3), onda je A = f ′(x0).

Dokaz. Funkcija f je diferencijabilna u tacki x0 ako i samo ako postoji A ∈ Rtako da vrijedi

limh→0

f(x0 + h)− f(x0)h

= A,

to jest

limh→0

f(x0 + h)− f(x0)−Ah

h= 0.

Odavde zakljucujemo da je

f(x0 + h)− f(x0)−Ah = λ(h),

gdje je limh→0

λ(h) = 0.

Definicija 3.3. Neka je funkcija f diferencijabilna u tacki x0. Diferencijalfunkcije f u tacki x0 za datu vrijednost prirastaja ∆x je

df(x0) = f ′(x0)∆x.

Page 60: 81932337 Etf Analiza Zoran Mitrovic

60 GLAVA 3. DIFERENCIJALNI RACUN

Iz prethodne definicije zakljucujemo da je diferencijal funkcije linearna funkci-ja pirastaja ∆x.

Primjer 3.11. Za diferencijal funkcije f(x) = x vrijedi

df(x) = f ′(x)∆x = ∆x.

Dakle,dx = ∆x.

Na osnovu ovoga imamo sljedecu oznaku

f ′(x) =df(x)dx

.

Vrijede sljedece osobine :

• aditivnost difrencijala, d(u + v) = du + dv,

• homogenost difencijala, d(λu) = λdu,

• diferencijal proizvoda, d(uv) = udv + vdu,

• diferencijal kolicnika,

d(u

v

)=

udv − vdu

v2,

• diferencijal inverzne funkcije,

dy

dx=

1dxdy

,

• diferencijal funkcije date parametarski,

dy

dt=

dy

dx

dx

dt,

• invarijantnost diferencijala,

d(u(v(x))) = (u(v(x)))′dx = u′(v)v′(x)dx = u′(v)dv.

Primjer 3.12. Jednacina tangente krive date parametarski x = x(t), y = y(t)u tacki t = t0 je

y − y(t0) =y′(t0)x′(t0)

(x− x(t0)).

Primjer 3.13. Nacid

(arctg

u

v

).

Rjesenje. Koristeci osobine diferencijala imamo

d(arctg

u

v

)=

1

1 +(

uv

)2 d(u

v

)=

vdu− udv

u2 + v2.

Page 61: 81932337 Etf Analiza Zoran Mitrovic

3.2. TEOREME O SREDNJOJ VRIJEDNOSTI I PRIMJENE 61

3.2 Teoreme o srednjoj vrijednosti i primjene

3.2.1 Teoreme o srednjoj vrijednosti

Definicija 3.4. Neka je funkcija f definisana u nekoj okolini tacke x0. Ako zasvako x iz te okoline vazi f(x) ≥ f(x0) (f(x) ≤ f(x0)) kazemo da funkcija fima lokalni minimum (maksimum) u tacki x0. Lokalni minimum i lokalnimaksimum nazivamo lokalnim ekstremumima.

Funkcija moze imati vise lokalnih maksimuma odnosno lokalnih minimuma.

Primjer 3.14. Funkcija

f(x) =

−x2 − 4x− 3, x ≤ −1,

x2 − 1, −1 < x < 1,−x2 + 4x− 3, x ≥ 1,

ima dva lokalna maksimuma, u tackama x1 = −2 i x2 = 2 i lokalni minimum utacki x3 = 0.

Sljedeca teorema, poznata kao Fermaova teorema, daje potreban uslov dadiferencijabilna funkcija ima lokalni ekstremum.

Teorema 3.6. Ako funkcija f ima lokalni ekstremum u tacki x0 i ako u x0 imaizvod tada je f ′(x0) = 0.

Dokaz. Pretpostavimo da funkcija f u tacki x0 ima lokalni maksimum. Tada jeu nekoj okolini tacke x0

f(x0) ≥ f(x),

pa je za x < x0

f(x)− f(x0)x− x0

≥ 0.

Odavde zakljucujemo da jef′−(x0) ≥ 0.

Kako funkcija f u tacki x0 ima izvod, zakljucujemo da je f ′(x0) ≥ 0.Ako sada uzmemo x > x0 dobijamo

f(x)− f(x0)x− x0

≤ 0,

pa jef′+(x0) ≤ 0,

a odavde imamo f ′(x0) ≤ 0. Dakle, f ′(x0) = 0.

Definicija 3.5. Tacke u kojima je prvi izvod funkcije f jednak nuli se zovustacionarne tacke funkcije f .

Page 62: 81932337 Etf Analiza Zoran Mitrovic

62 GLAVA 3. DIFERENCIJALNI RACUN

Prema Fermaovoj teoremi imamo da ako funkcija f definisana na [a, b]dostize ekstremum on se nalazi u stacionarnim tackama. Medjutim, tacke ai b mogu biti tacke ektremuma, mada ne moraju biti stacionarne tacke.

Primjer 3.15. Funkcija f(x) = x2−x, na segmentu [0, 2] ima jednu stacionarnutacku x = 1

2 , u njoj funkcija f dostize lokalni minimum f( 12 ) = − 1

2 . Kako jef(0) = 0 i f(2) = 2 zakljucujemo da funkcija f u tacki x = 2 dostize lokalnimaksimum.

Uslov da je prvi izvod funkcije u tacki jednak nuli je samo potreban ali ne idovoljan uslov da tacka bude tacka lokalnog ekstremuma.

Primjer 3.16. Funkcija f(x) = x3 ima na [−1, 1] stacionarnu tacku x = 0, alinema u toj tacki lokalni ekstremum, jer je funkcija f monotono rastuca. Lokalniminimum ove funkcije je u tacki x = −1, a lokalni maksimum je u tacki x = 1.

Teorema 3.7. Rolova teorema. Neka je funkcija f definisana na [a, b]. Akovazi :

(i) f je neprekidna na [a, b],

(ii) f ima izvod na (a, b),

(iii) f(a) = f(b),

tada postoji tacka c ∈ (a, b) takva da je f ′(c) = 0.

Dokaz. Funkcija f je neprekidna na intervalu [a, b], pa dostize minimum i mak-simum na [a, b]. Ako se minimum i maksimum dostizu u tackama a i b, tada izf(a) = f(b) slijedi da je funkcija f konstanta na [a, b], pa je f ′(x) = 0 za svakox ∈ (a, b). U suprotnom slucaju bar jedan ekstremum je u nekoj tacki c ∈ (a, b).Sada na osnovu Fermaove teoreme slijedi da je f ′(c) = 0.

Primjer 3.17. Pokazati da jednacina

x5 + 3x3 + 10x− 30 = 0,

ima tacno jedan realan korijen.Rjesenje. Neka je f(x) = x5 + 3x3 + 10x− 30. Kako je f nepekidna funkcija if(0)f(2) < 0, na osnovu teoreme 2.19 zakljucujemo da data jednacina ima barjedan realan korijen i to u intervalu (0, 2). Pokazimo da je on jednistven. Akobi postojali realni brojevi c1 i c2 takvi da je f(c1) = f(c2) = 0, tada na osnovuRolove teoreme zakljucujemo da postoji c ∈ R takav da je f ′(c) = 0. Medjutim,ovo je nemoguce, jer je

f ′(x) = 5x4 + 6x2 + 10 > 0.

Primjer 3.18. Iz Rolove teoreme slijedi da izvod P ′ polinoma P ima tacnojednu nulu izmedju dvije uzastopne nule polinoma P.Naime, ako su x1 i x2 dvije uzastopne nule polinoma P tada je

P (x1) = P (x2) = 0,

Page 63: 81932337 Etf Analiza Zoran Mitrovic

3.2. TEOREME O SREDNJOJ VRIJEDNOSTI I PRIMJENE 63

pa su ispunjeni uslovi Rolove teoreme. Dakle, polinom P ′ ima bar jednu nuluizmedju x1 i x2. Neka su sada x

′1 i x

′2 dvije uzastopne nule polinoma P ′. Ako

bi izmedju nula x′1 i x

′2 postojale dvije nule polinoma P onda bi izmedju te dvije

nule postojala i jedna nula polinoma P ′, pa x′1 i x

′2 ne bi bile dvije uzastopne

nule polinoma P ′.

Teorema 3.8. Kosijeva teorema. Neka su funkcije f i g definisane na [a, b].Ako vazi :

(i) f i g su neprekidne na [a, b],

(ii) f i g imaju izvode na (a, b),

(iii) g′(x) 6= 0 za svako x ∈ (a, b),

tada postoji tacka c ∈ (a, b) takva da je

f(b)− f(a)g(b)− g(a)

=f ′(c)g′(c)

.

Dokaz. Zbog uslova g′(x) 6= 0 za svako x ∈ (a, b), na osnovu Rolove teoremezakljucujemo da je g(a) 6= g(b). Definisimo funkciju h na sljedeci nacin

h(x) = f(x)− f(b)− f(a)g(b)− g(a)

g(x).

Funkcija h ispunjava uslove Rolove teoreme, pa postoji tacka c ∈ (a, b), takvada je h′(c) = 0, to jest

f ′(c)− f(b)− f(a)g(b)− g(a)

g′(c) = 0,

Dakle,f(b)− f(a)g(b)− g(a)

=f ′(c)g′(c)

.

Teorema 3.9. Lagranzova teorema. Neka je funkcija f definisana na [a, b].Ako vazi :

(i) f je neprekidna na [a, b],

(ii) f ima izvod na (a, b),

tada postoji tacka c ∈ (a, b) takva da je

f(b)− f(a)b− a

= f ′(c).

Dokaz. Dokaz slijedi iz Kosijeve teoreme, ako stavimo g(x) = x.

Page 64: 81932337 Etf Analiza Zoran Mitrovic

64 GLAVA 3. DIFERENCIJALNI RACUN

Primjer 3.19. Za funkciju f(x) = xex, x ∈ [0, 2], naci δ > 0, takvo da vrijedi

|x2 − x1| < δ ⇒ |f(x2)− f(x1)| < 0.001.

Rjesenje. Iz Lagranzove teoreme imamo

|f(x2)− f(x1)| = |f ′(c)| · |x2 − x1|,

gdje je c izmedju x1 i x2.Kako je f ′(x) = ex(1 + x), za x ∈ [0, 2] dobijamo

|f ′(x)| ≤ 3e2.

Sada imamo|f(x2)− f(x1)| ≤ 3e2 · |x2 − x1|,

pa dovoljno uzeti

δ =0.0013e2

.

Primjer 3.20. Pokazati da je

n√

1 + x ≤ 1 +x

n, za sve x > 0.

Rjesenje. Neka je x > 0. Na osnovu Lagranzove teoreme imamo

n√

1 + x− n√

1 =x

n n√

(1 + c)n−1,

gdje je c ∈ (0, x). Kako je

1n√

(1 + c)n−1≤ 1, za c ∈ (0, x),

dobijamon√

x + 1 ≤ 1 +x

n.

Primjer 3.21. Neka je funkcija f diferencijabilna na intervalu I. Ako je

supx∈I

|f ′(x)| = M < +∞

tada je funkcija f uniformno neprekidna na intervalu I.Rjesenje. Funkcija f ispunjava uslove Lagranzove teoreme, pa za dvije proizvoljnetacke x, y ∈ I vrijedi

|f(x)− f(y)| = |f ′(c)||x− y|,

gdje je tacka c izmedju tacaka x i y. Kako je

supx∈I

|f ′(x)| = M < +∞,

Page 65: 81932337 Etf Analiza Zoran Mitrovic

3.2. TEOREME O SREDNJOJ VRIJEDNOSTI I PRIMJENE 65

imamo|f(x)− f(y)| ≤ M |x− y|. (3.4)

Pretpostavimo sada da su {xn} i {yn} nizovi tacaka iz intervala I, takvi da je

limn→+∞

|xn − yn| = 0.

Tada je zbog (3.4),lim

n→+∞|f(xn)− f(yn)| = 0.

Dakle, f je uniformno neprekidna funkcija.

3.2.2 Monotonost funkcije

Ovde, koristeci Lagranzovu teoremu, dajemo postupak za ispitivanje mono-tonosti diferencijabilne funkcije.

Teorema 3.10. Neka je funkcija f definisana i neprekidna na intervalu [a, b]i diferencijabilna na intervalu (a, b). Ako je f ′(x) > 0 (f ′(x) < 0) za svakox ∈ (a, b) onda je funkcija f monotono rastuca (opadajuca) na (a, b).

Dokaz. Neka je x1 < x2, tada zbog Lagranzove teoreme imamo

f(x2)− f(x1) = f ′(c)(x2 − x1),

gdje je c ∈ (x1, x2). Ako je f ′(x) > 0 dobijamo

f(x2)− f(x1) > 0,

pa je funkcija f monotono rastuca, a ako je f ′(x) < 0 onda je

f(x2)− f(x1) < 0,

i funkcija f je monotono opadajuca.

Posljedica 3.1. Neka je funkcija f definisana i neprekidna na intervalu [a, b],diferencijabilna na intervalu (a, b) i f ′(c) = 0 za c ∈ (a, b). Ako je f ′(x) > 0 zax ∈ (a, c), a f ′(x) < 0 za x ∈ (c, a) (f ′(x) < 0 za x ∈ (a, c), a f ′(x) > 0 zax ∈ (c, a)) onda funkcija f u tacki c ima lokalni maksimum (minimum).

Primjer 3.22. 1. Odrediti monotonost i ekstremume funkcije

f(x) = x− ln(1 + x), x > −1.

Rjesenje. Za prvi izvod funkcije f imamo

f ′(x) = 1− 11 + x

=x

1 + x.

Kako jex

1 + x> 0 za x > 0,

Page 66: 81932337 Etf Analiza Zoran Mitrovic

66 GLAVA 3. DIFERENCIJALNI RACUN

x

1 + x< 0 za − 1 < x < 0,

zakljucujemo da je funkcija f monotono rastuca za x > 0 i monotonoopadajuca za −1 < x < 0. Osim toga f ′(0) = 0, pa funkcija u tacki x = 0ima minimum i to na cijelom skupu (−1, +∞). Taj minimum je f(0) = 0.Dakle, vrijedi

f(x) ≥ f(0), za x > −1,

to jestx ≥ ln(1 + x), za x > −1.

2. Pokazati da je(

1x

+12

)ln(1 + x) > 1, za 0 < x ≤ 1. (3.5)

Rjesenje. Nejednakost (3.5) je ekvivalentna sa

ln(1 + x) +4

2 + x− 2 > 0, za 0 < x ≤ 1.

Neka je

f(x) = ln(1 + x) +4

x + 2− 2.

Kako je

f ′(x) =1

1 + x− 4

(2 + x)2=

x2

(1 + x)(2 + x)2> 0, za 0 < x ≤ 1,

funkcija f je monotono rastuca na (0, 1]. Dakle,

f(x) > f(0), za 0 < x ≤ 1,

to jest vrijedi (3.5).

3.2.3 Lopitalovo pravilo

Kao primjenu Kosijeve teoreme dajemo pravilo koje se cesto koristi za odred-

jivanje granicnih vrijednosti limx→a

f(x)g(x)

i limx→∞

f(x)g(x)

.

Teorema 3.11. (Lopitalovo pravilo)Neka su funkcije f i g definisane i difer-encijabilne u nekoj okolini tacke a osim, eventualno u tacki a. Ako vrijedi :

(i) limx→a

f(x) = limx→a

g(x) = 0,

(ii) g′(x) 6= 0 u nekoj okolini tacke a,

(iii) postoji limx→a

f ′(x)g′(x)

,

Page 67: 81932337 Etf Analiza Zoran Mitrovic

3.2. TEOREME O SREDNJOJ VRIJEDNOSTI I PRIMJENE 67

tada postoji limx→a

f(x)g(x)

i vrijedi

limx→a

f(x)g(x)

= limx→a

f ′(x)g′(x)

.

Dokaz. Funkcije f i g ne moraju biti definisane u tacki x = a. Ako definisemofunkcije f∗ i g∗ sa

f∗(x) = f(x), g∗(x) = g(x), za x 6= a, f∗(a) = g∗(a) = 0,

vidimo da one ispunjavaju uslove Kosijeve teoreme, pa postoji tacka c izmedjux i a, takva da je

f∗(x)− f∗(a)g∗(x)− g∗(a)

=f∗

′(c)

g∗′(c).

Iz definicije funkcija f∗ i g∗ zakljucujemo da je

f(x)g(x)

=f′(c)

g′(c).

Ako x → a, tada c → a, pa kako postoji limx→a

f ′(x)g′(x)

, zakljucujemo da je

limx→a

f(x)g(x)

= limx→a

f ′(x)g′(x)

.

Primjedba 3.4. (i) Prethodna teorema vrijedi i u slucaju da je a = ∞.(ii) Neodredjeni tipovi 1∞,∞0, 00, 0 · ∞,∞−∞ se mogu pogodnim transfor-

macijama svesti na oblik00

ili∞∞ , pa se Lopitalovo pravilo moze primjeniti i na

ove slucajeve.

Primjer 3.23. Izracunati :

(i) limx→+∞

x2e−x,

(ii) limx→0

(1x− 1

ex − 1

).

Rjesenje. (i) Ovde se radi o neodredjenom izrazu oblika∞·0. Transformisacemoovaj izraz na neodredjeni izraz oblika

∞∞ , a zatim primjeniti Lopitalovo pravilo.

limx→+∞

x2e−x = limx→+∞

x2

ex= lim

x→+∞2x

ex= lim

x→+∞2ex

= 0.

Page 68: 81932337 Etf Analiza Zoran Mitrovic

68 GLAVA 3. DIFERENCIJALNI RACUN

(ii) U ovom slucaju se radi o neodredjenom izrazu oblika ∞−∞. Svescemo ga

na neodredjeni izraz oblika00.

limx→0

(1x− 1

ex − 1

)= lim

x→0

ex − 1− x

x(ex − 1)= lim

x→0

ex − 1ex − 1 + xex

= limx→0

ex

ex + ex + xex=

12.

3.3 Izvodi viseg reda

3.3.1 Izvod reda n

U ovoj sekciji uvodimo pojam izvoda viseg reda. Izvodi viseg reda se definisuinduktivno.

Definicija 3.6. Izvod reda nula, f (0) je po definiciji jednak funkciji f .Izvod f ′ nazivamo prvim izvodom funkcije f .Ako je definisan izvod reda n − 1, f (n−1) tada se izvod reda n, f (n) definisekao prvi izvod funkcije f (n−1).Za funkciju koja u tacki ima izvod reda n kazemo da je n puta diferencija-bilna.

Primjer 3.24. Koristeci matematicku indukciju lako se pokazuju sljedece for-mule :

1. (xa)(n) = a(a− 1) · · · (a− n + 1)xa−n, n ∈ N,

2. (ax)(n) = ax(ln a)n, n ∈ N, gdje je a > 0, a 6= 1,

3. (ln x)(n) = (−1)n−1 (n− 1)!xn

, n ∈ N,

4. (sinx)(n) = sin(x +

2

), n ∈ N,

5. (cos x)(n) = cos(x +

2

), n ∈ N.

Pokazimo na primjer 2.Vrijedi (ex)′ = ex, pa je (ex)(n) = ex, n ∈ N. Kako je ax = ex ln a, imamo

(ax)(n) = (ex ln a)(n) = ex ln a(ln a)n = ax(ln a)n, n ∈ N.

Iz osobina izvoda lako se dobija da je

(f(x) + g(x))(n) = f (n)(x) + g(n)(x)

i(λf(x))(n) = λf (n)(x), λ ∈ R.

U slucaju izvoda reda n, proizvoda dvije funkcije, ne vrijedi analogna osobinakao kod izvoda prvog reda. Naime, vrijedi sljedeca teorema.

Page 69: 81932337 Etf Analiza Zoran Mitrovic

3.3. IZVODI VISEG REDA 69

Teorema 3.12. (Lajbnicova formula) Neka funkcije u i v imaju izvode redan, onda funkcija uv ima izvod reda n i vrijedi

(uv)(n) =n∑

k=0

(nk

)u(k)v(n−k).

Dokaz prethodne teoreme se izvodi koristeci matematicku indukciju i slicanje dokazu binomne formule.

Primjer 3.25. Naci izvod reda n funkcije f(x) = sin 4x cos 2x.Rjesenje. Iz formule

sin α cos β =12

[sin(α + β) + sin(α− β)] ,

imamof(x) =

12

[sin 6x + sin 2x] .

Kako je(sin ax)(n) = an sin

(ax +

2

),

zakljucujemo

f (n)(x) =6n

2sin

(6x +

2

)+ 2n−1 sin

(2x +

2

).

Primjer 3.26. Naci izvod reda n funkcije

f(x) =2x + 3

x2 − 5x + 6.

Rjesenje. Vrijedi2x + 3

x2 − 5x + 6=

2x + 2(x− 2)(x− 3)

.

Odredimo realne brojeve a i b takve da je

2x + 3x2 − 5x + 6

=a

x− 2+

b

x− 3.

Dobijamo da za a i b vrijedi

2x + 3 = a(x− 3) + b(x− 2).

Odavde imamoa + b = 2

−3a− 2b = 3.

Rjesavajuci ovaj sistem jednacina dobijamo

a = −7, b = 9.

Page 70: 81932337 Etf Analiza Zoran Mitrovic

70 GLAVA 3. DIFERENCIJALNI RACUN

Kako je (1

x + c

)(n)

=(−1)nn!

(x + c)n+1,

zakljucujemo

(2x + 3

x2 − 5x + 6

)(n)

=7(−1)n+1n!(x− 2)n+1

+9(−1)nn!(x− 3)n+1

.

3.3.2 Drugi izvod i konveksnost

Definicija 3.7. Za funkciju f kazemo da je konveksna (konkavna) na inter-valu (a, b) ako za svako λ ∈ [0, 1] i za sve x, y ∈ (a, b) vazi

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

(f(λx + (1− λ)y) ≥ λf(x) + (1− λ)f(y)).

Primjer 3.27. Funkcija f(x) = x2 je konveksna na skupu R.Rjsenje. Neka je λ ∈ [0, 1] i x, y ∈ R. Iz

λ(1− λ)(x− y)2 ≥ 0,

dobijamoλ(1− λ)(x2 − 2xy + y2) ≥ 0,

a odavde slijedi

λx2 + (1− λ)y2 ≥ λ2x2 + 2λ(1− λ)xy + (1− λ)2y2,

to jestf(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

U prethodnom primjeru smo ustanovili koveksnost funkcije na osnovu defini-cije. To nije uvijek jednostavno. Na primjer, funkcija

f(x) = (x + 1)10 + ex,

je konveksna na skupu R. Da bi to pokazali na osnovu definicije treba pokazatida za sve λ ∈ [0, 1] i sve x, y ∈ R vrijedi

(λx + (1− λ)y + 1)10 + eλx+(1−λ)y ≤ λ((x + 1)10 + ex) + (1− λ)((y + 1)10 + ey).

Sljedeca teorema daje jednostavno pravilo za ispitivanje konveksnosti funkcijena osnovu izvoda funkcije.

Teorema 3.13. Neka je f diferencijabilna funkcija na intervalu (a, b). Tada jef konveksna na (a, b) ako i samo ako je f ′ neopadajuca funkcija.

Page 71: 81932337 Etf Analiza Zoran Mitrovic

3.3. IZVODI VISEG REDA 71

Dokaz. Pretpostavimo da je funkcija f konveksna. Neka su x1 i x2 proizvoljnetacke iz intervala (a, b) takve da je x1 < x2 . Za tacku x izmedju tacaka x1 i x2

vrijedix = λx1 + (1− λ)x2,

gdje je

λ =x2 − x

x2 − x1.

Iz definicije konveksne funkcije dobijamo

f(x) ≤ λf(x1) + (1− λ)f(x2),

to jestλf(x) + (1− λ)f(x) ≤ λf(x1) + (1− λ)f(x2),

a odavde jeλ(f(x)− f(x1)) ≤ (1− λ)(f(x2)− f(x)).

Kako je

λ =x2 − x

x2 − x1,

imamof(x)− f(x1)

x− x1≤ f(x2)− f(x)

x2 − x. (3.6)

Dakle, funkcija f je konveksna ako i samo ako za sve x1, x, x2 ∈ (a, b) takve daje x1 < x < x2 vrijedi (3.6). Ako u (3.6) pustimo da x → x1, odnosno x → x2

dobijamo

f ′(x1) ≤ f(x2)− f(x)x2 − x

,f(x2)− f(x)

x2 − x≤ f ′(x2).

Dakle, f ′(x1) ≤ f ′(x2), pa je funkcija f ′ neopadajuca.Neka je sada f diferencijabilna funkcija i neka je f ′ neopadajuca funkcija. Nekasu date tacke x1, x, x2 ∈ (a, b) takve da je x1 < x < x2. Na osnovu Lagranzoveteoreme imamo

f(x)− f(x1)x− x1

= f ′(c1), c1 ∈ (x1, x)

f(x2)− f(x)x2 − x

= f ′(c2), c2 ∈ (x, x2).

Kako je f ′ neopadajuca funkcija dobijamo da vrijedi (3.6). Dakle, funkcija f jekonveksna.

Kako je funkcija f ′ monotono neopadajuca (nerastuca) ako i samo ako jef ′′ ≥ 0 (f ′′ ≤ 0) iz prethodne teoreme dobijamo sljedece pravilo za ispitivanjekonveksnosti.

Teorema 3.14. Neka je funkcija f dva puta diferencijabilna na intervalu (a, b).Funkcija f je konveksna (konkavna) na intervalu (a, b) ako i samo ako jef ′′(x) ≥ 0 (f ′′(x) ≤ 0) za sve x ∈ (a, b).

Page 72: 81932337 Etf Analiza Zoran Mitrovic

72 GLAVA 3. DIFERENCIJALNI RACUN

Primjedba 3.5. Ako je funkcija f konveksna na intervalu (a, b), koristeci matemati-cku indukciju dobijamo

f(λ1x1 + · · ·+ λnxn) ≤ λ1f(x1) + · · ·+ λnf(xn), (3.7)

gdje su x1, . . . , xn ∈ (a, b), a λ1, . . . , λn nenegativni realni brojevi ciji je zbirjednak 1.

Primjer 3.28. Funkcija f(x) =1x

, je konveksna na skupu (0, +∞), jer je

f ′′(x) =2x3

> 0, za sve x > 0,

pa iz nejednakosti (3.7), za λi =1n

, i = 1, . . . , n, dobijamo

1x1n + x2

n + · · ·+ xn

n

≤ 1x1n

+1x2n

+ · · ·+ 1xn

n

,

to jest nejednakost izmedje harmonijske i aritmeticke sredine

n1x1

+ 1x2

+ · · ·+ 1xn

≤ x1 + x2 + · · ·+ xn

n.

Na slican nacin, koristeci funkciju f(x) = − ln x, x > 0, moze se dokazati inejednakost

n√

x1 · x2 · · · · · xn ≤ x1 + x2 + · · ·+ xn

n,

poznata kao nejednakost izmedu geometrijske i aritmeticke sredine.

Definicija 3.8. Neka je funkcija f definisana u nekoj okolini tacke x0. Ako jefunkcija f konveksna (konkavna) za x < x0, a konkavna (konveksna) za x > x0

kazemo da je tacka (x0, f(x0)) prevojna tacka funkcije f .

Primjer 3.29. Prevojna tacka funkcije f(x) = x3, x ∈ R, je tacka x0 = 0, jerje f ′′(x) = 6x i f ′′(x) > 0 za x > 0, a f ′′(x) < 0 za x < 0.

Uslov f ′′(x0) = 0 je samo potreban uslov ali ne i dovoljan da bi tacka(x0, f(x0)) bila prevojna tacka funkcije f .

Primjer 3.30. Funkcija f(x) = x4, x ∈ R, nema prevojnu tacku iako jef ′′(0) = 0. Naime, ovde je f ′′(x) ≥ 0 za sve x ∈ R.

3.3.3 Tejlorova formula

Vidjeli smo, na osnovu Lagranzove teoreme, da ako je funkcija f neprekidnana [a, b], diferencijabilna na (a, b) i x ∈ (a, b) da tada postoji tacka c ∈ (a, x)takva da je

f(x) = f(a) + f ′(c)(x− a).

Ova formula se moze uopstiti. Naime, vrijedi sljedeca teorema.

Page 73: 81932337 Etf Analiza Zoran Mitrovic

3.3. IZVODI VISEG REDA 73

Teorema 3.15. (Tejlorova formula) Neka funkcija f ima konacne izvode doreda n + 1 u nekoj okolini tacke a. Tada u okolini tacke a vrijedi

f(x) = f(a) +f ′(a)

1!(x− a) +

f ′′(a)2!

(x− a)2 + · · ·+

f (n)(a)n!

(x− a)n +f (n+1)(a + θ(x− a))

(n + 1)!(x− a)n+1, θ ∈ (0, 1). (3.8)

Polinom

Tn(x) = f(a) +f ′(a)

1!(x− a) +

f ′′(a)2!

(x− a)2 + · · ·+ f (n)(a)n!

(x− a)n,

se naziva Tejlorovim polinomom stepena n funkcije f u okolini tacke a.Izraz

Rn(x) = f(x)− Tn(x),

se naziva ostatak u Tejlorovoj formuli.Formula (3.8) se naziva Tejlorova formula sa ostatkom u Lagranzovom obliku.Tejlorova formula se moze napisati i u Kosijevom obliku ostatka. On imasljedeci oblik

Rn(x) =f (n+1)(a + θ(x− a))

n!(1− θ)n(x− a)n+1, θ ∈ (0, 1).

Napomenimo da je θ velicina koja zavisi od x. Pored ova dva oblika cesto sekoristi i oblik Tejlorove formule u Peanovom obliku ostatka.Prije toga uvedimo jednu oznaku.Kazemo da je f beskonacno mala viseg reda u odnosu na g kad x → a, akoje

f(x) = ω(x)g(x) (x 6= a) i limx→a

ω(x) = 0.

To oznacavamo sa f(x) = o(g(x)) kad x → a.Tejlorova formula u Peanovom obliku ostatka je

f(x) = Tn(x) + o((x− a)n) (x → a).

Ako je u Tejlorovoj formuli a = 0 kazemo da se radi o Maklorenovoj formuli.Iz primjera (3.24) dobijamo sljedece formule :

1. ex = 1 + x +x2

2!+

x3

3!+ · · ·+ xn

n!+ o(xn) (x → 0),

2. sin x = x− x3

3!+ · · ·+ (−1)n−1 x2n−1

(2n− 1)!+ o(x2n) (x → 0),

3. cosx = 1− x2

2!+

x4

4!+ · · ·+ (−1)n x2n

(2n)!+ o(x2n+1) (x → 0),

4. ln(1 + x) = x− x2

2+

x3

3− · · ·+ (−1)n−1 xn

n+ o(xn) (x → 0).

Page 74: 81932337 Etf Analiza Zoran Mitrovic

74 GLAVA 3. DIFERENCIJALNI RACUN

5. (1 + x)a =n∑

k=0

(ak

)xk + o(xn) (x → 0), gdje je

(a0

)= 1,

(ak

)=

a(a− 1) · · · (a− k + 1)k!

, a ∈ R, k ∈ N.

Primjer 3.31. Izracunati

limx→0

cos x− e−x22

x4.

Rjesenje. Koristeci razvoje 1. i 3. dobijamo

limx→0

cos x− e−x22

x4= lim

x→0

1x4

(1− x2

2+

x4

24+ 0(x5)−

(1− x2

2+

x4

8+ o(x5)

))

= limx→0

(− 1

12+

o(x5)x4

)= − 1

12.

Na kraju, navedimo jos jedan rezultat koji je neposredna posljedica Tejloroveformule, a koji sluzi za ispitivanje ekstremuma funkcija.

Teorema 3.16. Neka je a stacionarna tacka n puta diferencijabilne funkcije fi

f ′(a) = f ′′(a) = · · · = f (n−1)(a) = 0, f (n)(a) 6= 0.

Ako je n neparan broj, tada u tacki a funkcija f nema lokalni ekstremum. Akoje n paran broj, tada je a tacka lokalnog maksimuma ako je f (n)(a) < 0 i tackalokalnog minimuma ako je f (n)(a) > 0.

3.3.4 Ispitivanje funkcija

Diferencijalni racun moze da se primjeni na ispitivanje funkcija. Prije negodamo neke primjere, uvodimo pojam asimptota.

Definicija 3.9. Za pravu x = a kazemo da je vertikalna asimptota funkcijey = f(x) ako vrijedi

limx→a−

f(x) = ±∞ ili limx→a+

f(x) = ±∞.

Definicija 3.10. Za pravu y = b kazemo da je desna (lijeva) horizontalnaasimptota funkcije y = f(x) ako vrijedi

limx→+∞

f(x) = b ∈ R(

limx→−∞

f(x) = b ∈ R)

.

Page 75: 81932337 Etf Analiza Zoran Mitrovic

3.3. IZVODI VISEG REDA 75

Definicija 3.11. Ako za neko k 6= 0 i n ∈ R vrijedi

limx→+∞

(f(x)− kx− n) = 0(

limx→−∞

(f(x)− kx− n) = 0))

,

za pravu y = kx + n kazemo da je desna (lijeva) kosa asimptota funkcijey = f(x).

Ovde dajemo postupak koji koristimo za ispitivanje funkcija i crtanje nji-hovih grafika. Taj postupak se sastoji u nekoliko koraka :

1. Odredjuje se domen funkcije, parnost i periodicnost.

2. Odredjuju se nule i znak funkcije.

3. Ispituje se ponasanje funkcije na krajevima domena i odredjuju asimptote.

4. Nalazi se prvi izvod, odredjuju, stacionarne tacke, intervali monotonosti ilokalni ekstremumi.

5. Nalazi se drugi izvod, odredjuju prevojne tacke i intervali konveksnosti.

6. Na osnovu prethodnih ispitivanja crtamo grafik funkcije.

Primjer 3.32. Nacrtati grafik funkcije

y =x2

4− x2.

Rjesenje.

1. Funkcija je definisana za sve x ∈ (−∞,−2) ∪ (−2, 2) ∪ (2, +∞).Kako vrijedi f(−x) = f(x) funkcija je parna. Dakle, njen grafik je sime-trican u odnosu na y osu.Funkcija nije periodicna.

2. Nule funkcije se odredjuju iz jednacine

x2

4− x2= 0.

Dakle, tacka x = 0 je nula funkcije.Funkcija je pozitivna za sve x za koje je

x2

4− x2> 0.

Dobijamo da je funkcija pozitivna za x ∈ (−2, 2).Na slican nacin se dobija da je funkcija negativna za x ∈ (−∞,−2) ∪(2, +∞).

Page 76: 81932337 Etf Analiza Zoran Mitrovic

76 GLAVA 3. DIFERENCIJALNI RACUN

3. Vrijedi

limx→+∞

x2

4− x2= −1,

limx→−∞

x2

4− x2= −1,

pa je prava y = −1 horizontalna asimptota.Osim toga je

limx→2−

x2

4− x2= +∞,

limx→2+

x2

4− x2= −∞,

pa je prava x = 2 vertikalna asimptota.Kako je lim

x→∞y

x= 0, zaklucujemo da funkcija nema kosu asimptotu.

4. Za prvi izvod imamo

y′ =(4− x2)2x + 2x · x2

(4− x2)2=

8x

(4− x2)2.

Dakle, tacka x = 0 je stacionarna tacka. Kako je y′ > 0 za x ∈ (0, 2) ∪(2,+∞), a y′ < 0 za x ∈ (−∞,−2) ∪ (−2, 0) zakljucujemo da je funkcijamonotono rastuca na (0, 2) i (2, +∞), a monotono opadajuca na (−∞,−2)i (−2, 0). Na osnovu prethodnog imamo da je stacionarna tacka tackalokalnog minimuma i vrijedi y(0) = 0.

5. Odredimo prevojne tacke i konveksnost.

y′′ =8(4− x2) + 16x(4− x2)2x

(4− x2)4=

24x4 + 32(4− x2)4

,

pa jey′′ > 0 za x ∈ (−2, 2),

y′′ < 0 za x ∈ (−∞,−2) ∪ (2,+∞).

Znaci funkcija je na (−2, 2) konveksna, a na (−∞,−2) i na (2, +∞)konkavna. Funkcija nema prevojnih tacaka.

6. Grafik

Primjer 3.33. Nacrtati grafik funkcije

y = x2 ln x.

Rjesenje.

1. Funkcija je definisana za sve x ∈ (0, +∞).Funkcija nije ni parna ni neparna, jer domen nije simetrican.Funkcija nije periodicna.

Page 77: 81932337 Etf Analiza Zoran Mitrovic

3.3. IZVODI VISEG REDA 77

x

y

x=2x=-2

Slika 3.1: Grafik funkcije f(x) =x2

4− x2

2. Nule funkcije se odredjuju iz jednacine

x2 ln x = 0.

Dakle, tacka x = 1 je nula funkcije.Funkcija je pozitivna za sve x za koje je

x2 ln x > 0.

Dobijamo da je funkcija pozitivna za x ∈ (1, +∞).Funkcija je negativna za x ∈ (0, 1).

3. Vrijedilim

x→+∞x2 ln x = +∞,

limx→+∞

x ln x = +∞,

pa funkcija nema ni horizontalnih ni kosih asimptota.Dalje,

limx→0+

x2 ln x = limx→0+

ln x1x2

= limx→0+

1x

− 2x3

= limx→0+

−x2

2= 0,

pa je prava y = 0 vertikalna asimptota.

4. Za prvi izvod imamoy′ = 2x ln x + x.

Dobijamo da je tacka x = e−12 stacionarna tacka. Kako je y′ > 0 za x ∈

(e−12 , +∞), a y′ < 0 za x ∈ (0, e−

12 ) zakljucujemo da je funkcija monotono

rastuca na (e−12 ,+∞), a monotono opadajuca na (0, e−

12 ). Na osnovu

prethodnog imamo da je stacionarna tacka tacka lokalnog minimuma ivrijedi y(e−

12 ) = − 1

2e .

Page 78: 81932337 Etf Analiza Zoran Mitrovic

78 GLAVA 3. DIFERENCIJALNI RACUN

5. Odredimo prevojne tacke i konveksnost.

y′′ = 2 ln x + 3,

pa jey′′ > 0 za x ∈ (e−

32 , +∞),

y′′ < 0 za x ∈ (0, e−32 ).

Znaci funkcija je na (e−32 , +∞) konveksna, a na (0, e−

32 ) konkavna. Tacka

P (e−32 ,− 3

2e−3) je prevojna tacaka.

6. Na slici je nacrtan grafik

y

x1

e-1/2

12e

Slika 3.2: Grafik funkcije f(x) = x2 ln x

3.4 Zadaci

1. Koristeci definiciju izvoda odrediti izvod funkcije f(x) =√

x.

2. Koristeci osobine prvog izvoda naci izvod funkcije

f(x) =3√

x + 5 7√

x + 12 4√

x +√

x.

3. Naci izvode sljedecih funkcija

(i) f(x) = x3 cosx ln x, (ii) f(x) = ctg x +ax + 1x2 + 1

.

4. Naci izvod kompozicije f ◦ g funkcija

f(x) = x2 + 3√

x− 1 i g(x) = x4 + 1.

5. Koristeci logaritamski izvod, naci izvod funkcije

f(x) = 5

√(x2 + 6)7(6x− 1)11

(4x2 + 3)6esin x.

Page 79: 81932337 Etf Analiza Zoran Mitrovic

3.4. ZADACI 79

6. Naci izvod funkcijey = (sin x)cos x.

7. Pokazati da je funkcija

f(x) ={

x4, x ≥ 0,x3, x < 0,

diferencijabilna u tacki x = 0.

8. Pokazati da funkcija

f(x) ={

2 sinx, x ≥ 0,x, x < 0,

nema izvod u tacki x = 0.

9. Pokazati da funkcija f(x) = 5√

x2 nema izvod u tacki x = 0.

10. Odrediti koeficijente a i b da funkcija

f(x) ={

x2, x ≤ 2,ax + b, x > 2,

bude diferencijabilna u tacki x = 2.

11. Koristeci Lagranzovu teoremu dokazati nejednakosti

(i) | sin x2 − sin x1| ≤ |x2 − x1|, gdje su x1, x2 ∈ R,

(ii) | arctg x2 − arctg x1| ≤ |x2 − x1|, gdje su x1, x2 ∈ R,

(iii) | ln x2 − ln x1| ≤ |x2 − x1|, gdje su x1, x2 ∈ [1, +∞).

12. Dokazati jednakost

arcsinx + arccos x =π

2, x ∈ [−1, 1].

13. Pokazati da je funkcija f(x) = arctg x− x, opadajuca na skupu R.

14. Odrediti vrijednosti realnog broja a da funkcija P (x) = x2− ax opada nasegmentu [−1, 1].

15. Izracunati granicne vrijednosti :

(i) limx→a

bx − ba

x− a, b > 0,

(ii) limx→3

ln(x2 − 8)x2 + 3x− 18

,

(iii) limx→0+

xx.

16. Izracunati granicne vrijednosti :

Page 80: 81932337 Etf Analiza Zoran Mitrovic

80 GLAVA 3. DIFERENCIJALNI RACUN

(i) limx→0

ex − e−x − 2x

x− sin x,

(ii) limx→π

2

(x

ctg x− π

2 cos x

),

(iii) limx→+0

(1x

)tg x

.

17. Naci y(4) ako je y = x5 + cos x.

18. Dokazati da funkcija y = ex cos x zadovoljava jednacinu y(4) + 4y = 0.

19. Odrediti izvod n−tog reda funkcije y = e3x.

20. Odrediti y(20) i y(21) ako je

y = (2x + 1)5(x2 + 1)4(x− 1)7.

21. Ispitati konveksnost funkcija

(i) y = x4 − 6x2 + 5,

(ii) y = ln(x2 − 1),

(iii) y = (1 + x2)e−x2+ x.

22. Odrediti vrijednosti realnog broja a da funkcija y = x4 + ax3 +32x2 + 11,

bude konveksna.

23. Pokazati nejednakost

(x + y

2

)4

≤ x4 + y4

2, x, y ∈ R.

24. Koristeci Tejlorovu formulu izracunati

limx→+∞

( 6√

x6 + x5 − 6√

x6 − x5).

25. Odrediti lokalne ektremume funkcija :

(i) y = 2x2 − x4,

(ii) y =x

1 + x2,

(iii) y = cos x +13

cos 3x.

26. Naci asimptote funkcija :

(i) y = ln(1 + ex),

Page 81: 81932337 Etf Analiza Zoran Mitrovic

3.4. ZADACI 81

(ii) y =x2

1− x2,

(iii) y = e1x .

27. Nacrtati grafike funkcija :

(i) y =x− 2√1 + x2

,

(ii) y =ex

1− x,

(iii) y =ln(1 + x)

x.

Page 82: 81932337 Etf Analiza Zoran Mitrovic

82 GLAVA 3. DIFERENCIJALNI RACUN

Page 83: 81932337 Etf Analiza Zoran Mitrovic

Glava 4

Integralni racun

4.1 Odredjeni integral

4.1.1 Definicija odredjenog integrala

Problem izracunavanja povrsine figure u ravni je doveo do pojma odred-jenog integrala. Neka je funkcija f pozitivna i neprekidna na [a, b]. Povrsinaogranicena krivom y = f(x), pravama x = a, x = b i x−osom naziva se krivolin-ijski trapez nad [a, b]. Da bi priblizno izracunali povrsinu krivolinijskog trapezamozemo postupiti na sljedeci nacin.

Podijelimo interval [a, b] pomocu tacaka xi, i = 0, 1, . . . , n na sljedeci nacin

a = x0 < x1 < x2 < x3 < · · · < xn−1 < xn = b.

Skup {x0, x1, . . . , xn} oznacavamo sa P i nazivamo podjelom intervala [a, b].U svakom segmentu [xi, xi+1] izaberimo jednu tacku ξi, i = 0, 1, . . . , n− 1.Suma

R(P, ξ0, ξ1, . . . , ξn−1) =n−1∑

i=0

f(ξi)(xi+1 − xi), (4.1)

je priblizno jednaka povrsini krivolinijskog trapeza. Suma (4.1) se naziva inte-gralna suma funkcije f u odnosu na podjelu P . Dalje, ocigledno je da sto subrojevi xi+1−xi manji da formula (4.1) bolje aproksimira povrsinu krivolinijskogtrapeza. Broj

||P || = max0≤i≤n−1

(xi+1 − xi),

nazivamo norma podjele P .

Definicija 4.1. Neka je funkcija f definisana na skupu [a, b]. Ako postoji realanbroj I, takav da je

I = lim||P ||→0

n−1∑

i=0

f(ξi)(xi+1 − xi),

83

Page 84: 81932337 Etf Analiza Zoran Mitrovic

84 GLAVA 4. INTEGRALNI RACUN

nezavisno od izbora podjela P intervala [a, b] i izbora tacaka ξi, gdje je ξi ∈[xi, xi+1], i = 0, 1, . . . , n − 1, tada se I naziva odredjenim integralom iliRimanovim integralom funkcije f na [a, b] i to oznacavamo sa

I =∫ b

a

f(x)dx.

Za funkciju f kazemo da je integrabilna na [a, b]. Kazemo jos i da je funkcijaf podintegralna funkcija odredjenog integrala

∫ b

a

f(x)dx.

Broj a je donja, a broj b gornja granica odredjenog integrala.Postupak nalazenja integrala se naziva integracija.

Primjer 4.1. Odrediti integralnu sumu funkcije f(x) = c, x ∈ [a, b].Rjesenje. Neka je data podjela P = {x0, x1, . . . , xn}, tada je

R(P, ξ0, ξ1, . . . , ξn−1) =n−1∑

i=0

f(ξi)(xi+1 − xi) =n−1∑

i=0

c(xi+1 − xi) =

c

n−1∑

i=0

(xi+1 − xi) = c(b− a).

Ovo je povrsina pravougaonika cije su stranice c i b− a.

Primjer 4.2. Odrediti integralnu sumu funkcije f(x) = x, x ∈ [a, b].Rjesenje. Za datu podjelu P = {x0, x1, . . . , xn}, imamo

R(P, ξ0, ξ1, . . . , ξn−1) =n−1∑

i=0

ξi(xi+1 − xi).

Uzmimo ekvidinstantnu podjelu, to jest podjelu kod koje je

xi+1 − xi =b− a

n,

xi = a + (b− a)i

n, i = 0, 1, . . . n.

Dalje, uzmimo

ξi = xi = a + (b− a)i

n, i = 0, 1, . . . , n− 1.

Oznacimo odgovarajucu integralnu sumu sa Sn, vrijedi

Sn =n−1∑

i=0

(a + (b− a)

i

n

)b− a

n= ab− a2 + (b− a)2

n− 12n

.

Page 85: 81932337 Etf Analiza Zoran Mitrovic

4.1. ODREDJENI INTEGRAL 85

Odavde zakljucujemo da

limn→+∞

Sn = ab− a2 +(b− a)2

2=

b2 − a2

2,

a ovo je povrsina trapeza cije su osnovice duzine a i b, a visina duzine b− a.

4.1.2 Osobine odredjenog integrala

Ovde dajemo neke osobine odredjenog integrala. One se jednostavno pokazujukoristeci definiciju odredjenog integrala.

• Linearnost. Ako su funkcije f i g integrabilne na [a, b] tada je integrabilnai funkcija αf + βg, gdje α, β ∈ R i vrijedi

∫ b

a

(αf(x) + βg(x))dx = α

∫ b

a

f(x)dx + β

∫ b

a

g(x)dx.

• Aditivnost. Neka je funkcija f integrabilna na [a, b] i c ∈ (a, b) tada je∫ b

a

f(x)dx =∫ c

a

f(x)dx +∫ b

c

f(x)dx.

• Ako su funkcije f i g integrabilne na [a, b] i

f(x) ≥ g(x) za sve x ∈ [a, b],

tada je ∫ b

a

f(x)dx ≥∫ b

a

g(x)dx.

• Ako je funkcija f integrabilna na [a, b] tada je∣∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣∣ ≤∫ b

a

|f(x)|dx.

Teorema 4.1. Svaka integrabilna funkcija na [a, b] je ogranicena na [a, b].

Dokaz. Neka je funkcija f integrabilna na [a, b]. Tada po definiciji 4.1 postojirealan broj I takav da je

I = lim||P ||→0

n−1∑

i=0

f(ξi)(xi+1 − xi).

nezavisno od izbora podjele P = {x0, x1, . . . , xn} intervala [a, b] i izbora tacakaξi, gdje je ξi ∈ [xi, xi+1], i = 0, 1, . . . , n − 1. Ovo znaci da postoji δ > 0 takvoda za svaku podjelu P za koju je ||P || < δ vrijedi

|R(P, ξ0, ξ1, . . . , ξn−1)− I| < 1.

Page 86: 81932337 Etf Analiza Zoran Mitrovic

86 GLAVA 4. INTEGRALNI RACUN

Neka je P jedna takva podjela. Pretpostavimo da je f neogranicena. Tadapostoji i ∈ {0, 1, . . . , n − 1} takav da je funkcija f neogranicena na intervalu[xi, xi+1]. Dakle, za svako K > 0 postoji ti ∈ [xi, xi+1] takvo da je |f(ti)| > K.Ako uzmemo dovoljno veliko K > 0 i podjelu P1 koja se razlikuje od podjele Ptako sto je umjesto tacke ξi uzeta tacka ti tada je ||P1|| = ||P || < δ i

|R(P1, ξ0, ξ1, . . . , ξn−1)− I| > 1,

a ovo je nemoguce. Dakle, f je ogranicena funkcija.

Primjer 4.3. Funkcija

f(x) ={

1x , 0 < x ≤ 10, x = 0,

nije integrabilna na [0, 1] jer nije ogranicena.

Definicija 4.2. Neka je funkcija f ogranicena na [a, b] i neka jeP = {x0, x1, . . . , xn} jedna podjela intervala [a, b]. Stavimo

mi = infx∈[xi,xi+1]

f(x), Mi = supx∈[xi,xi+1]

f(x), i = 0, 1, . . . , n− 1.

Sume

R∗(P ) =n−1∑

i=0

mi(xi+1 − xi) i R∗(P ) =n−1∑

i=0

Mi(xi+1 − xi),

nazivaju se redom donja i gornja (Rimanova) integralna suma.

Moze se pokazati da vrijedi sljedeca teorema.

Teorema 4.2. Ogranicena funkcija f je integrabilna na [a, b] ako i samo akovrijedi

lim||P ||→0

(R∗(P )−R∗(P )) = 0, (4.2)

nezavisno od podjele P .

Vidjeli smo da je ogranicenost funkcije potreban uslov za njenu integrabil-nost, sljedeca teorema daje dovoljan uslov za integrabilnost funkcije.

Teorema 4.3. Svaka neprekidna funkcija na [a, b] je integrabilna na [a, b].

Dokaz. Funkcija f je neprekidna na [a, b], pa postoje tacke ui, vi ∈ [xi, xi+1]takve da je mi = f(ui) i Mi = f(vi). Osim toga, funkcija f je neprekidna na[a, b], pa je i uniformno neprekidna na [a, b]. Zbog toga, za svako ε > 0 postojiδ > 0 tako da za svake dvije tacke u, v ∈ [a, b] vrijedi

|u− v| < δ ⇒ |f(u)− f(v)| < ε

b− a.

Page 87: 81932337 Etf Analiza Zoran Mitrovic

4.1. ODREDJENI INTEGRAL 87

Neka je P podjela intervala [a, b] za koju je ||P || < δ, tada je

|R∗(P )−R∗(P )| =∣∣∣∣∣n−1∑

i=0

(Mi −mi)(xi+1 − xi)

∣∣∣∣∣ ≤

≤n−1∑

i=0

|f(vi)− f(ui)|(xi+1 − xi) ≤n−1∑

i=0

ε

b− a(xi+1 − xi) = ε.

Dakle,lim

||P ||→0(R∗(P )−R∗(P )) = 0,

sto je i trebalo dokazati.

Sljedeca teorema je poznata kao teorema o srednjoj vrijednosti.

Teorema 4.4. Neka je f neprekidna funkcija na [a, b]. Tada postoji c ∈ (a, b)tako da je ∫ b

a

f(x)dx = f(c)(b− a).

Dokaz. Funkcija f je neprekidna na [a, b], pa postoje tacke xmin i xmax takveda je

f(xmin) = minx∈[a,b]

f(x), f(xmax) = maxx∈[a,b]

f(x).

Iz osobina odredjenog integrala imamo

f(xmin)(b− a) ≤∫ b

a

f(x)dx ≤ f(xmax)(b− a).

Ako je

f(xmin)(b− a) =∫ b

a

f(x)dx ili f(xmax)(b− a) =∫ b

a

f(x)dx,

dokaz je zavrsen. U suprotnom definisimo funkciju g : [a, b] → R,

g(x) = − 1b− a

∫ b

a

f(x)dx + f(x).

Iz definicije funkcije g zakljucujemo da vrijedi

g(xmin)g(xmax) < 0,

pa postoji tacka c izmedju xmin i xmax takva da je g(c) = 0. Dakle,

f(c) =1

b− a

∫ b

a

f(x)dx.

Page 88: 81932337 Etf Analiza Zoran Mitrovic

88 GLAVA 4. INTEGRALNI RACUN

4.2 Neodredjeni integral

4.2.1 Definicija neodredjenog integrala

Definicija 4.3. Neka je funkcija f definisana na intervalu (a, b). Ako postojifunkcija F takva da je

F ′(x) = f(x), x ∈ (a, b),

kazemo da je F primitivna funkcija funkcije f na (a, b).

Primjer 4.4. Odrediti primitivne funkcije sljedecih funkcija :

1. f1(x) = xa, x ∈ R, a 6= −1,

2. f2(x) = ax, x ∈ R, a > 0, a 6= 1,

3. f3(x) = sin x, x ∈ R,

4. f4(x) =1x

, x ∈ R \ {0}.

Rjesenje.

1. Kako je(

xa+1

a + 1

)′= xa, zakljucujemo da je funkcija F1(x) =

xa+1

a + 1, primi-

tivna funkcija funkcije f(x) = xa na skupu R.

2. F2(x) =ax

ln a, x ∈ R, a > 0, a 6= 1.

3. F3(x) = − cosx, x ∈ R.

4. F4(x) = ln x, x ∈ (0,+∞), F4(x) = ln(−x), x ∈ (−∞, 0).Dakle, primitivna funkcija na skupu R \ {0} je F4(x) = ln |x|.

Primjetimo da ako je F ′(x) = f(x) tada je (F (x) + C)′ = f(x).

Definicija 4.4. Neodredjeni integral funkcije f na intervalu (a, b) je skupsvih primitivnih funkcija funkcije f na intervalu (a, b). Neodredjeni integral

funkcije f oznacavamo sa∫

f(x)dx. Ako je F primitivna funkcija funkcije f ,

obicno se pise ∫f(x)dx = F (x) + C.

Iz tablice za izvode dobijamo sljedecu tablicu za neodredjene integrale.

1.∫

xadx = xa+1

a+1 + C, a 6= −1

2.∫

1xdx = ln |x|+ C, x 6= 0

3.∫

axdx = aa

ln a + C, a > 0, a 6= −1

Page 89: 81932337 Etf Analiza Zoran Mitrovic

4.2. NEODREDJENI INTEGRAL 89

4.∫

exdx = ex + C

5.∫

sin xdx = − cos x + C

6.∫

cosxdx = sin x + C

7.∫

dx

sin2 x= − ctg x + C

8.∫

dx

cos2 x= tg x + C

9.∫

dx

1 + x2= arctg x + C

10.∫

sh xdx = chx + C

11.∫

chx = sh x + C

12.∫

dx

sh2x= − cthx + C

13.∫

dx

ch2x= th x + C

14.∫

dx

x2 + a2=

1a

arctgx

a+ C, a 6= 0

15.∫

dx

x2 − a2=

12a

ln∣∣∣∣x− a

x + a

∣∣∣∣ + C, |x| 6= a

16.∫

dx√1 + x2

= ln(x +√

1 + x2) + C

17.∫

dx√1− x2

= arcsinx + C, |x| < 1

18.∫

dx√x2 ± a2

= ln |x +√

x2 ± a2|+ C

Sljedecom teoremom je data veza izmedju primitivne funkcije i odredjenogintegrala.

Teorema 4.5. Neka je f neprekidna funkcija na [a, b] tada je funkcija F defin-isana na [a, b] sa

F (x) =∫ x

a

f(t)dt

primitivna funkcija funkcije f .

Page 90: 81932337 Etf Analiza Zoran Mitrovic

90 GLAVA 4. INTEGRALNI RACUN

Dokaz. Iz osobina odredjenog integrala imamo

F (x + h)− F (x) =∫ x+h

a

f(t)dt−∫ x

a

f(t)dt =∫ x+h

x

f(t)dt.

Sada na osnovu teoreme o srednjoj vrijednosti dobijamo

F (x + h)− F (x) = hf(x + θh), θ ∈ (0, 1).

Dakle,

limh→0

F (x + h)− F (x)h

= f(x),

to jest F ′(x) = f(x).

Iz prethodne teoreme dobijamo da, svaka druga primitivna funkcija imaoblik,

F (x) =∫ x

a

f(t)dt + C, x ∈ [a, b],

gdje je C proizvoljna konstanta. Dalje, F (a) = C i F (b) =∫ b

af(t)dt + C, pa

vrijedi sljedeca teorema poznata kao Njutn-Lajbnicova teorema.

Teorema 4.6. Neka je f neprekidna funkcija na intervalu [a, b] i F njena prim-itivna funkcija na [a, b] tada vrijedi

∫ b

a

f(x)dx = F (b)− F (a).

4.2.2 Osobine neodredjenog integrala

Ovde navodimo osnovne osobine neodredjenog integrala koje slijede iz os-obina izvoda funkcije.

•∫

df(x) = f(x) + C, d

∫f(x)dx = f(x)dx,

•∫

λ · f(x)dx = λ ·∫

f(x)dx, λ ∈ R \ {0},

•∫

(f(x) + g(x))dx =∫

f(x)dx +∫

g(x)dx,

• Smjena promjenljive. Ako su funkcije f, ϕ i ϕ′ neprekidne tada je∫

f(x)dx =∫

f(ϕ(t))ϕ′(t)dt + C,

• Parcijalna integracija. Ako su u i v diferencijabilne funkcije tada je∫

u(x)dv(x) = u(x)v(x)−∫

v(x)du(x) + C.

Page 91: 81932337 Etf Analiza Zoran Mitrovic

4.2. NEODREDJENI INTEGRAL 91

Primjer 4.5. Izracunati integral∫

cos (ln x)x

dx.

Rjesenje. Uvedimo smjenu t = ln x. Sada je

dt =dx

x,

pa je ∫cos (ln x)

xdx =

∫cos tdt = sin t + C = sin (ln x) + C.

Primjer 4.6. Izracunati integral∫

x2 + 5√(2x + 7)3

dx.

Rjesenje. Koristimo smjenu t =√

2x + 7. Tada je

t2 = 2x + 7, x =t2 − 7

2, dx = tdt,

pa je∫

x2 + 5√(2x + 7)3

dx =∫ 1

4 (t2 − 7)2 + 5√(t2)3

tdt =14

∫t4 − 14t2 + 34

t2dt

=14

∫ (t2 − 14 +

34t2

)dt =

14

(t3

3− 14t− 34

t

)+ C.

Dakle,

∫x2 + 5√(2x + 7)3

dx =14

(√(2x + 7)3

3− 14

√2x + 7− 34√

2x + 7

)+ C.

Primjer 4.7. Izracunati integral∫

ln xdx.

Rjesenje. Koristimo parcijalnu integraciju. Stavimo

u = ln x, dv = dx,

odavde je

du =dx

x, v = x.

Koristeci formulu za parcijalnu integraciju imamo∫

ln xdx = x ln x−∫

xdx

x= x ln x− x + C.

Primjer 4.8. Izracunati integral∫

xexdx.

Rjesenje. Stavljajucix = u, exdx = dv,

Page 92: 81932337 Etf Analiza Zoran Mitrovic

92 GLAVA 4. INTEGRALNI RACUN

imamodx = du, ex = v,

pa iz formule za parcijalnu integraciju dobijamo∫

xexdx = xex −∫

exdx = xex − ex + C.

4.2.3 Integracija nekih klasa funkcija

1. Integracija racionalnih funkcijaOvde razmatramo integraciju racionalne funkcije

R(x) =Pn(x)Qm(x)

,

gdje su Pn(x) i Qm(x) polinomi stepena n i m sa realnim koeficijentima. Mozese pokazati da se svaka racionalna funkcija moze predstaviti u obliku zbirapolinoma i odredjenog broja razlomaka sljedecih oblika

A

(x− a)k,

Mx + N

(x2 + px + q)k,

gdje je k prirodan broj i p2−4q < 0. Dakle, integracija racionalne funkcije R(x)se svodi na integraciju sljedece tri funkcije

1(x− a)k

,1

(x2 + px + q)k,

x

(x2 + px + q)k.

U prvom slucaju smjenom t = x− a se integral∫

1(x− a)k

svodi na tablicni.

U drugom slucaju, integral

Ik =∫

1(x2 + px + q)k

dx,

se smjenom

t =x + p

2√q − p2

4

,

svodi na integral

Ik =1√

q − p2

4

∫dt

(t2 + 1)k.

Ako je k = 1 radi se o tablicnom integralu

I1 =1√

q − p2

4

∫dt

t2 + 1=

1√q − p2

4

arctg t + C.

Page 93: 81932337 Etf Analiza Zoran Mitrovic

4.2. NEODREDJENI INTEGRAL 93

U slucaju da je k > 1, integral Ik se metodom parcijalne integracije svodi naintegral Ik−1.Integral

Jk =∫

x

(x2 + px + q)kdx

se svodi na Ik. Naime,

Jk =∫

x

(x2 + px + q)kdx =

12

∫2x + p− p

(x2 + px + q)kdx =

12

∫dt

tk− p

2Ik,

gdje je t = x2 + px + q.

Primjer 4.9. Izracunati integral∫

x2 − x + 2x4 − 5x2 + 4

dx.

Rjesenje. Kako je

x4 − 5x2 + 4 = (x2 − 1)(x2 − 4) = (x− 1)(x + 1)(x− 2)(x + 2),

podintegralnu funkciju mozemo pisati u obliku

x2 − x + 2x4 − 5x2 + 4

=A

x + 1+

B

x− 1+

C

x + 2+

D

x− 2.

Odavde imamo

x2−x+2 = A(x−1)(x+2)(x−2)+B(x+1)(x+2)(x−2)+C(x+1)(x−1)(x−2)

+D(x + 1)(x− 1)(x + 2),

x2−x+2 = x3(A+B+C +D)+x2(−A+B−2C +2D)+x(−4A−4B−C−D)

+4A− 4B + 2C − 2D.

Dakle, za koeficijente A,B,Ci D vrijedi

A + B + C + D = 0

−A + B − 2C + 2D = 1

−4A− 4B − C −D = −1

4A− 4B + 2C − 2D = 2.

Rjesavajuci ovaj sistem dobijamo

A =23, B = −1

3, C = −2

3, D =

13.

Prema tome,∫

x2 − x + 2x4 − 5x2 + 4

dx =23

∫dx

x + 1− 1

3

∫dx

x− 1− 2

3

∫dx

x + 2+

13

∫dx

x− 2

=23

ln |x + 1| − 13

ln |x− 1| − 23

ln |x + 2|+ 13

ln |x− 2|+ C

=13

ln∣∣∣∣(x + 1)2(x− 2)(x− 1)(x + 2)2

∣∣∣∣ + C.

Page 94: 81932337 Etf Analiza Zoran Mitrovic

94 GLAVA 4. INTEGRALNI RACUN

Primjer 4.10. Izracunati integral∫

dx

x2 + x + 1.

Rjesenje. Uvedimo smjenu

t =x + 1

2√3

2

,

∫dx

x2 + x + 1=

2√3

∫dt

t2 + 1=

2√3

arctg t + C

=2√3

arctg2√3

(x +

12

)+ C.

2. Integracija nekih iracionalnih funkcijaOvde posmatramo neke integrale iracionalnih funkcija koji se pogodnim smje-nama svode na integrale racionalnih funkcija.2.1 Integrali oblika

∫R

[x,

(ax + b

cx + d

) p1q1

, . . . ,

(ax + b

cx + d

) pkqk

]dx, pi ∈ Z, qi ∈ N, i = 1, 2, . . . , k

gdje je R racionalna funkcija k + 1 promjenljive se smjenom

tq =ax + b

cx + d, q = NZS(q1, . . . , qk),

svode na integrale racionalnih funkcija.

Primjer 4.11. Izracunati integral∫

x 3√

2 + x

x + 3√

2 + xdx.

Rjesenje. Stavimo t3 = x + 2.

∫x 3√

2 + x

x + 3√

2 + xdx = 3

∫t6 − 2t2

t3 + t− 2dt = 3

∫ (t3 − t +

t2 − 2t

(t− 1)(t2 + t + 2)

)dt

=34t4 − 3

2t2 +

∫3t2 − 6t

(t− 1)(t2 + t + 2)dt.

Kako je3t2 − 6t

(t− 1)(t2 + t + 2)=

A

t− 1+

Bt + C

t2 + t + 2,

zaA = −3

4, B =

154

, C = −32,

imamo∫

3t2 − 6t

(t− 1)(t2 + t + 2)dt = −3

4

∫dt

t− 1+

154

∫t− 2

5

t2 + t + 2dt

= −34

ln |t− 1|+ 158

ln |t2 + t + 2| − 274√

7arctg

2t + 1√7

+ C.

Page 95: 81932337 Etf Analiza Zoran Mitrovic

4.2. NEODREDJENI INTEGRAL 95

Na kraju,∫

x 3√

2 + x

x + 3√

2 + xdx =

34t4−3

2t2−3

4ln |t−1|+15

8ln(t2+t+2)− 27

4√

7arctg

2t + 1√7

+C.

2.2 Integrali oblikaR(x,

√ax2 + bx + c),

gdje je R racionalna funkcija dvije promjenljive se svode na integrale racionalnihfunkcija pomocu Ojlerovih smjena.

• √ax2 + bx + c = x√

a± t, ako je a > 0,

• √ax2 + bx + c = xt±√c, ako je c > 0,

• √ax2 + bx + c =√

a(x− x1)(x− x2) = t(x− x1)(x− x2),ako je x1, x2 ∈ R.

Primjer 4.12. Izracunati integrale

(i) I =∫

dx

x√

4x2 + 4x + 3,

(ii) I =∫

dx

(1 + x)√

1 + x− x2,

(iii) I =∫

(x− 1)dx

(x2 + 2x)√

x2 + 2x.

Rjesenje.

(i) Kako je a = 4 > 0 koristimo sljedecu smjenu Ojlera√

4x2 + 4x + 3 = t− 2x.

Odavde je

4x2 + 4x + 3 = t2 − 4tx + 4x2, 4x + 3 = t2 − 4tx,

x =t2 − 3

4(1 + t), dx =

t2 + 2t + 34(1 + t2)2

dt,

√4x2 + 4x + 3 = t− 2

t2 − 34(1 + t)

=t2 + 2t + 32(1 + t)

.

Sada je

I = 2∫

dt

t2 − 3=

1√3

ln

∣∣∣∣∣t−√3t +

√3

∣∣∣∣∣ + C.

Dakle,

I =1√3

ln2x +

√4x2 + 4x + 3−√3

2x +√

4x2 + 4x + 3 +√

3+ C.

Page 96: 81932337 Etf Analiza Zoran Mitrovic

96 GLAVA 4. INTEGRALNI RACUN

(ii) Ovde je a < 0 i c > 0, pa koristimo smjenu√

1 + x− x2 = tx− 1.

Sada je1 + x− x2 = t2x2 − 2tx + 1,

x(1− x) = x(t2x− 2t),

1− x = t2x− 2t,

x =1 + 2t

1 + t2, dx = −2(t2 + t− 1)

(1 + t2)2dt,

√1 + x− x2 = t

1 + 2t

1 + t2− 1 =

t2 + t− 11 + t2

,

pa je

I =∫ −2(t2 + t− 1)dt

(1 + t2)2(1 + 2t+1

t2+1

)t2+t−11+t2

=

−2∫

dt

1 + (1 + t)2= −2 arctg(1 + t) + C.

Zakljucujemo

dx

(1 + x)√

1 + x− x2= −2 arctg

1 + x +√

1 + x− x2

x+ C.

(iii) U ovom slucaju trinom x2+2x ima dvije razlicite realne nule, pa koristimosmjenu √

x2 + 2x = xt.

Odavde jex2 + 2x = x2t2, x + 2 = xt2,

x =2

t2 − 1, dx = − 4tdt

(t2 − 1)2,

x− 1 =2

t2 − 1− 1 =

3− t2

t2 − 1.

Prema tome,

I = −12

∫3− t2

t2dt = − t

2+

32t

+ C.

Kako je

t =√

x2 + 2x

x,

dobijamo ∫(x− 1)dx

(x2 + 2x)√

x2 + 2x=

1 + 2x√x2 + 2x

+ C.

Page 97: 81932337 Etf Analiza Zoran Mitrovic

4.2. NEODREDJENI INTEGRAL 97

2.3 Integral oblika ∫xm(a + bxn)pdx,

gdje su m,n i p racionalni brojevi, m =m1

m2, n =

n1

n2, p =

p1

p2, se naziva

integral binomnog diferencijala. Moze se pokazati da je ovaj integral ele-

mentarna funkcija ako i samo ako je bar jedan od brojeva p,m + 1

ni p+

m + 1n

cijeli broj. U tim slucajevima se koriste sljedece smjene :

• Ako je p ∈ Z, smjena x = tk, k = NZS(m2, n2),

• Ako jem + 1

n∈ Z, smjena a + bxn = tp2 ,

• Ako je p +m + 1

n∈ Z, smjena ax−n + b = tp2 .

Primjer 4.13. Izracunati integrale

(i) I =∫ √

x

(1 + 3√

x)2dx,

(ii) I =∫

xdx√1 + 3

√x2

,

(iii) I =∫

3√

3x− x3dx.

Rjesenje.

(i) Ovde je p = −2, pa koristimo smjenu x = t6, dobijamo

∫ √x

(1 + 3√

x)2dx = 6

∫t8dt

(1 + t2)2= 6

∫ (t4 − 2t2 + 3− 4t2 + 3

(1 + t2)2

)dt

=6t5

5− 4t3 + 18t− 18

∫dt

1 + t2− 6

∫t2dt

(1 + t2)2.

Kako je

∫t2dt

(1 + t2)2= −1

2

∫td

(1

1 + t2

)= − t

2(1 + t2)+

12

arctg t,

imamo∫ √

x

(1 + 3√

x)2dx =

6t5

5− 4t3 + 18t +

3t

1 + t2− 21 arctg t + C, t = x6.

Page 98: 81932337 Etf Analiza Zoran Mitrovic

98 GLAVA 4. INTEGRALNI RACUN

(ii) U ovom slucaju je m = 1, n =23, p = −1

2i

m + 1n

= 3. Koristimo smjenu

1 + x23 = t2.

Sada je∫

xdx√1 + 3

√x2

= 3∫

(t2 − 1)2dt =35t5 − 2t3 + 3t + C, t =

√1 + x

23 .

(iii) Imamo m =13, n = 2, p =

13

im + 1

n+ p = 1. Stavimo

3x−2 − 1 = t3.

Tada je∫

3√

3x− x3dx = −92

∫t3dt

(t3 + 1)2=

32

∫td

(1

t3 + 1

)

=3t

2(t3 + 1)− 3

2

∫dt

t3 + 1.

Integral ∫dt

t3 + 1,

je integral racionalne funkcije i za njega se dobije∫

dt

t3 + 1=

16

ln(t + 1)2

t2 − t + 1+

1√3

arctg2t− 1√

3.

Dakle,∫

3√

3x− x3dx =3t

2(t3 + 1)− 1

4ln

(t + 1)2

t2 − t + 1−√

32

arctg2t− 1√

3+ C,

t =3√

3x− x3

x.

3. Integrali trigonometrijskih funkcijaIntegral oblika ∫

R(sinx, cosx),

gdje je R racionalna funkcija se moze svesti na integral racionalne funkcijepomocu smjene

t = tgx

2.

U tom slucaju je

sin x =2t

1 + t2, cos x =

1− t2

1 + t2, dx =

2dt

1 + t2.

Page 99: 81932337 Etf Analiza Zoran Mitrovic

4.2. NEODREDJENI INTEGRAL 99

Primjer 4.14. Izracunati integral∫

1 + sin x

sin x(1 + cos x)dx.

Rjesenje. Uvodeci smjenu t = tgx

2, dobijamo

∫1 + sin x

sin x(1 + cos x)dx =

∫ (1 + 2t

1+t2

)2dt

1+t2

2t

1+t2“1+ 1−t2

1+t2

” =

12

∫ (1t

+ t + 2)

dt =12

(ln |t|+ 1

2t2 + 2t

)+ C =

12

(ln | tg x

2|+ 1

2tg2 x

2+ 2 tg

x

2

)+ C.

Primjedba 4.1. Smjena t = tgx

2, moze da dovede do komplikovanih integrala

racionalnih funkcija. Nekada je bolje primjeniti druge smjene.

• Ako je R(− sin x, cosx) = −R(sinx, cos x), koristi se smjena cos x = t.

• Ako je R(sinx,− cosx) = −R(sinx, cos x), koristi se smjena sin x = t.

• Ako je R(− sin x,− cos x) = R(sinx, cos x), koristi se smjena tg x = t ilictg x = t.

Primjer 4.15. Izracunati integral∫

2 tg x + 3sin2 x + 2 cos2 x)

dx.

Rjesenje. Vrijedi R(− sin x,− cosx) = R(sinx, cosx), pa koristimo smjenutg x = t.

∫2 tg x + 3

sin2 x + 2 cos2 x)dx =

∫(2 tg x + 3) dx

cos2 x

tg2 x + 2=

∫2t + 3t2 + 2

dt =

ln(t2 + 2) +3√2

arctgt√2

+ C = ln(tg2 x + 2) +3√2

arctgtg x√

2+ C.

Primjer 4.16. Pokazati da za svaki prirodan broj n vrijedi

π/2∫

0

sin2n xdx =1 · 3 · . . . · (2n− 1)

2 · 4 · · · · · 2n· π

2, (4.3)

π/2∫

0

sin2n+1 xdx =2 · 4 · · · · · 2n

1 · 3 · . . . · (2n + 1). (4.4)

Page 100: 81932337 Etf Analiza Zoran Mitrovic

100 GLAVA 4. INTEGRALNI RACUN

Oznacimo

In =∫ π/2

0

sinn xdx.

Koristeci parcijalnu integraciju imamo

In =∫ π/2

0

sinn−1 x sinxdx =(− sinn−1 x cosx

)∣∣π/2

0+(n−1)

∫ π/2

0

cos2 x sinn−2 xdx

= (n− 1)In−2 − (n− 1)In,

a odavde je

In =n− 1

nIn−2, za n ≥ 2.

Kako je ∫ π/2

0

sin xdx = 1,

∫ π/2

0

sin0 xdx =π

2,

dobijamo formule (4.3) i (4.4).

Valisova formula.

π = limn→+∞

1n

(2 · 4 · · · · · 2n

1 · 3 · · · · · (2n− 1)

)2

. (4.5)

Koristeci formule (4.3) i (4.4) dobijamo

π

2=

(2 · 4 · · · · · 2n

1 · 3 · · · · · (2n− 1)

)2 12n + 1

(∫ π/2

0

sin2n xdx :∫ π/2

0

sin2n+1 xdx

).

Znaci, dovoljno je pokazati

limn→+∞

(∫ π/2

0

sin2n xdx :∫ π/2

0

sin2n+1 xdx

)= 1.

Kako za x ∈ [0, π/2] vrijedi

0 ≤ sin2n+1 x ≤ sin2n x ≤ sin2n−1 x,

dobijamo

0 ≤∫ π/2

0

sin2n+1 xdx ≤∫ π/2

0

sin2n xdx ≤∫ π/2

0

sin2n−1 xdx,

a odavde je

1 ≤∫ π/2

0sin2n xdx

∫ π/2

0sin2n+1 xdx

≤∫ π/2

0sin2n−1 xdx

∫ π/2

0sin2n+1 xdx

≤ 2n + 12n

= 1 +12n

.

Page 101: 81932337 Etf Analiza Zoran Mitrovic

4.2. NEODREDJENI INTEGRAL 101

Primjedba 4.2. Kako vrijedi

2 · 4 · · · · · 2n = n! · 2n,

1 · 3 · · · · · (2n− 1) =1 · 2 · · · · · 2n

2 · 4 · · · · · 2n=

(2n)!n! · 2n

,

formula Valisa se koristi i u sljedecem obliku

√π = lim

n→+∞(n!)222n

√n(2n)!

. (4.6)

Stirlingova formula.

limn→+∞

n!√2πnnne−n

= 1. (4.7)

Definisimo nizan =

n!en

nn√

n.

Dovoljno je pokazatilim

n→+∞an =

√2π.

Vrijedian

an+1=

1e· (n + 1)n+1+ 1

2

nn+ 12 (n + 1)

=1e

(1 +

1n

)n+ 12

,

odavde je

lnan

an+1=

(n +

12

)ln

(1 +

1n

)− 1.

Koristeci nejednakost (3.5), to jest(

1x

+12

)ln(1 + x) > 1, za 0 < x ≤ 1,

za x =1n

, imamo (n +

12

)ln

(1 +

1n

)> 1,

pa jeln

an

an+1> 0,

to jestan

an+1> 1.

Dakle, {an} je monotono opadajuci niz, a kako je ogranicen odozdo sa 0 postojia ∈ R tako da je lim

n→+∞an = a. Pokazimo da je a 6= 0. Naime, kako je

ln(

1 +1n

)=

∫ n+1

n

dx

x<

12

(1n

+1

n + 1

),

Page 102: 81932337 Etf Analiza Zoran Mitrovic

102 GLAVA 4. INTEGRALNI RACUN

jer se luk hiperbole y = 1x , n ≤ x ≤ n + 1, nalazi ispod prave koja prolazi kroz

tacke(

n,1n

)i(

n + 1,1

n + 1

), zakljucujemo da je

lnan

an+1<

14

(1n− 1

n + 1

).

Koristeci posljednju nejednakost dobijamo

lna1

an<

14,

pa je an > e3/4.Pokazimo sada da je a =

√2π. Kako je

a2n =

(n!)2e2n

n2nni a2n =

(2n)!e2n

(2n)2n√

2n,

koristeci (4.6) dobijamo

√π = lim

n→+∞a2

n

a2n

√2

=a2

a√

2,

to jest a =√

2π.4. Integrali koji nisu elementarne funkcijeOvde dajemo neke klase integrala koji nisu elementarne funkcije.

•∫

e−x2dx,

∫ex

xdx,

∫x

ln xdx,

•∫

sin x

xdx,

∫cos x

xdx,

•∫

dt√1− k2 sin2 t

, k ∈ (0, 1), elipticki integral prve vrste.

4.3 Nesvojstveni integral

Ovde dajemo neka uopstenja odredjenog integrala. Prvo uopstenje se sastojiu tome da interval na kome se vrsi integracija moze da bude beskonacan. Sustinadrugog uopstenja je da podintegralna funkcija moze da bude neogranicena naintervalu na kome se vrsi integracija.

4.3.1 Nesvojstveni integral prve vrste

Definicija 4.5. Neka je funkcija f definisana na [a,+∞) i integrabilna na [a, b]za svako b > a. Granicna vrijednost

∫ +∞

a

f(x)dx = limb→+∞

∫ b

a

f(x)dx, (4.8)

Page 103: 81932337 Etf Analiza Zoran Mitrovic

4.3. NESVOJSTVENI INTEGRAL 103

se naziva nesvojstveni integral prve vrste. Ako granicna vrijednost u (4.8)postoji i konacna je onda kazemo da je nesvojstveni integral konvergentan, au suprotnom slucaju je divergentan.

Analogno se definise i nesvojstveni integral prve vrste na (−∞, b]. Nesvo-jstveni integral prve vrste na (−∞, +∞) se definise sa

∫ +∞

−∞f(x)dx =

∫ a

−∞f(x)dx +

∫ +∞

a

f(x)dx.

Moze se pokazati da ova definicija ne zavisi od broja a ∈ R. Dakle, nesvo-

jstveni integral∫ +∞

−∞f(x)dx je konvergentan ako su oba integrala

∫ a

−∞f(x)dx

i∫ +∞

a

f(x)dx konvergentna.

Primjer 4.17. Pokazati da je nesvojstveni integral∫ +∞

0

xe−x2dx,

konvergentan.Rjesenje. Podintegralna funkcija je definisana i neprekidna za sve vrijednosti

x, njena primitivna funkcija je F (x) = −12e−x2

. Na osnovu definicije imamo

∫ +∞

0

xe−x2dx = lim

b→+∞

∫ b

0

e−x2dx = lim

b→+∞

(−1

2e−b2 +

12

)=

12.

Primjer 4.18. Ispitati konvergenciju integrala∫ +∞

0

x sin xdx.

Rjesenje. Koristeci pacijalnu integraciju dobijamo da je F (x) = −x cosx +sin x, primitivna funkcija funkcije f(x) = x sin x. Iz definicije nesvojstvenogintegrala slijedi

∫ +∞

0

x sin xdx = limb→+∞

(−b cos b + sin b).

Ova granicna vrijednost ne postoji, pa je dati integral divergentan.

Primjer 4.19. Izracunati nesvojstveni integral∫ +∞

−∞

dx

x2 + 2x + 2.

Rjesenje. Imamo∫ +∞

−∞

dx

x2 + 2x + 2=

∫ 0

−∞

dx

(x + 1)2 + 1+

∫ +∞

0

dx

(x + 1)2 + 1

Page 104: 81932337 Etf Analiza Zoran Mitrovic

104 GLAVA 4. INTEGRALNI RACUN

= lima→−∞

∫ 0

a

dx

(x + 1)2 + 1+ lim

b→+∞

∫ b

0

dx

(x + 1)2 + 1

= lima→−∞

(arctg 1− arctg(a + 1)) + limb→+∞

(arctg(b + 1)− arctg 1)

=(π

4−

(−π

2

))+

2− π

4

)= π.

Primjer 4.20. Ispitati konvrgenciju integrala∫ +∞

1

dx

xλ, λ ∈ R.

Rjesenje. Ako je λ = 1 tada integral divergira. Naime,∫ +∞

1

dx

x= lim

b→+∞ln b = +∞.

Ako je λ 6= 1 dobijamo∫ +∞

1

dx

xλ= lim

b→+∞

(b1−λ

1− λ− 1

1− λ

).

Ova granicna vrijednost ne postoji za λ < 1, dok je za λ > 1 jednaka1

λ− 1.

Znaci, dati integral konvergira za λ > 1, a za λ ≤ 1 je divergentan.

U prethodnim primjerima smo konvergenciju nesvojstvenih integrala ispiti-vali tako sto smo nalazili primitivnu funkciju podintegralne funkcije i koristilidefiniciju. Nekada to nije moguce. U takvim slucajevima korisni su sljedecikriterijumi konvergencije.

Teorema 4.7. Neka je

0 ≤ f(x) ≤ g(x), za sve x ∈ [a,+∞),

tada iz konvergencije integrala∫ +∞

a

g(x)dx slijedi konvergencija integrala∫ +∞

a

f(x)dx i iz divergencije integrala∫ +∞

a

f(x)dx slijedi divergencija inte-

grala∫ +∞

a

g(x)dx.

Teorema 4.8. Ako je limx→+∞

f(x)g(x)

= K, gdje je K pozitivan realan broj, tada

su oba integrala∫ +∞

a

f(x)dx i∫ +∞

a

g(x)dx istovremeno konvergentna ili di-

vergentna.

Primjer 4.21. Ispitati konvergenciju integrala∫ +∞

1

dx

x2 + 5√

x3 + 1.

Page 105: 81932337 Etf Analiza Zoran Mitrovic

4.3. NESVOJSTVENI INTEGRAL 105

Rjesenje. Kako je

1x2 + 5

√x3 + 1

≤ 1x2

, za sve x ≥ 1

i

limb→+∞

∫ b

1

dx

x2= lim

b→+∞

(−1

b+ 1

)= 1,

na osnovu teoreme 4.7 zakljucujemo da je dati integral konvergentan.

Primjer 4.22. Ispitati konvergenciju integrala∫ +∞

1

xdx√x4 + 1

.

Rjesenje. Vrijedi

limx→+∞

x√x4+11x

= 1,

pa kako je integral ∫ +∞

1

dx

x,

divergentan, na osnovu teoreme 4.8, zakljucujemo da je dati integral divergentan.

Primjer 4.23. Poasonov integral.

+∞∫

0

e−x2dx =

√π

2.

4.3.2 Nesvojstveni integral druge vrste

Druga vrsta nesvojstvenog integrala je kada funkcija nije ogranicena u okolinineke tacke c iz intervala konvergencije [a, b]. Tu razlikujemo dva slucaja. Jedanje kada se tacka c poklapa sa nekom od tacaka a i b, a drugi kada c ∈ (a, b).

Definicija 4.6. Ako je funkcija f integrabilna na intervalu [a, b − ε] za svakie > 0, a neogranicena u okolini tacke b tada se granicna vrijednost

∫ b

a

f(x)dx = limε→+0

∫ b−ε

a

f(x),

zove nesvojstveni integral druge vrste.Analogno se definise i nesvojstveni integral druge vrste ako je funkcija f neograni-cena u okolini tacke a.Drugi slucaj je ako je funkcija f neogranicena u nekoj okolini tacke c ∈ (a, b),tada se definise

∫ b

a

f(x)dx = limε → 0+µ → 0+

(∫ c−ε

a

f(x)dx +∫ b

c+µ

f(x)dx

).

Page 106: 81932337 Etf Analiza Zoran Mitrovic

106 GLAVA 4. INTEGRALNI RACUN

Granicna vrijednost

v.p.

∫ b

a

f(x)dx = limε→0+

(∫ c−ε

a

f(x)dx +∫ b

c+ε

f(x)dx

),

se naziva glavna vrijednost ( valeur principale) nesvojstvenog integrala.

Primjer 4.24. Izracunati integral∫ 2

1

x− 2√x− 1

dx.

Rjesenje. Vrijedi sljedece∫ 2

1

x− 2√x− 1

dx =∫ 2

1

x− 1√x− 1

dx−∫ 2

1

dx√x− 1

=∫ 2

1

√x− 1dx−

∫ 2

1

dx√x− 1

.

Dalje je∫ 2

1

√x− 1dx =

(x− 1)32

32

∣∣∣∣∣

2

1

=23,

∫ 2

1

dx√x− 1

= limε→0

∫ 2

1+ε

dx√x− 1

= limε→0

2(1−√

(1 + ε)− 1) = 2,

pa je ∫ 2

1

x− 2√x− 1

dx =23− 2 = −4

3.

Navedimo jos primjer koji pokazuje da se uvodjenjem pojma glavne vri-jednosti nesvojstvenog integrala prosiruje klasa funkcija za koju nesvojstveniintegral konvergira.

Primjer 4.25. Pokazati da je∫ 1

−1

1x

dx divergentan integral ali da je

v.p.

∫ 1

−1

1x

dx = 0

Rjesenje. Kako je∫ −ε

−1

1x

dx +∫ 1

µ

1x

dx = ln ε− ln µ,

granicna vrijednost

limε → 0+µ → 0+

(∫ −ε

−1

1x

dx +∫ 1

µ

1x

dx

),

ne postoji, ali je

v.p.

∫ 1

−1

1x

dx = limε→0

(ln ε− ln ε) = 0.

Page 107: 81932337 Etf Analiza Zoran Mitrovic

4.4. PRIMJENE ODREDJENOG INTEGRALA U GEOMETRIJI 107

4.4 Primjene odredjenog integrala u geometriji

4.4.1 Povrsina figure u ravni

Neka je funkcija f nenegativna i neprekidna na [a, b]. Iz definicije odredjenogintegrala slijedi da je povrsina krivolinijskog trapeza funkcije f nad intervalom[a, b] data formulom

P =∫ b

a

f(x)dx.

Iz ove formule neposredno slijedi da ako su funkcije f i g neprekidne na intervalu[a, b] i f(x) ≤ g(x) za sve x ∈ [a, b], da je povrsina oblasti

{(x, y) : a ≤ x ≤ b, f(x) ≤ y ≤ g(x)},data sa

P =∫ b

a

(g(x)− f(x))dx.

Primjer 4.26. Izracunati povrsinu figure ogranicenu pravom y = x i parabolomy = 2− x2.Rjesenje. Odredicemo apscise presjecnih tacaka date prave i parabole, tako stocemo rijesiti sistem jednacina

y = x

y = 2− x2.

Trazene apscise su x1 = −2 i x2 = 1. To su i granice integracije. Trazenapovrsina je

∫ 1

−2

[(2− x2)− x]dx =(

2x− x3

3− x2

2

)∣∣∣∣1

−2

=92.

4.4.2 Duzina luka krive

Ovde razmatramo problem izracunavanja duzine luka krive. Taj problem senaziva i rektifikacija. Moze se pokazati da za svaku krivu nije moguce odreditiduzinu luka krive izmedju odredjenih tacaka. Krive za koje je to moguce uraditizovu se rektifikabilne krive.Koristeci definiciju odredjenog integrala i teoremu o srednjoj vrijednosti mozese dokazati sljedeca teorema.

Teorema 4.9. Neka funkcija f ima neprekidan prvi izvod na intervalu [a, b].Duzina luka krive izmedju tacaka cije su apscise a i b jednaka je

l =∫ b

a

√1 + f ′2(x)dx. (4.9)

Ako je kriva zadata parametarskim jednacinama

x = x(t), y = y(t), α ≤ t ≤ β,

Page 108: 81932337 Etf Analiza Zoran Mitrovic

108 GLAVA 4. INTEGRALNI RACUN

gdje su izvodi x i y neprekidne funkcije, tada je duzina luka krive jednaka

l =∫ β

α

√x2(t) + y2(t)dt. (4.10)

Primjer 4.27. Naci duzinu luka krive

y =x2

4− ln x

2,

od tacke x = 1 do tacke x = e.Rjesenje. Koristimo formulu (4.9),

l =∫ e

1

√1 + y′2(x)dx =

∫ e

1

√1 +

14

(x− 1

x

)2

dx =12

∫ e

1

(1x

+ x

)dx

=12

(ln x +

x2

2

)∣∣∣∣e

1

=1 + e2

4.

4.4.3 Zapremina i povrsina obrtnog tijela

Teorema 4.10. Neka je kriva y = f(x) neprekidna na [a, b]. Zapremina tijelanastalog obrtanjem krive y = f(x) oko x−ose nad intervalom [a, b] je

V = π

∫ b

a

f2(x)dx, (4.11)

a povrsina omotaca ovog tijela je

S = 2π

∫ b

a

f(x)√

1 + f ′2(x)dx. (4.12)

Primjer 4.28. Izracunati zapreminu i povrsinu lopte poluprecnika R.Rjesenje. Tijelo koje nastaje obrtanjem krive

y =√

R2 − x2, −R ≤ x ≤ R,

predstavlja loptu poluprecnika R. Iz formule (4.11) dobijamo

V = π

∫ R

−R

(R2 − x2)dx = π

(R2x− x3

3

)∣∣∣∣R

−R

=4R3π

3.

Kako jey′ = − x√

R2 − x2,

√1 + y′2 =

R√R2 − x2

,

za povrsinu omotaca vrijedi

S = 2π

∫ R

−R

√R2 − x2

R√R2 − x2

dx = 2πR

∫ R

−R

dx = 4R2π.

Page 109: 81932337 Etf Analiza Zoran Mitrovic

4.5. ZADACI 109

4.5 Zadaci

1. Izracunati integrale : (i)∫

x2 + 2x2(x2 + 4)

dx, (ii)∫

(a45 − x

45 )dx,

(iii)∫

1 + cos 2x

cos xdx, (iv)

∫dx

sin2 x cos2 x.

2. Koristeci smjenu izracunati integrale :

(i)∫

dx

1 +√

x + 3, (ii)

∫exdx

4 + 5ex,

(iii)∫

dx

x ln7 x, (iv)

∫x + 1√1 + x2

dx.

3. Metodom parcijalne integracije izracunati integrale :

(i)∫

(x2 − x + 2)exdx, (ii)∫ √

x ln x,

(iii)∫

sin x ln(cos x)dx.

4. Izvesti rekurentne formule za integrale :

(i)In =∫

sinn xdx, (ii)Jn =∫

xne−xdx.

5. Rastavljanjem na parcijalne razlomke podintegralne funkcije izracunatiintegrale :

(i)∫

2x4 − x2 + 1x3 − x

dx, (ii)∫

x2 − 3x2 − 1

dx,

(iii)∫

11x + 16(x− 1)(x + 2)2

dx, (iv)∫

x2 − 2x3(x + 2)2

dx.

6. Izracunati integrale sljedecih iracionalnih funkcija :

(i)∫

dx

x11(√

x4 + 1)2, (ii)

∫ 3√

1 + 4√

x√x

dx,

(iii)∫

dx

x +√

x2 + x + 1dx, (iv)

∫x2 + 4x

x +√

x2 + 2x + 2dx.

7. Naci integrale trigonometrijskih funkcija

(i)∫

sin3 x

cos2 xdx, (ii)

∫sin 6x cos 4xdx.

8. Koristeci definiciju odredjenog integrala izracunati

(i)∫ 1

0

x2dx, (ii)∫ π

2

0

cos xdx.

9. Koristeci definiciju odredjenog integrala naci granicne vrijednosti

(i) limn→+∞

(1

n + 1+

1n + 2

+ · · ·+ 1n + n

), (ii) lim

n→+∞1n

(e

1n + e

2n + · · ·+ e

nn

),

(iii) limn→+∞

1 + 3√

2 + 3√

3 + · · ·+ 3√

n3√

n4.

Page 110: 81932337 Etf Analiza Zoran Mitrovic

110 GLAVA 4. INTEGRALNI RACUN

10. Koristeci nejednakosti

x− x3

6≤ sinx ≤ x, x ≥ 0,

pokazati da je20√

221

≤∫ 2

0

sin x√x≤ 4

√2

3.

11. Pokazati da je

e−1e ≤

∫ 1

0

xxdx ≤ 1.

12. Pokazati da je ∫ b

a

|x|x

dx = |b| − |a|.

Koristeci Newton-Leibnizovu formulu izracunati integrale :

13.∫ 3√e

1

dx

x√

1− ln2 x.

14.∫ 2

1

ex

ex − 1dx.

15. Izracunati integral∫ 3

0

|2− x|dx.

Izracunati nesvojstvene integrale

16.∫ 2

0

dx3√

(x− 1)2.

17.∫ 6

3

xdx4√

x2 − 9.

18.∫ 2

0

dx

x√

ln x.

19.∫ π

2

0

ln sin xdx.

Ispitati konvergenciju nesvojstvenih integrala

20.∫ 1

0

dx

ex − sin x.

21.∫ 2

1

dx

x lnp x.

22. Γ(p) =∫ +∞

0

xp−1e−xdx. (Gama funkcija.)

Page 111: 81932337 Etf Analiza Zoran Mitrovic

4.5. ZADACI 111

23. B(p, q) =∫ 1

0

xp−1(1− x)q−1dx. (Beta funkcija.)

24. Izracunati povrsinu figure ogranicenu parabolom y = x2 + 1 i pravomx + y = 3.

25. Naci duzinu krive y = x2 − 1 od tacke x = −1 do tacke x = 1.

26. Izracunati povrsinu tijela nastalog obrtanjem oko x−ose povrsi ograniceneparabolom y = x2 + 1 i pravom y = x− 1.

Page 112: 81932337 Etf Analiza Zoran Mitrovic

112 GLAVA 4. INTEGRALNI RACUN

Page 113: 81932337 Etf Analiza Zoran Mitrovic

Glava 5

Redovi

5.1 Numericki redovi

5.1.1 Osnovni pojmovi

Definicija 5.1. Neka je dat niz {an} i neka je Sn =n∑

k=1

ak. Uredjen par

({an}, {Sn}) se naziva red, an je opsti clan reda, a Sn je n−ta parcijalnasuma reda.Zbir S reda se definise sa

S = limn→+∞

Sn = limn→+∞

n∑

k=1

ak.

Ako postoji konacan limn→+∞

Sn kazemo da je red konvergentan i da je S suma

reda. To oznacavamo sa

S =+∞∑

k=1

ak.

Za red koji nije konvergentan kazemo da je divergentan.

Primjedba 5.1. Uobicajeno je da se za red koristi ista oznaka kao i za sumu reda

to jest+∞∑

k=1

ak.

Kako konacno mnogo clanova niza ne utice na konvergenciju niza, to iz definicijezakljucujemo da konacno mnogo clanova reda ne utice na konvergenciju reda.

Primjer 5.1. Pokazati da red

+∞∑

k=1

1k(k + 1)

113

Page 114: 81932337 Etf Analiza Zoran Mitrovic

114 GLAVA 5. REDOVI

konvergira i naci sumu reda.Rjesenje. Za opsti clan reda vrijedi

ak =1k− 1

k + 1,

pa za n−tu parcijalnu sumu reda imamo

Sn =n∑

k=1

1k(k + 1)

=(

1− 12

)+

(12− 1

3

)+ · · ·+

(1n− 1

n + 1

)

= 1− 1n + 1

=n

n + 1.

Dakle,lim

n→+∞Sn = 1,

pa je dati red konvergentan i suma mu je jednaka 1.

Primjer 5.2. Pokazati da je harmonijski red+∞∑

k=1

1k

divergentan.

Rjesenje. U primjeru 2.16 je pokazano da je niz {Sn} definisan sa

Sn =n∑

k=1

1k

divergentan, a odavde slijedi divergencija datog reda.

Ako je red+∞∑

k=1

ak konvergentan onda za niz njegovih parcijalnih suma

{Sn} vrijedilim

n→+∞Sn = lim

n→+∞Sn−1 = S,

gdje je S neki realan broj. Dakle,

limn→+∞

(Sn − Sn−1) = 0,

to jestlim

n→+∞an = 0.

Na taj nacin smo dobili potreban uslov za konvergenciju redova.

Teorema 5.1. Potreban uslov da red+∞∑n=1

an konvergira je limn→+∞

an = 0.

Primjer 5.3. Red+∞∑n=1

n√

n je divergentan, jer na osnovu primjera 2.11 je

limn→+∞

n√

n = 1, pa nije ispunjen potreban uslov za konvergenciju.

Page 115: 81932337 Etf Analiza Zoran Mitrovic

5.1. NUMERICKI REDOVI 115

Primjedba 5.2. Primjer 5.2 pokazuje da uslov

limn→+∞

an = 0

nije dovoljan uslov za konvergenciju reda.

Primjer 5.4. Red+∞∑n=1

qn−1

se naziva geometrijski red. U slucaju da je q = 1, opsti clan reda ne tezi nulikad n → +∞, pa dati red konvergira. Ako je q 6= 1, za njegove parcijalne sumeimamo

Sn = 1 + q + q2 + · · ·+ qn−1 =1− qn

1− q.

Ako je |q| < 1 red je konvergentan i njegova suma S =1

1− q. Ako je q > 1 je

limn→+∞

qn = +∞, pa je red divergentan. Za q < −1 ne postoji limn→+∞

qn, pa je

red divergentan.

Ako je red ({an}, {Sn}) kovergentan i njegova suma S, tada vrijedi

S = Sn + rn, (5.1)

gdje je rn definisan sa

rn =+∞∑

k=n+1

ak

i naziva se ostatak reda poslije n−tog clana. Iz relacije (5.1) zakljucujemo daje lim

n→+∞rn = 0. Dakle, imamo sljedecu teoremu.

Teorema 5.2. Neka je rn ostatak konvergentnog reda poslije n−tog clana. Tadaje lim

n→+∞rn = 0.

Vidjeli smo da je dati red konvergentan ako i samo ako je konvergentan niznjegovih parcijalnih suma. Koristeci Kosijev kriterijum konvergencije za nizovedobijamo Kosijev kriterijum konvergencije za redove.

Teorema 5.3. Red ({an}, {Sn}) je konvergentan ako i samo ako vrijedi

(∀ε > 0) (∃n0 > 0) (∀n ≥ n0)(∀p ∈ N) |Sn+p − Sn| < ε.

Primjer 5.5. Pokazati da je red

+∞∑n=1

cos n

n2

Page 116: 81932337 Etf Analiza Zoran Mitrovic

116 GLAVA 5. REDOVI

konvvergentan.Rjesenje. Odredicemo broj n0 takav da za svaki n ≥ n0 i svaki p ∈ N, vrijedi|Sn+p − Sn| < ε. Imamo

|Sn+p − Sn| =∣∣∣∣cos(n + 1)(n + 1)2

+cos(n + 2)(n + 2)2

+ · · ·+ cos(n + p)(n + p)2

∣∣∣∣ ≤

≤ 1(n + 1)2

+ ≤ 1(n + 2)2

+ · · ·+ ≤ 1(n + p)2

<

<1

n(n + 1)+

1(n + 1)(n + 2)

+ · · ·+ 1(n + p− 1)(n + p)

=1n− 1

n + p<

1n

.

Dakle,

|Sn+p − Sn| < 1n

,

pa je dovoljno uzeti

n0 =⌊

⌋+ 1.

Teorema 5.4. Neka su+∞∑n=1

an i+∞∑n=1

bn konvergentni. Tada vrijedi

• red+∞∑n=1

(an + bn) je konvergentan i+∞∑n=1

(an + bn) =+∞∑n=1

an ++∞∑n=1

bn,

• red+∞∑n=1

λan je konvergentan i+∞∑n=1

λan = λ

+∞∑n=1

an, za svaki λ ∈ R.

Dokaz. Neka su S1n i S1

n parcijalne sume redova+∞∑n=1

an i+∞∑n=1

bn redom. Dokaz

slijedi iz cinjenice da

limn→+∞

S1n = S1 i lim

n→+∞S2

n = S2

impliciralim

n→+∞(S1

n + S2n) = S1 + S2

ilim

n→+∞λS1

n = λS1.

Page 117: 81932337 Etf Analiza Zoran Mitrovic

5.1. NUMERICKI REDOVI 117

5.1.2 Redovi sa pozitivnim clanovima

U ovoj sekciji posmatramo redove sa pozitivnim clanovima, to jest redove+∞∑n=1

an za koje je an > 0 za svaki n ∈ N. Za parcijalne sume Sn reda sa pozitivnim

clanovima vrijedi

• Sn > 0 za svaki n ∈ N,

• Sn+1 = Sn + an+1 > Sn za svaki n ∈ N.

Dakle, niz {Sn} je monotono rastuci. Ako je on ogranicen odozgo onda je ikonvergentan. Ako niz parcijalnih suma pozitivnog reda nije ogranicen odozgoonda je lim

n→+∞Sn = +∞. Na taj nacin smo dokazali sljedecu teoremu.

Teorema 5.5. Red sa pozitivnim clanovima je konvergentan ako i samo ako jeniz njegovih parcijalnih suma ogranicen odozgo.

Primjer 5.6. Pokazati da je red

+∞∑n=1

12n√

1 + n

konvergentan.Rjesenje. Pokazacemo da je niz parcijalnih suma {Sn} ogranicen odozgo.Imamo

Sn =1

2√

2+

122√

3+ · · ·+ 1

2n√

1 + n<

<12

+122

+ · · ·+ 12n

= 1− 12n

< 1.

Teorema 5.6. Prvi poredbeni kriterijum. Neka su+∞∑n=1

an i+∞∑n=1

bn redovi sa

pozitivnim clanovima i an ≤ bn za svaki n ∈ N. Tada iz konvergencije reda+∞∑n=1

bn

slijedi konvergencija reda+∞∑n=1

an, a iz divergencije reda+∞∑n=1

an slijedi divergencija

reda+∞∑n=1

bn.

Dokaz. Neka su S1n i S1

n parcijalne sume redova+∞∑n=1

an i+∞∑n=1

bn redom. Ako

je an ≤ bn za svaki n ∈ N tada je S1n ≤ S2

n, pa ako je niz {S2n} ogranicen

odozgo onda je takav i niz {S1n} to jest ako je red

+∞∑n=1

bn konvergentan takav je

Page 118: 81932337 Etf Analiza Zoran Mitrovic

118 GLAVA 5. REDOVI

i red+∞∑n=1

an. S druge strane iz limn→+∞

S1n = +∞ slijedi lim

n→+∞S2

n = +∞, pa iz

divergencije reda+∞∑n=1

an slijedi divergencija reda+∞∑n=1

bn.

Na slican nacin se mogu dokazati i sljedece teoreme.

Teorema 5.7. Drugi predbeni kriterijum. Neka su+∞∑n=1

an i+∞∑n=1

bn redovi

sa pozitivnim clanovima. Ako postoji K > 0 takav da je limn→+∞

an

bn= K tada su

redovi+∞∑n=1

an i+∞∑n=1

bn ekvikonvergentni, to jest oba reda su ili konvergentna

ili divergentna.

Teorema 5.8. Treci predbeni kriterijum. Neka su+∞∑n=1

an i+∞∑n=1

bn redovi sa

pozitivnim clanovima. Ako je limn→+∞

an

bn= 0 tada iz konvergencije reda

+∞∑n=1

bn

slijedi konvergencija reda+∞∑n=1

an, a iz divergencije reda+∞∑n=1

an slijedi divergencija

reda+∞∑n=1

bn.

Primjer 5.7. Ispitati konvergenciju sljedecih redova :

(i)+∞∑n=1

2√n(n + 1)

, (ii)+∞∑n=1

1n2 + 10n + 100

, (iii)+∞∑n=1

sin2 1n

.

Rjesenje. (i) Kako je2√

n(n + 1)≥ 1

n

na osnovu prvog poredbenog kriterijuma i cinjenice da je+∞∑n=1

1n

divergentan red

dobijamo da je dati red divergentan.(ii) Vrijedi

limn→+∞

1n2+10n+100

1n(n+1)

= 1,

pa kako je red+∞∑n=1

1n(n + 1)

konvergentan, na osnovu drugog poredbenog krite-

rijuma zakljucujemo da se radi o konvergentnom redu.

Page 119: 81932337 Etf Analiza Zoran Mitrovic

5.1. NUMERICKI REDOVI 119

(iii) Red je konvergentan. Naime,

limn→+∞

1n2

sin2 1n

= 1,

a red+∞∑n=1

1n2

je konvergentan.

Teorema 5.9. Integralni kriterijum. Neka je f neprekidna, pozitivna imonotono nerastuca funkcija na [1,+∞). Tada su

∫ +∞

1

f(x)dx i+∞∑n=1

f(n)

ekvikonvergentni.

Dokaz. Vrijedi sljedece∫ n

1

f(x)dx =∫ 2

1

f(x)dx +∫ 3

2

f(x)dx + · · ·+∫ n

n−1

f(x)dx.

Kako je funkcija f monotono nerastuca dobijamo

f(k) ≤∫ k

k−1

f(x)dx ≤ f(k − 1), k = 2, 3, . . . , n.

Sada imamo

f(2) + f(3) + · · ·+ f(n) ≤∫ n

1

f(x)dx ≤ f(1) + f(2) + · · ·+ f(n− 1),

odakle zakljucujemo da su

∫ +∞

1

f(x)dx i+∞∑n=1

f(n)

ekvikonvergentni.

Primjer 5.8. Kako je prema primjeru 4.20 integral∫ +∞

1

dx

xpkonvergentan za

p > 1, a divergentan za p ≤ 1, zakljucujemo da je hiperharmonijski red+∞∑n=1

1np

, konvergentan za p > 1, a divergentan za p ≤ 1.

Teorema 5.10. Dalamberov kriterijum. Neka je+∞∑n=1

an red sa pozitivnim

clanovima. Ako postoji limn→+∞

an+1

an= L, tada vrijedi

Page 120: 81932337 Etf Analiza Zoran Mitrovic

120 GLAVA 5. REDOVI

• ako je L < 1 red+∞∑n=1

an je konvergentan,

• ako je L > 1 red+∞∑n=1

an je divergentan,

• ako je L = 1 red+∞∑n=1

an moze da bude konvergentan ili divergentan.

Dokaz. Neka je limn→+∞

an = L < 1, tada postoji ε > 0 takav da je L + ε < 1. Za

takav ε > 0 postoji n0 ∈ N takav da je∣∣∣∣an+1

an− L

∣∣∣∣ < ε za sve n ≥ n0.

Neka je q = L + ε. Imamo sljedecean+1

an< q za sve n ≥ n0,

pa matematckom indukcijom dobijamo

an+1 <an0

qn0qn+1 za sve n ≥ n0.

Sada na osnovu prvog poredbenog kriterijuma zakljucujemo da je dati red kon-vergentan.Ako je L > 1 tada se na slican nacin moze pokazati da postoji n0 ∈ N takav daje

an+1

an≥ 1 za sve n ≥ n0,

pa zakljucujemo da opsti clan ne tezi 0 kad n → +∞. Dakle, nije ispunjenpotreban uslov za konvegenciju redova.

Da za L = 1 red moze da konvergira slijedi iz primjera+∞∑n=1

1n2

, a da moze da

divergira pokazuje primjer+∞∑n=1

1n

.

Primjer 5.9. Pokazati da je red+∞∑n=1

n!nn

, konvergentan.

Rjesenje. Kako je

an+1

an=

(n + 1)!(n + 1)n+1

· nn

n!=

nn

(n + 1)n=

1(1 + 1

n

)n ,

zakljucujemo da je

limn→+∞

an+1

an=

1e

< 1,

pa je prema Dalamberovom kriterijumu dati red konvergentan.

Page 121: 81932337 Etf Analiza Zoran Mitrovic

5.1. NUMERICKI REDOVI 121

Na slican nacin kao Dalamberov kriterijum se moze dokazati i sljedeci kri-terijum.

Teorema 5.11. Kosijev kriterijum. Neka je+∞∑n=1

an red sa pozitivnim clanovima.

Ako postoji limn→+∞

n√

an = L, tada vrijedi

• ako je L < 1 red+∞∑n=1

an je konvergentan,

• ako je L > 1 red+∞∑n=1

an je divergentan,

• ako je L = 1 red+∞∑n=1

an moze da bude konvergentan ili divergentan.

Primjer 5.10. Pokazati da je red+∞∑n=1

(n2 + 1

n2 + n + 1

)n2

konvergentan.

Rjesenje. Kako je

n√

an =(

n2 + 1n2 + n + 1

)n

=(

1− n

n2 + n + 1

)n

,

zakljucujemo da je

limn→+∞

n√

an =1e

< 1,

pa je prema Kosijevom kriterijumu dati red konvergentan.

5.1.3 Alternativni redovi

Definicija 5.2. Red oblika+∞∑n=1

(−1)nan,

gdje je an > 0 za svaki n ∈ N, nazivamo alternativni red.

Moze se pokazati da vrijedi sljedeca teorema.

Teorema 5.12. Lajbnicov kriterijum. Ako niz {an} monotono opada i

limn→+∞

an = 0, tada alternativni red+∞∑n=1

(−1)n−1an, konvergira.

Primjer 5.11. Red+∞∑n=1

(−1)n−1 1n

, konvergira jer niz1n

, n ∈ N monotono

opada i tezi nuli.

Page 122: 81932337 Etf Analiza Zoran Mitrovic

122 GLAVA 5. REDOVI

Za priblizno izracunavanje sume alternativnog reda od koristi je sljedecateorema.

Teorema 5.13. Neka niz {an} monotono opada i limn→+∞

an = 0, tada je

|rn| =∣∣∣∣∣

+∞∑

k=n+1

(−1)k−1ak

∣∣∣∣∣ < an+1 i sgnrn = (−1)n.

Primjer 5.12. Koliko clanova reda+∞∑n=1

(−1)n−1

n2treba sabrati da bi se njegova

suma izracunala sa tacnoscu do 10−2.Rjesenje. Prema prethodnoj teoremi za ostatak datog reda vrijedi

|rn| < 1(n + 1)2

,

pa je nejednakost

|rn| < 1102

ispunjena ako je n + 1 > 10, to jest n > 9.

Definicija 5.3. Za red+∞∑n=1

an kazemo da je apsolutno konvergentan ako

red+∞∑n=1

|an| konvergira. Ako red+∞∑n=1

an konvergira, ali ne konvergira apsolutno

kazmo da je uslovno konvergentan.

Primjer 5.13. Red+∞∑n=1

(−1)n−1 1n2

je apsolutno konvergentan, a red

+∞∑n=1

(−1)n−1 1n

je uslovno konvergentan.

Teorema 5.14. Ako je red apsolutno konvergentan tada je on i konvergentan.

Dokaz. Tvrdjenje slijedi iz Kosijevog kriterijuma za konvergenciju i uopstenenejednakosti trougla

|an+1 + an+2 + · · ·+ an+p| ≤ |an+1|+ |an+2|+ · · ·+ |an+p|.

Primjetimo da ako je red konvergentan on ne mora biti i apsolutno konver-gentan. Za apsolutno konvergentne redove vrijedi sljedeca teorema.

Teorema 5.15. Ako je red+∞∑n=1

an apsolutno konvergentan i funkcija s : N→ N

bijekcija tada je+∞∑n=1

an =+∞∑n=1

as(n).

Page 123: 81932337 Etf Analiza Zoran Mitrovic

5.2. FUNKCIONALNI NIZOVI I REDOVI 123

5.2 Funkcionalni nizovi i redovi

5.2.1 Funkcionalni nizovi

Definicija 5.4. Preslikavanje definisano na skupu N kod koga je slika za svakin ∈ N neka funkcija definisana na skupu X nazivamo funkcionalnim nizom ioznacavamo sa {fn(x)}, x ∈ X, ili krace {fn}.

Kod funkcionalnih nizova imamo dvije vrste konvergencije. To je obicna iuniformna konvegencija.

Definicija 5.5. Funkcionalni niz {fn(x)}, x ∈ X obicno konvergira na skupuX ka funkciji f : X → R ako za svako x ∈ X vrijedi

f(x) = limn→+∞

fn(x).

Primjer 5.14. Funkcionalni niz {fn(x)} definisan sa

fn(x) =

√x2 +

1n2

, x ∈ R,

obicno konvergira ka funkciji f(x) = |x| na skupu R.

Definicija 5.6. Funkcionalni niz {fn(x)}, x ∈ X uniformno konvergira naskupu X ka funkciji f : X → R ako vrijedi

(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀x ∈ X) |fn(x)− f(x)| < ε.

Primjer 5.15. Funkcionalni niz {fn(x)} definisan sa

fn(x) =1

x2 + n2, x ∈ R,

uniformno konvergira ka funkciji f(x) = 0 na skupu R.Rjesenje. Neka je dat ε > 0. Iz nejednakosti

|fn(x)− f(x)| ≤ 1n2

,

zakljucujemo da za n0 =⌊

1√ε

⌋+ 1 vrijedi

(∀n ≥ n0)(∀x ∈ R) |fn(x)− f(x)| < ε.

Za ispitivanje uniformne konvergencije cesto se koriste sljedeci kriterijumi.

Teorema 5.16. Vajerstrasov kriterijum. Niz funkcija {fn} uniformno ko-nvergira ka funkciji f na skupu X ako i samo ako postoji niz realnih brojeva{cn} koji ne zavisi od x ∈ X, takav da je lim

n→+∞cn = 0 i

|fn(x)− f(x)| ≤ cn za sve x ∈ X, n ∈ N.

Page 124: 81932337 Etf Analiza Zoran Mitrovic

124 GLAVA 5. REDOVI

Teorema 5.17. Kosijev kriterijum. Niz funkcija {fn} uniformno konvergiraka funkciji f na skupu X ako i samo ako

(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀p ∈ N)(∀x ∈ X) |fn+p(x)− fn(x)| < ε.

Teorema 5.18. Niz funkcija {fn} uniformno konvergira ka funkciji f na skupuX ako i samo ako je

limn→+∞

supx∈X

|fn(x)− f(x)| = 0.

Primjer 5.16. Ispitati obicnu i uniformnu konvergenciju niza funkcija

fn(x) =nx

1 + n2x2, x ∈ [0, 1].

Rjesenje. Imamo

limn→+∞

nx

1 + n2x2= 0, za sve x ∈ [0, 1],

pa dati niz funkcija obicno konvergira ka funkciji f(x) = 0, x ∈ [0, 1]. Ispitajmouniformnu konvergenciju. Vrijedi

supx∈[0,1]

|fn(x)− f(x)| = maxx∈[0,1]

fn(x),

jer je funkcija fn neprekidna, pa na intervalu [0, 1] dostize maksimum. Taj

maksimum se dostize za x =1n

. Dakle,

supx∈[0,1]

|fn(x)− f(x)| = fn

(1n

)=

126= 0,

pa zakljucujemo da niz funkcija ne konvergira uniformno.

Na kraju navedimo neke osobine uniformno konvergentnih nizova.

Teorema 5.19. Osobine uniformno konvergentnih nizova.

• Ako niz neprekidnih funkcija {fn} uniformno konvergira na skupu X kafunkciji f tada za svaki x0 ∈ X vrijedi

limn→+∞

(lim

x→x0fn(x)

)= lim

x→x0

(lim

n→+∞fn(x)

).

• Ako niz neprekidnih funkcija {fn} uniformno konvergira na intervalu [a, b]ka funkciji f tada vrijedi

limn→+∞

(∫ x

a

fn(t)dt

)=

∫ x

a

(lim

n→+∞fn(t)

)dt, x ∈ [a, b].

Page 125: 81932337 Etf Analiza Zoran Mitrovic

5.2. FUNKCIONALNI NIZOVI I REDOVI 125

• Neka je {fn} niz neprekidno diferencijabilnih funkcija na [a, b]i neka niz{f ′n} uniformno konvergira na [a, b]. Ako postoji tacka c ∈ [a, b] takva daje niz {fn(c)} konvergentan tada i niz funkcija {fn} uniformno konvergirana [a, b] i vrijedi

limn→+∞

f′n(x) =

(lim

n→+∞fn(x)

)′

, x ∈ [a, b].

Primjer 5.17. Izracunati

limn→+∞

∫ 1

0

1x2 + n2

dx.

Rjesenje.

U primjeru 5.15 smo ustanovili da niz

un(x) =1

x2 + n2,

konvergira uniformno na skupu R, pa prema tome i na [0, 1]. Dakle,

limn→+∞

∫ 1

0

1x2 + n2

dx =∫ 1

0

(lim

n→+∞1

x2 + n2

)dx = 0.

5.2.2 Funkcionalni redovi

Definicija 5.7. Neka je dat niz funkcija {un(x)} definisanih na skupu X. Red

+∞∑n=1

un(x), x ∈ X,

naziva se funkcionalni red.

Definicija 5.8. Za red+∞∑n=1

un(x) kazemo da obicno (uniformno) konvergira

na skupu X ako niz njegovih parcijalnih suma Sn(x) obicno (uniformno) konve-rgira ka sumi S(x) ovog reda na skupu X.

Kao posljedicu kriterijuma za uniformnu konvergenciju funkcionalnih nizovadobijamo kriterijume za unformnu konvergenciju funkcionalnih redova.

Teorema 5.20. Vajerstrasov kriterijum. Ako postoji konvergentan brojni

red+∞∑n=1

cn, cn > 0, za koji za sve x ∈ X i sve n ∈ N, vrijedi

|un(x)| ≤ cn,

Page 126: 81932337 Etf Analiza Zoran Mitrovic

126 GLAVA 5. REDOVI

onda funkcionalni red+∞∑n=1

un(x)

apsolutno i uniformno konvergira na skupu X.

Primjer 5.18. Ispitati uniformnu konvergenciju funkcionalnog reda

+∞∑n=1

n2

√n!

(xn +

1xn

),

12≤ |x| ≤ 2.

Rjesenje. Vrijedi∣∣∣∣xn +

1xn

∣∣∣∣ ≤ 2n + 2n = 2n+1, za sve12≤ |x| ≤ 2.

Dalje, red+∞∑n=1

n22n+1

√n!

,

konvergira na osnovu Dalamberovog kriterijuma, pa zakljucujemo da je dati reduniformno konvergentan.

Teorema 5.21. Kosijev kriterijum. Red+∞∑n=1

un(x)je uniformno konverge-

ntan na skupu X ako i samo ako

(∀ε > 0)(∃n0 ∈ N)(∀n ≥ n0)(∀p ∈ N)(∀x ∈ X) |un+1(x) + · · ·+ un+p(x)| < ε.

Teorema 5.22. Osobine uniformno konvergentnih redova.

• Neka je dat red neprekidnih funkcija koji uniformno konvergira na skupuX. Tada za svaki x0 ∈ X vrijedi

limx→x0

(+∞∑n=1

un(x)

)=

+∞∑n=1

un(x0).

• Ako su clanovi niza {un(x)} neprekidne funkcije na intervalu [a, b] i ako

red+∞∑n=1

un(x) uniformno konvergira na [a, b] tada i red

+∞∑n=1

∫ x

a

un(t)dt, x ∈ [a, b],

uniformno konvvergira na [a, b] i vrijedi

+∞∑n=1

∫ x

a

un(t)dt =∫ x

a

(+∞∑n=1

un(t)

)dt, x ∈ [a, b].

Page 127: 81932337 Etf Analiza Zoran Mitrovic

5.2. FUNKCIONALNI NIZOVI I REDOVI 127

• Neka je {un(x)} niz neprekidno diferencijabilnih funkcija na [a, b]i neka

red+∞∑n=1

un(x) uniformno konvergira na [a, b]. Ako postoji tacka c ∈ [a, b]

takva da je red+∞∑n=1

un(c) konvergentan tada i red+∞∑n=1

un(x) uniformno

konvergira na [a, b] i vrijedi

+∞∑n=1

u′n(x) =

(+∞∑n=1

un(x)

)′

, x ∈ [a, b].

5.2.3 Stepeni redovi

Definicija 5.9. Funkcionalni red

+∞∑n=0

anxn, an ∈ R, n = 0, 1, . . .

naziva se stepeni ili potencijalni red.

Primjer 5.19. Stepeni red+∞∑n=0

xn, je konvergentan za sve x ∈ R za koje je

|x| < 1. Za takve x dati red je i apsolutno konvergentan. Primjetimo da ako je0 ≤ r < 1 da je red na osnovu Vajerstrasovog kriterijuma uniformno konverge-ntan na skupu {x : |x| ≤ r}.

Prethodni primjer nam daje ideju za dokaz sljedece teoreme.

Teorema 5.23. Ako stepeni red+∞∑n=0

anxn, konvergira za neko x0 6= 0 tada on

apsolutno konvergira za svako x za koje je |x| < |x0| i uniformno konvergira naskupu {x : |x| ≤ r}, gdje je 0 ≤ r < |x0|.

Dokaz. Neka je x0 6= 0 takav da je red+∞∑n=0

anxn0 konvergentan. Potreban uslov

da red konvergira je da njegov opsti clan tezi nuli. Dakle, limn→+∞

anxn0 = 0. Iz

definicije granicne vrijednosti zakljucujemo da postoji M > 0 tako da je

|anxn0 | ≤ M za sve n ∈ N.

Sada je

|anxn| = |anxn0 |

∣∣∣∣x

x0

∣∣∣∣n

≤ M

∣∣∣∣x

x0

∣∣∣∣n

za sve n ∈ N.

Kako je+∞∑n=0

∣∣∣∣x

x0

∣∣∣∣n

,

Page 128: 81932337 Etf Analiza Zoran Mitrovic

128 GLAVA 5. REDOVI

konvergentan red, jer je∣∣∣∣

x

x0

∣∣∣∣ < 1,na osnovu prvog poredbenog kriterijuma za-

kljucujemo i da je red+∞∑n=0

|anxn|, konvergentan, to jest red+∞∑n=0

anxn, apsolutno

konvergentan.

Neka je 0 ≤ r < |x0|. Pokazimo da je red+∞∑n=0

anxn, uniformno konvergentan na

skupu {x : |x| ≤ r}. Neka x ∈ {x : |x| ≤ r}. Tada je

|anxn| ≤ |an|rn za sve n ∈ N.

Red+∞∑n=0

|an|rn je konvergentan, na osnovu prethodnog dijela dokaza, pa sada

na osnovu Vajerstrasovog kriterijuma red uniformno konvergira na skupu{x : |x| ≤ r}.

Posljedica 5.1. Ako stepeni red+∞∑n=0

anxn divergira u tacki x0, tada dati red

divergira za svako x za koje je |x| > |x0|.

Definicija 5.10. Realan broj R > 0 takav da stepeni red+∞∑n=0

anxn konvergira,

za svako x iz skupa {x : |x| < R}, a divergira za svako x iz skupa {x : |x| > R}

se naziva poluprecnik konvergencije stepenog reda+∞∑n=0

anxn.

Iz teoreme 5.23 dobijamo sljedecu teoremu.

Teorema 5.24. Ako je R poluprecnik konvegencije reda+∞∑n=0

anxn tada red apso-

lutno konvergira na (−R,R), a divergira za |x| > R i red uniformno konvergirana [−r, r] za svaki r ∈ (0, R).

Iz Dalamberovog i Kosijevog kriterijuma dobijamo postupak za odredjivanjepoluprecnika konvergencije stepenog reda.

Teorema 5.25. Poluprecnik konvegencije stepenog reda+∞∑n=0

anxn dat je sa

R = limn→+∞

∣∣∣∣an

an+1

∣∣∣∣

iliR = lim

n→+∞1

n√|an|

.

Page 129: 81932337 Etf Analiza Zoran Mitrovic

5.2. FUNKCIONALNI NIZOVI I REDOVI 129

Primjer 5.20. Odrediti poluprecnik konvergencije reda

+∞∑n=1

(n!)2

(2n)!xn.

Rjesenje. Imamo ∣∣∣∣an

an+1

∣∣∣∣ =(2n + 2)(2n + 1)

(n + 1)2,

pa je

R = limn→+∞

∣∣∣∣an

an+1

∣∣∣∣ = 4.

Definicija 5.11. Neka je funkcija f definisana u nekoj okolini nule i neka po-stoje svi izvodi funkcije f u nuli. Stepeni red

+∞∑n=1

f (n)(0)n!

xn

nazivamo Maklorenovim redom funkcije f .

Koristeci osobine uniformno konvergentnih redova (teorema 5.22) moze sedobiti sljedeca teorema.

Teorema 5.26. Ako je

f(x) =+∞∑n=0

anxn, −R < x < R

tada je

an =f (n)(0)

n!, n = 0, 1, . . .

Na kraju, dajemo neke funkcije predstavljene pomocu stepenog reda

• 11− x

=+∞∑n=0

xn, −1 < x < 1,

• 11 + x

=+∞∑n=0

(−1)nxn, −1 < x < 1,

• ln(1 + x) =+∞∑n=0

(−1)n xn+1

n + 1, −1 < x ≤ 1,

• ex =+∞∑n=0

xn

n!, −∞ < x < ∞,

Page 130: 81932337 Etf Analiza Zoran Mitrovic

130 GLAVA 5. REDOVI

• sin x =+∞∑n=0

(−1)n x2n+1

(2n + 1)!, −∞ < x < ∞,

• cos x =+∞∑n=0

(−1)n x2n

(2n)!, −∞ < x < ∞,

• arctg x =+∞∑n=0

(−1)n x2n+1

2n + 1, −1 < x ≤ 1.

Page 131: 81932337 Etf Analiza Zoran Mitrovic

5.3. ZADACI 131

5.3 Zadaci

1. Koristeci definiciju, ispitati konvergenciju redova i naci njihove sume :

(i)+∞∑n=1

1(n + 1)(n + 3)

, (ii)+∞∑n=1

1n(n + 1)(n + 2)

.

2. Ispitati konvergenciju sljedecih redova :

(i)+∞∑n=1

n2

3n, (ii)

+∞∑n=1

3−n

(n + 1

n

)n2

, (iii)+∞∑n=1

(n!)2

(2n)!.

3. Ispitati apsolutnu i uslovnu konvergenciju redova :

(i)+∞∑n=1

(−1)n 1n ln n

, (ii)+∞∑n=1

(−1)n sinπ√n

, (iii)+∞∑n=1

(−1)n (n!)2

(2n)!.

4. Pokazati da je red∞∑

n=1

sin(π√

n2 + a2) konvergentan za svaki a ∈ R.

Odrediti a ∈ R za koje je red i apsolutno konvergentan.

5. Naci oblast konvergencije redova :

(i)+∞∑n=1

1nx

, (ii)+∞∑n=1

(−1)n 1nx

, (iii)+∞∑n=1

sin nx

n2.

6. Koristeci Kosijev kriterijum konvergencije pokazati da je red+∞∑n=1

sinnx

n(n + 1),

konvergentan.

7. Ispitati uniformnu konvergenciju funkcionalnih nizova :

(i) fn(x) =1

x + n, x > 0, (ii) fn(x) = xn − xn+1, 0 ≤ x ≤ 1

2.

8. Pokazati da sljedeci redovi konvergiraju uniformno na cijelom skupu R,

(i)+∞∑n=1

1n(n + 1) + x2

, (ii)+∞∑n=1

cosnx

n!.

9. Odrediti poluprecnik konvergencije sljedecih redova :

(i)+∞∑n=1

xn

n(n + 1), (ii)

+∞∑n=1

n2xn

(2n + 1)!, (iii)

+∞∑n=1

(−1)n 32n−1 + 1(2n)!

xn.

10. Odrediti Tejlorov red funkcije

(i)f(x) =1

(x− 1)(x + 2), (ii)f(x) =

2x + 5(x− 1)(2x− 3)

.

11. Odrediti poluprecnik konvergencije i sumu reda+∞∑n=1

xn

n(n + 1).

Page 132: 81932337 Etf Analiza Zoran Mitrovic

132 GLAVA 5. REDOVI

12. Odrediti poluprecnik konvergencije i sumu reda+∞∑n=1

(−1)n x2n+1

2n(2n + 1).

13. Sumirati sljedece redove :

(i)+∞∑n=1

nxn, (ii)+∞∑n=1

(−1)n x2n

2n, (iii)

+∞∑n=1

xn

(n + 1)(n + 2),

(iv)+∞∑n=1

(−1)n 1n

, (v)+∞∑n=1

3n(n + 2)n!

.

Page 133: 81932337 Etf Analiza Zoran Mitrovic

Glava 6

Diferencijalne jednacine

6.1 Uvod

6.1.1 Osnovni pojmovi

Neka je F realna funkcija n + 2 promjenljive. Jednacina

F (x, y, y′, . . . , y(n)) = 0, x ∈ (a, b), (6.1)

gdje je y nepoznata n−puta diferencijabilna funkcija naziva se diferencijalnomjednacinom reda n ako se u njoj obavezno pojavljuje funkcija y(n).Ako je diferencijalna jednacina data u obliku

y(n) = f(x, y, y′, . . . , y(n−1)), (6.2)

kazemo da ima normalni oblik.Opste rjesenje diferencijalne jednacine (6.1) je svaka funkcija

y = y(x), x ∈ (a, b)

koja je data saG(x, y, C1, . . . , Cn) = 0, (6.3)

gdje su C1, . . . , Cn konstante tako da vazi

• y = y(x) je rjesenje jednacine (6.1) na (a, b), to jest za y = y(x) jednacina(6.1) postaje identitet na (a, b),

• eliminacijom konstanti C1, . . . , Cn iz (6.3) i izvodnih jednakosti do reda ndobijamo samo diferencijalnu jednacinu (6.1).

Partikularno rjesenje je svako rjesenje koje se dobija iz opsteg rjesenja zakonkretne vrijednosti bar jedne od konstanti C1, . . . , Cn.

Singularno rjesenje je rjesenje koje se ne moze dobiti iz opsteg rjesenja niza jednu vrijednost konstanti C1, . . . , Cn.

133

Page 134: 81932337 Etf Analiza Zoran Mitrovic

134 GLAVA 6. DIFERENCIJALNE JEDNACINE

Integralna kriva diferencijalne jednacine je svako njeno partikularno ilisingularno rjesenje posmatrano kao kriva y = y(x).Uslovi

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1, (6.4)

se nazivaju pocetni uslovi. Problem (6.2), (6.4) se naziva Kosijev pocetniproblem reda n.Problem

y′ = f(x, y)y(x0) = y0,

(6.5)

je Kosijev pocetni problem prvog reda.Napomenimo da se pored Kosijevog pocetnog problema u teoriji diferenci-

jalnih jednacina izucavaju i granicni problemi. Granicni problemi su komp-likovaniji, a kao ilustraciju navodimo granicni problem drugog reda.Problem

y′′ = f(x, y, y′)y(a) = A, y(b) = B,

(6.6)

gdje su a i b krajnje tacke posmatranog intervala, a A i B dati realni brojevi senaziva granicni problem drugog reda.

Na kraju ove sekcije recimo i to da diferencijalne jednacine opisuju razneprirodne pojave. Tako na primjer, jednacina

y′ = ky,

predstavlja Maltusov zakon porasta populacije, dok su rjesenja Hermitove jedna-cine

y′′ − 2xy′ + 2py = 0,

talasne funkcije kvantne mehanike.

6.1.2 Egzistencija i jedinstvenost rjesenja

U ovoj sekciji bavicemo se pitanjem egzistencije i jedinstvenosti rjesenjadiferencijalne jednacine prvog reda. Tacnije, bavicemo se pitanjem egzistencijei jedinstvenosti rjesenja Kosijevog problema (6.5). Sljedeca teorema je poznatakao Peanova teorema.

Teorema 6.1. Neka je funkcija f neprekidna u oblasti

D = {(x, y) : |x− x0| ≤ a, |y − y0| ≤ b}

tada Kosijev problem (6.5) ima bar jedno rjesenje definisano na [x0−h, x0 +h],gdje je h = min{a, b

M } i M = supD|f(x, y)|.

Page 135: 81932337 Etf Analiza Zoran Mitrovic

6.1. UVOD 135

Vidjeli smo da neprekidnost funkcije f obezbjedjuje egzistenciju rjesenjaproblema (6.5). Prirodno pitanje je kada je rjesenje Kosijevog problema jedin-stveno. Ako se za funkciju f uvedu pored neprekidnosti i drugi uslovi moze seobezbjediti i jedinstvenost rjesenja Kosijevog problema (6.5). Sljedeci rezultatje poznat kao teorema Picarda i Lindelofa.

Teorema 6.2. Neka je funkcija f neprekidna u oblasti

D = {(x, y) : |x− x0| ≤ a, |y − y0| ≤ b}

i zadovoljava Lipshitzov uslov po y, tj postoji konstanta L > 0 takva da je

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2| za sve (x, y1), (x, y2) ∈ D,

tada Kosijev problem (6.5) ima tacno jedno rjesenje definisano na [x0−h, x0+h],gdje je h = min{a, b

M } i M = supD|f(x, y)|.

Dokaz. Ocigledno je svako rjesenje jednacine

y(x) = y0 +∫ x

x0

f(t, y(t))dt (6.7)

rjesenje problema (6.5) i obratno, pa je dovoljno pokazati da jednacina (6.7)ima jedinstveno rjesenje na segmentu [x0 − h, x0 + h].Pokazimo prvo egzistenciju rjesenja. Definisimo niz funkcija {yn(x)} na sljedecinacin:

y0(x) = y0, yn(x) = y0 +∫ x

x0

f(t, yn−1(t))dt, n ∈ N. (6.8)

Niz {yn(x)} je dobro definisan.Naime,

|yn(x)− y0| =∣∣∣∣∫ x

x0

f(t, yn−1(t))dt

∣∣∣∣ ≤ M |x0 − x| ≤ Mh ≤ b

za sve x ∈ [x0 − h, x0 + h], n ∈ N.

Dakle, (x, yn(x)) ∈ D za sve x ∈ [x0 − h, x0 + h], n ∈ N.Dalje, indukcijom dobijamo

|yn(x)− yn−1(x)| ≤ MLn−1|x− x0|nn!

, x ∈ [x0 − h, x0 + h], n ∈ N.

Sada imamo

|yn+p(x)− yn(x)| ≤n+p∑

i=n+1

MLi−1|x− x0|ii!

,

odnosno

|yn+p(x)− yn(x)| ≤ M(L|x− x0|)n

Ln!

Page 136: 81932337 Etf Analiza Zoran Mitrovic

136 GLAVA 6. DIFERENCIJALNE JEDNACINE

×(

1 +L|x− x0|

n + 1+

(L|x− x0|)2(n + 1)(n + 2)

+ · · ·+ (L|x− x0|)p

(n + 1) · · · (n + p)

).

Dakle,

|yn+p(x)− yn(x)| ≤ M(L|x− x0|)n

Ln!1

1− L|x−x0|n+1

. (6.9)

Ako u posljednjoj nejednakosti pustimo da n, p → +∞ dobijamo na osnovuKosijevog kriterijuma da je niz funkcija {yn(x)} uniformno konvergentan.Neka je lim

n→+∞yn(x) = z(x). Tada zbog (6.9) imamo

|z(x)− yn(x)| ≤ M(L|x− x0|)n

Ln!n + 1

n + 1− L|x− x0| , n ≥ n0.

Pokazimo da je z rjesenje Kosijevog problema (6.5).Vrijedi sljedece∣∣∣∣z(x)− y0 −

∫ x

x0

f(t, z(t))dt

∣∣∣∣ =∣∣∣∣z(x)− yn(x) +

∫ x

x0

(f(t, yn−1(t))− f(t, z(t)))dt

∣∣∣∣ ,

pa je∣∣∣∣z(x)− y0 −

∫ x

x0

f(t, z(t))dt

∣∣∣∣ ≤ |yn(x)− z(x)|+ L

∣∣∣∣∫ x

x0

(yn−1(t)− z(t))dt

∣∣∣∣ .

Neka je ε > 0, tada postoji n0 ∈ N takav da vrijedi

|yn(x)− z(x)| ≤ ε

2za sve n ≥ n0

i|yn−1(x)− z(x)| ≤ ε

2Lhza sve n ≥ n0.

Dakle, imamo∣∣∣∣z(x)− y0 −

∫ x

x0

f(t, z(t))dt

∣∣∣∣ ≤ε

2+ L

∫ x

x0

ε

2Lhdt ≤ ε

2+

ε

2Lh|x− x0| ≤ ε.

Znaci,

z(x) = y0 +∫ x

x0

f(t, z(t))dt.

Pokazimo da je z jedinstveno rjesenje.Neka su z1 i z2 dva razlicita rjesenja problema (6.5). Stavimo

g(x) = (z1(x)− z2(x))2, x ∈ [x0, x0 + h].

Imamog′(x) = 2(z1(x)− z2(x))(z

′1(x)− z

′2(x)),

pa je|g′(x)| ≤ 2Lg(x).

Page 137: 81932337 Etf Analiza Zoran Mitrovic

6.1. UVOD 137

Odavde je(g(x)e−2L(x−x0)

)′≤ 0 za sve x ∈ [x0, x0 + h],

pa jeg(x) ≤ g(x0) za sve x ∈ [x0, x0 + h].

Dakle, g(x) = 0 za sve x ≥ x0.Ako je x ≤ x0 stavimo t = 2x0 − x i ponovimo prethodni postupak.

Primjedba 6.1. Metod opisan u dokazu prethodne teoreme poznat je kao metodsukcesivnih aproksimacija.

Primjer 6.1.y′(x) = y2 − x2 + 1, y(0) = 0.

Koristeci metod sukcesivnih aproksimacija dobijamo

y0(x) = 0, yn(x) =∫ x

0

(y2n−1(t)− t2 + 1)dt, n ∈ N.

Za prva tri clana niza {yn(x)} imamo:

y1(x) =∫ x

0

(1− t2)dt = x− x3

3,

y2(x) =∫ x

0

[(t− t3

3

)2

− t2 + 1

]dt = x− 2x5

15+

x7

63,

y3(x) =∫ x

0

[(t− 2t5

15+

t7

63

)2

− t2 + 1

]dt = x− 4x7

105+

2x9

567+

+4x11

2457− 4x13

12285+

x15

59535.

Koristeci indukciju moze se pokazati da je

yn(x) = x + o(x2n+1),

pa jelim

n→+∞yn(x) = x.

Prema tome jedno rjesenje datog problema je funkcija y(x) = x.

Primjeri u kojima se moze naci rjesenje na ovaj nacin su rijetki. Ipak,metod sukcesivnih aproksimacija je znacajan zbog efikasnog koristenja u teori-jske svrhe.

Page 138: 81932337 Etf Analiza Zoran Mitrovic

138 GLAVA 6. DIFERENCIJALNE JEDNACINE

6.2 Neki integrabilni tipovi diferencijalnihjednacina

Diferencijalne jednacine cija se rjesenja mogu izraziti pomocu konacnog brojaelementarnih funkcija i njihovih integrala su malobrojne. Ipak, te jednacinesu znacajne, jer su prva saznanja o diferencijalnim jednacinama nastala odproucavanja upravo tih tipova diferencijalnih jednacina. Prilikom njihovog rjesa-vanja uvijek se koristila integracija, pa se takve diferencijalne jednacine nazivajuintegrabilne diferencijalne jednacine.

6.2.1 Jednacina sa razdvojenim promjenljivim

To je jednacina oblika

f(x)dx + g(y)dy = 0, (6.10)

gdje su f i g neprekidne funkcije na (a, b). Opste rjesenje jednacine (6.10) je∫

f(x)dx +∫

g(y)dy = C.

Primjer 6.2. Rijesiti diferencijalnu jednacinu

(x2 + 1)y′ = y2 + 1,

Rjesenje. Datu jednacinu mozemo pisati u obliku

dy

1 + y2− dx

1 + x2= 0,

odakle jearctg y − arctg x = C,

pa jetg(arctg y − arctg x) = tg C.

Ako stavimo C1 = tg C i iskoristimo formulu

tg(α− β) =tg α− tg β

1 + tg α tg β,

dobijamo

y − x

1 + xy= C1.

Dakle, opste rjesenje je

(1 + xy)C1 − y + x = 0.

Page 139: 81932337 Etf Analiza Zoran Mitrovic

6.2. NEKI INTEGRABILNI TIPOVI DIFERENCIJALNIH JEDNACINA 139

Primjer 6.3. Naci funkciju f koja zadovoljava sljedecu funkcionalnu jednacinu

f(x + y) =f(x) + f(y)1− f(x)f(y)

, (6.11)

ako se zna da postoji f ′(0).Rjesenje. Kako postoji f ′(0), funkcija f je definisana i neprekidna u nekojokolini tacke x = 0. Ako u (6.11) uvrstimo y = 0 dobijamo

(1 + f2(x))f(0) = 0,

odakle je f(0) = 0. Kako je zbog (6.11)

f(x + y)− f(x)y

=f(y)

y· 1 + f2(x)1− f(x)f(y)

,

kada pustimo y → 0 dobijamo

f ′(x) = f ′(0)(1 + f2(x)),

a ovo je jednacina sa razdvojenim promjenljivim. Njeno opste rjesenje je

f(x) = tg(f ′(0)x + C).

6.2.2 Homogena jednacina

Homogena diferencijalna jednacina je

dy

dx= f

(y

x

), (6.12)

gdje je f neprekidna funkcija na (a, b).Ako je

f(t) = t, za sve t ∈ (a, b),

tada imamo jednacinu sa razdvojenim promjenljivim

dy

y=

dx

x.

Njeno opste rjesenje jey = Cx.

Ako jef(t0) = t0, za neko t0 ∈ (a, b),

tada je funkcija y(x) = t0x + C rjesenje jednacine (6.12).Na kraju prepostavimo da je

f(t) 6= t, za sve t ∈ (a, b).

Page 140: 81932337 Etf Analiza Zoran Mitrovic

140 GLAVA 6. DIFERENCIJALNE JEDNACINE

Uvodeci smjenu

z(x) =y(x)x

,

dobijamoy′(x) = z(x) + xz′(x),

pa jednacina (6.12) postajez + xz′ = f(z),

to jest jednacina sa razdvojenim promjenljivim

dz

z − f(z)− dx

x= 0.

Njeno opste rjesenje je

Cx = exp(∫

dz

z − f(z)

).

Primjedba 6.2. Jednacina

y′ = f

(a1x + b1y + c1

a2x + b2y + c2

)

u slucaju da je ∣∣∣∣a1 b1

a2 b2

∣∣∣∣ 6= 0,

se smjenomx = u + α, y = v + β

svodi na homogenu jednacinu, gdje su α i β takvi da je

a1α + b1β + c1 = 0

a2α + b2β + c2 = 0.

U slucaju da je ∣∣∣∣a1 b1

a2 b2

∣∣∣∣ = 0,

onda se data jednacina smjenom u = a1x + b1y svodi na homogenu jednacinu.

Primjer 6.4. Rijesiti jednacinu

dy

dx=

x + y − 3−x + y + 1

.

Rjesenje. Kako je ∣∣∣∣1 1−1 1

∣∣∣∣ = 2

Page 141: 81932337 Etf Analiza Zoran Mitrovic

6.2. NEKI INTEGRABILNI TIPOVI DIFERENCIJALNIH JEDNACINA 141

koristimo smjenux = u + α, y = v + β,

gdje jeαβ − 3 = 0

−α + β + 1 = 0.

Dakle,x = u + 2, y = v + 1,

pa imamodv

du=

u + v

−u + v,

dv

du=

1 + vu

−1 + vu

.

Koristeci smjenu v = zu dobijamo

z − 11 + 2z − z2

dz − du

u= 0.

Odavde jeu2(1 + 2z − z2) = C,

pa jex2 + 2xy − y2 − 6x− 2y = C1, (C − 7 = C1).

6.2.3 Linearna jednacina prvog reda

Diferencijalna jednacina

y′ + p(x)y = q(x), (6.13)

gdje su p i q neprekidne funkcije na (a, b) naziva se linearnom jednacinom prvogreda.Iz (6.13) imamo

y′eR

p(x)dx + p(x)yeR

p(x)dx = q(x)eR

p(x)dx,

to jest (yeR

p(x)dx)′

= q(x)eR

p(x)dx,

pa je

yeR

p(x)dx = C +∫

q(x)eR

p(x)dx.

Dakle, opste rjesenje je

y = e−R

p(x)dx

(C +

∫q(x)e

Rp(x)dxdx

). (6.14)

Page 142: 81932337 Etf Analiza Zoran Mitrovic

142 GLAVA 6. DIFERENCIJALNE JEDNACINE

Primjer 6.5. Rijesiti jednacinu

dy

dx=

1xf(y) + g(y)

.

Rjesenje. Datu jednacinu mozemo pisati u obliku

dx

dy− xf(y) = g(y),

a ovo je linearna jednacina u odnosu na inverznu funkciju x = x(y) trazenefunkcije y = y(x). Koristeci formulu (6.14) dobijamo

x = eR

f(y)dy

(C +

∫g(y)e−

Rf(y)dydy

).

6.2.4 Bernulijeva jednacina

Diferencijalna jednacina oblika

y′ + p(x)y = q(x)yα, (6.15)

gdje su p i q neprekidne funkcije na (a, b), a α ∈ R je Bernulijeva jednacina.Za α = 0 ili α = 1 to je linearna diferencijalna jednacina. Pretpostavimo da jeα 6= 0 i α 6= 1. Uvedimo smjenu

y = zk, k 6= 0.

Jednacina (6.15) tada postaje

kz′zk−1 + p(x)zk = q(x)zαk,

pa je

z +p(x)k

z =q(x)k

zαk−k+1.

Posljednja jednacina je linearna za

αk − k + 1 = 0,

to jest za

k =1

1− α.

Dakle, smjenomy = z

11−α ,

jednacina (6.15) se svodi na linearnu.

Page 143: 81932337 Etf Analiza Zoran Mitrovic

6.2. NEKI INTEGRABILNI TIPOVI DIFERENCIJALNIH JEDNACINA 143

Primjer 6.6. Rijesiti jednacinu

y′ + 2y = exy2.

Rjesenje. Ovde je α = 2, pa koristimo smjenu

y = z−1.

Sada dobijamo−z−2z′ + 2z−1 = exz−2,

odavde jez′ − 2z = −ex,

a ovo je linearna diferencijalna jednacina. Njeno opste rjesenje je

z = Cex + e2x.

Dakle, opste rjesenje date jednacine je

y =1

Ce2 + e2x.

6.2.5 Rikatijeva jednacina

Diferencijalna jednacina

y′ + p(x)y + q(x)y + r(x) = 0, (6.16)

gdje su p, q i r neprekidne funkcije definisane na (a, b) naziva se Rikatijevomjednacinom. Ako su funkcije p, q i r konstante, jednacina (6.16) je jednacina sarazdvojenim promjenljivim i njeno opste rjesenje je

C − x =∫

dy

py2 + qu + r.

Moze se pokazati da se rjesenja jednacine (6.16) u opstem slucaju ne moguizraziti preko integrala elementarnih funkcija, to jest ova jednacina u opstemslucaju nije integrabilna.U slucaju da je poznato jedno njeno partikularno rjesenje y1 ona se moze rijesitikoristeci smjenu

y(x) = y1(x) + z(x).

Tada jednacina (6.16) postaje

y′1 + z′ + p(x)(y2

1 + 2y1z + z2) + q(x)(y1 + z) + r(x).

Kako je y1 rjesenje date jednacine dobijamo

z′ + p(x)(2y1 + z2) + q(x)z = 0,

to jestz′ + (2p(x)y1 + q(x))z = −p(x)z2,

a ovo je Bernulijeva diferencijalna jednacina.

Page 144: 81932337 Etf Analiza Zoran Mitrovic

144 GLAVA 6. DIFERENCIJALNE JEDNACINE

Primjer 6.7. Rijesiti jednacinu

y′ − y2 + 2exy = e2x + ex,

ako je njeno partikularno rjesenje y1 = ex.Rjesenje. Koristeci smjenu

y = ex + z

dobijamoz′ = z2.

Odavde je

−1z

= x− C,

pa je

z =1

C − x.

Dakle, opste rjesenje date jednacine je

y = ex +1

C − x.

Primjedba 6.3. Smjenom

y = y1 +1z,

jednacina (6.16) se svodi na linearnu diferencijalnu jednacinu

z′ − (2p(x)y1 + q(x))y = p(x).

Pretpostavimo sada da su y1 i y2 dva partikularna rjesenja jednacine (6.16).Tada koristeci jednakost

y′1 = −p(x)y2

1 − q(x)y1 − r(x),

jednacinu (6.16) mozemo predstaviti u obliku

(y − y1)′

y − y1= −p(x)(y + y1)− r(x),

to jest(ln(y − y1))′ = −p(x)(y + y1)− q(x). (6.17)

Za drugo partikularno rjesenje y2 analogno dobijamo

(ln(y − y2))′ = −p(x)(y + y2)− q(x). (6.18)

Iz jednacina (6.17) i (6.18) dobijamo(

lny − y1

y − y2

)′= p(x)(y2 − y1),

pa jey − y1

y − y2= C exp

(∫p(x)(y2(x)− y1(x))dx

), (6.19)

opste rjesenje jednacine (6.16).

Page 145: 81932337 Etf Analiza Zoran Mitrovic

6.2. NEKI INTEGRABILNI TIPOVI DIFERENCIJALNIH JEDNACINA 145

Primjer 6.8. Jednacina

y′ =1x4− y2,

ima partikularna rjesenje

y1 =1x

+1x2

, y2 =1x− 1

x2.

Koristeci formulu (6.19) dobijamo da je opste rjesenje

y − y1

y − y2= C exp

(−

∫2dx

x2

),

x2y − x− 1x2y − x + 1

= Ce2x .

6.2.6 Jednacine Lagranza i Klera

Jednacina Lagranza ima oblik

y = xϕ(y) + ψ(y′), (6.20)

gdje su ϕ i ψ diferencijabilne funkcije.Pretpostavimo da funkcija ϕ nije identicko preslikavanje. Stavljajuci y′ = p,diferencirajuci po x i koristeci jednakost dy = pdx dobijamo linearnu jednacinu

dx

dp+ x

ϕ′(p)ϕ(p)− p

=ψ′(p)

p− ϕ(p).

Neka je njeno opste rjesnjex = g(p, C),

smjenom u (6.20) dobijamo

y = g(p, C)ϕ(p) + ψ(p).

Dakle, zakljucujemo da je sax = g(p, C),

y = g(p, C)ϕ(p) + ψ(p),

dato opste rjesenje jednacine (6.20).

Primjer 6.9. Rijesiti jednacinu

y = 2xy′ + ln y′.

Rjesenje. Stavimo y′ = p, tada je y = 2xp + ln p. Diferencirajuci dobijamo

pdx = 2pdx + 2xdp +dp

p,

Page 146: 81932337 Etf Analiza Zoran Mitrovic

146 GLAVA 6. DIFERENCIJALNE JEDNACINE

a odavde jedx

dp+

2px = − 1

p2.

Ovo je linearna jednacina. Njeno opste rjesenje je

x =C

p2− 1

p.

Dakle, opste rjesenje date jednacine je

x =C

p2− 1

p,

y = ln p +2C

p− 2.

Jednacina Klera ima oblik

y = xy′ + ψ(y′). (6.21)

Ona se rjesava koristeci isti postupak kao i kod Lagranzove jednacine. Opsterjesenje Klerove jednacine je

y = Cx + ψ(C).

Klerova jednacina moze imati i singularno rjesenje dato sa

y = xp + ψ(p),

x + ψ′(p) = 0.

Primjer 6.10. Rijesiti jednacinu

y = xy′ +1

2y′.

Rjesenje. Stavljajuci y′ = p, dobijamo

y = xp +12p

.

Diferencirajuci posljednju jednacinu i zamjenjujuci dy sa pdx imamo

pdx = pdx + xdp− dp

p2,

odavde je

dp

(x− 1

2p2

)= 0.

Iz dp = 0, to jest p = C dobijamo opste rjesenje

y = Cx +1

2C.

Page 147: 81932337 Etf Analiza Zoran Mitrovic

6.3. LINEARNE DIFERENCIJALNE JEDNACINE VISEG REDA 147

Dalje, iz

x− 12p2

= 0,

imamox =

12p2

.

Eliminisuci p iz te jednacine i iz jednacine

y = xp +12p

,

dobijamoy2 = 2x.

Ovo je takodje rjesenje (singularno rjesenje) date jednacine.

6.3 Linearne diferencijalne jednacine viseg reda

6.3.1 Homogena jednacina

Definicija 6.1. Diferencijalna jednacina

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = q(x), x ∈ (a, b), (6.22)

je linearna diferencijalna jednacina reda n.Ako je q ≡ 0 na (a, b) to jest,

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = 0, x ∈ (a, b), (6.23)

kazemo da se radi o homogenoj jednacini, u suprotnom je nehomogenajednacina.

Egzistencija i jedinstvenost rjesenja diferencijalne jednacine (6.22) su datesljedecom teoremom.

Teorema 6.3. Ako su funkcije q, p1, p2, . . . , pn neprekidne na (a, b), tada zasvako x0 ∈ (a, b) postoji jedinstveno rjesenje y diferencijalne jednacine (6.22)definisano na (a, b) koje zadovoljava uslove

y(x0) = y0, y′(x0) = y′0, . . . , y

(n−1)(x0) = y(n−1)0 ,

gdje su y0, y′0, . . . , y

(n−1)0 , dati realni brojevi.

Primjetimo da je kod diferencijalne jednacine (6.22) neprekidnost koeficije-nata dovoljna za egzistenciju i jedinstvenost rjesenja Kosijevog pocetnog prob-lema na cijelom intervalu (a, b), dok smo kod Peanove teoreme odnosno Picard-Lindelofove teoreme imali egzistenciju i jedinstvenost rjesenja u nekoj okolinitacke x0.

Page 148: 81932337 Etf Analiza Zoran Mitrovic

148 GLAVA 6. DIFERENCIJALNE JEDNACINE

Definicija 6.2. Neka su date funkcije p1, p2, . . . , pn. Simbol L[ ] oznacavadiferencijalni operator,

L[y] = y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y.

Sada diferencijalne jednacine (6.22) i (6.23) mozemo pisati u obliku

L[y] = q(x) i L[y] = 0, x ∈ (a, b).

Lako se vidi da je operator L[ ] linearan, to jest vrijedi

L[Cy] = CL[y], C ∈ R,

L[y1 + y2] = L[y1] + L[y2].

Na osnovu ove dvije osobine imamo da je

L[C1y1 + C2y2 + · · ·+ Cnyn] = C1L[y1] + C2L[y2] + · · ·+ CnL[yn],

C1, C2, . . . , Cn ∈ R.Prema tome vrijedi sljedeca teorema.

Teorema 6.4. Ako su y1, y2, . . . , yn rjesenja diferencijalne jednacine (6.23)tada je i y = C1y1 + C2y2 + · · ·+ Cnyn njeno rjesenje.

Na osnovu prethodne teoreme zakljucujemo da mozemo dobiti nova rjesenjajednacine (6.23) ako znamo neka njena rjesenja. To namece potrebu da se odrediskup rjesenja kod koga se nijedno rjesenje ne moze dobiti preko ostalih rjesenja.U vezi sa ovim imamo sljedecu definiciju.

Definicija 6.3. Za funkcije y1, . . . , yn kazemo da su linearno zavisne na (a, b)ako postoje konstante λ1, . . . λn od kojih je bar jedna razlicita od nule, takve daje na (a, b),

λ1y1 + · · ·+ λnyn = 0. (6.24)

Ako je identitet (6.24) zadovoljen samo za λ1 = · · · = λn = 0, kazemo da sufunkcije y1, . . . , yn linearno nezavisne na (a, b).

Primjer 6.11. Funkcije y1(x) = x, y2(x) = 2x+1 i y3(x) = 7x+2 su linearnozavisne na skupu R, jer je

y3(x)− 2y2(x)− 3y1(x) = 0,

na skupu R.

Definicija 6.4. Neka su y1, . . . , yn, n− 1 puta diferencijabilne funkcije.Determinanta

W (y1, . . . , yn; x) =

∣∣∣∣∣∣∣∣∣

y1(x) y2(x) · · · yn(x)y′1(x) y

′2(x) · · · y

′n(x)

...... · · · ...

y(n−1)1 (x) y

(n−1)2 (x) · · · y

(n−1)n (x)

∣∣∣∣∣∣∣∣∣

se naziva Vronskijevom determinantom ili Vronskijan.

Page 149: 81932337 Etf Analiza Zoran Mitrovic

6.3. LINEARNE DIFERENCIJALNE JEDNACINE VISEG REDA 149

Teorema 6.5. Funkcije y1, . . . , yn su linearno nezavisna rjesenje diferencijalnejednacine (6.23) na (a, b) ako i samo ako je

W (y1, . . . , yn;x) 6= 0 za sve x ∈ (a, b).

Da bi se ispitala linearna zavisnost rjesenja diferencijalne jednacine (6.23),obicno se koristi formula Liuvila i Abela, data sljedecom teoremom.

Teorema 6.6. Neka su y1, . . . , yn rjesenja diferencijalne jednacine (6.23) ix0 ∈ (a, b), tada je

W (y1, . . . , yn; x) = W (y1, . . . , yn; x0) exp(−

∫ x

x0

p1(t)dt

), x ∈ (a, b).

Teorema 6.7. Ako su y1, . . . , yn su linearno nezavisna rjesenje diferencijalnejednacine (6.23), tada je

y = C1y1 + · · ·+ Cnyn

njeno opste rjesenje.

Dakle, da bi odredili opste rjesenje diferencijalne jednacine (6.23) dovoljno jeda znamo n njenih linearno nezavisnih rjesenja. U slucaju da se radi o jednacinireda 2, dovoljno je da znamo jedno njeno partikularno rjesenje. Naime, vrijedisljedeca teorema.

Teorema 6.8. Ako je y1 netrivijalno partikularno rjesenje diferencijalne jedna-cine

y′′ + p1(x)y′ + p2(x)y = 0,

tada je

y2(x) = y1(x)∫

1y21(x)

exp(−

∫p1(x)dx

)dx (6.25)

partikularno rjesenje date jednacine, linearno nezavisno od y1.

Dokaz. Neka je y1 jedno partikularno rjesenje jednacine

y′′ + p1(x)y′ + p2(x)y = 0.

Uvedimo smjenuy = y1z.

Dobijamoy1z

′′ + (2y′1 + p1y1)z′ = 0,

z′′ = −(

2y′1

y1+ p1

)z′.

Ako stavimo z′ = u, imamo

du

u= −

(2y

′1

y1+ p1

)dx,

Page 150: 81932337 Etf Analiza Zoran Mitrovic

150 GLAVA 6. DIFERENCIJALNE JEDNACINE

pa je

u(x) =1

y21(x)

exp(−

∫p1(x)dx

).

Odavde je

z(x) =∫

1y21(x)

exp(−

∫p1(x)dx

)dx.

Rjesenja y1 i y2 su nezavisna jer jey2

y16= const.

Primjedba 6.4. Formula (6.25) je poznata kao Liuvilova formula.

Primjer 6.12. Naci opste rjesenje jednacine

xy′′ + 2y′ + xy = 0,

ako je y1 =sin x

x, njeno partikularno rjsenje.

Rjesenje. Koristimo Liuvilovu formulu. Za partikularno rjesenje y2 je

y2 =sinx

x

∫1

sin2 xx2

exp(−

∫2x

dx

)dx,

y2 =sin x

x

∫x2

sin2 xexp(−2 ln x)dx =

sinx

x

∫dx

sin2 x= −cos x

x.

Dakle, opste rjesenje je

y = C1sin x

x+ C2

cos x

x.

6.3.2 Nehomogena jednacina. Metod varijacije konstanti

Neka je yh opste rjesenje homogene diferencijalne jednacine (6.23), a yp

partikularno rjesenje nehomogene diferencijalne jednacine (6.22), tada je

L[yh] = 0 i L[yp] = q(x),

pa kako je operator L[ ] linearan imamo

L[yh + yp] = q(x).

Na osnovu ovoga zakljucujemo da je y = yh + yp rjesenje nehomogene diferenci-jalne jednacine (6.22). Dalje, kako je yh = y − yp, eliminacijom konstanti iz yh

i odgovarajucih izvodnih jednakosti dobija se samo homogena jednacina. Istotako eliminacijom konstanti iz y i odgovarajucih izvodnih jednakosti dobija sesamo nehomogena jednacina. Dakle, vrijedi sljedeca teorema.

Teorema 6.9. Neka je yh opste rjesenje jednacine (6.23), a yp partikularnorjesenje jednacine (6.22), tada je y = yh + yp opste rjesenje jednacine (6.22).

Page 151: 81932337 Etf Analiza Zoran Mitrovic

6.3. LINEARNE DIFERENCIJALNE JEDNACINE VISEG REDA 151

Metod pomocu koga se polazeci od opsteg rjesenja diferencijalne jednacine(6.23) dolazi do partikularnog rjesenja diferencijalne jednacine (6.22) je poznatkao metod varijacije konstanti.

Teorema 6.10. Neka su y1, y2, . . . , yn linearno nezavisna rjesenja diferenci-jalne jednacine (6.23). Opste rjesenje diferencijalne jednacine (6.22) je datosa

y = C1(x)y1(x) + C2(x)y2(x) + · · ·+ Cn(x)yn(x),

pri cemu je,

Ci(x) =∫

Wi(y1, y2, . . . , yn;x)W (y1, y2, . . . , yn; x)

dx,

gdje je W (y1, y2, . . . , yn; x) Wronskijeva determinanta, a Wi(y1, y2, . . . , yn;x) jedeterminanta koja se dobije od Wronskijeve determinante kada se i−ta kolonazamijeni sa kolonom [0, 0, . . . , 0, q(x)]>.

Dokaz. Neka su y1(x), y2(x), . . . , yn(x) linearno nezavisna rjesenja diferencijalnejednacine (6.23). Odredicemo funkcije C1(x), C2(x), . . . , Cn(x) takve da je

y(x) = C1(x)y1(x) + C2(x)y2(x) + · · ·+ Cn(x)yn(x), (6.26)

partikularno rjesenje diferencijalne jednacine (6.22).Diferenciranjem u (6.26) dobijamo

y′(x) = (C′1(x)y1(x) + C

′2(x)y2(x) + · · ·+ C

′n(x)yn(x))+

+(C1(x)y′1(x) + C2(x)y

′2(x) + · · ·+ Cn(x)y

′n(x)).

Postavimo uslov

C′1(x)y1(x) + C

′2(x)y2(x) + · · ·+ C

′n(x)yn(x) = 0.

Sada jey′(x) = C1(x)y

′1(x) + C2(x)y

′2(x) + · · ·+ Cn(x)y

′n(x),

pa jey′′(x) = (C

′1(x)y

′1(x) + C

′2(x)y

′2(x) + · · ·+ C

′n(x)y

′n(x))+

+(C1(x)y′′1 (x) + C2(x)y

′′2 (x) + · · ·+ Cn(x)y

′′n(x)).

postavimo sada uslov

C′1(x)y

′1(x) + C

′2(x)y

′2(x) + · · ·+ C

′n(x)y

′n(x) = 0.

Tada imamo

y′′(x) = C1(x)y′′1 (x) + C2(x)y

′′2 (x) + · · ·+ Cn(x)y

′′n(x).

Nastavljajuci ovaj postupak do n− 1 prvog izvoda dobijamo

y(k) = C1(x)y(k)1 (x) + C2(x)y(k)

2 (x) + · · ·+ Cn(x)y(k)n (x),

Page 152: 81932337 Etf Analiza Zoran Mitrovic

152 GLAVA 6. DIFERENCIJALNE JEDNACINE

k = 1, 2, . . . , n− 1. Za n−ti izvod imamo

y(n) = (C′1(x)y(n−1)

1 (x) + C′2(x)y(n−1)

2 (x) + · · ·+ Cn(x)′y(n−1)

n (x))+

+(C1(x)y(n)1 (x) + C2(x)y(n)

2 (x) + · · ·+ Cn(x)y(n)n (x)).

Uvrstavajuci y(k), k = 1, 2, . . . , n u diferencijalnu jednacinu (6.22) i koristecicinjenicu da su y1(x), y2(x), . . . , yn(x) rjesenja diferencijalne jednacine (6.23)dobijamo

C′1(x)y(n−1)

1 (x) + C′2(x)y(n−1)

2 (x) + · · ·+ Cn(x)′y(n−1)

n (x) = q(x).

Dakle, imamo sistem

C′1(x)y1(x) + C

′2(x)y2(x) + · · ·+ Cn(x)

′yn(x) = 0

C′1(x)y

′1(x) + C

′2(x)y

′2(x) + · · ·+ Cn(x)

′y′n(x) = 0

...

C′1(x)y(n−2)

1 (x) + C′2(x)y(n−2)

2 (x) + · · ·+ Cn(x)′y(n−2)

n (x) = 0

C′1(x)y(n−1)

1 (x) + C′2(x)y(n−1)

2 (x) + · · ·+ Cn(x)′y(n−1)

n (x) = q(x).

Determinanta sistema je Vronskijeva determinanta W (y1, y2, . . . , yn;x). Kakosu rjesenja y1, y2, . . . , yn linearno nezavisna imamo da je

W (y1, y2, . . . , yn;x) 6= 0.

Na osnovu Cramerovog pravila je

C′i(x) =

Wi(y1, y2, . . . , yn; x)W (y1, y2, . . . , yn;x)

.

Dakle,

Ci(x) =∫

Wi(y1, y2, . . . , yn; x)W (y1, y2, . . . , yn; x)

dx.

Primjer 6.13. Data je nehomogena jednacina

y′′ + 2y′ + y = e−x ln x.

Ako je poznato da su y1(x) = e−x, y2(x) = xe−x linearno nezavisna rjesenjahomogene diferencijalne jednacine

y′′ + 2y′ + y = 0,

odrediti opste rjesenje nehomogene jednacine.Rjesenje. Za Vronskijevu determinantu imamo

W (y1, y2, ; x) =∣∣∣∣

e−x xe−x

−e−x (1− x)e−x

∣∣∣∣ = e−2x.

Page 153: 81932337 Etf Analiza Zoran Mitrovic

6.3. LINEARNE DIFERENCIJALNE JEDNACINE VISEG REDA 153

Dalje,

W1(y1, y2, ; x) =∣∣∣∣

0 xe−x

e−x ln x (1− x)e−x

∣∣∣∣ = −xe−2x ln x,

W2(y1, y2, ; x) =∣∣∣∣

e−x 0−e−x e−x ln x

∣∣∣∣ = e−2x ln x,

pa je

C1(x) =∫

(−x ln x)dx = −12x2 ln x +

x2

4+ C1,

C2(x) =∫

(− ln x)dx = x ln x− x + C2.

Dakle, opste rjesenje nehomogene jednacine je

y = C1e−x + C2xe−x +

(−1

2x2 ln x +

x2

4

)e−x + (x ln x− x)xe−x.

6.3.3 Homogena jednacina sa konstantnim koeficijentima

Jednacina L[y] = 0, kod koje su svi koeficijenti pi, i = 1, 2, . . . , n realnekonstante, to jest jednacina

y(n) + p1y(n−1) + · · ·+ pn−1y

′ + pny = 0, pi ∈ R, i = 1, 2, . . . , n, (6.27)

se naziva homogena jednacina sa konstantnim koeficijentima. Kod ovejednacine opste rjesenje se moze formirati pomocu korijena karakteristicnejednacine

λn + p1λn−1 + · · ·+ pn−1λ + pn = 0. (6.28)

Naime, ako se trazi rjesenje jednacine (6.27) u obliku

y(x) = eλx, λ ∈ R,

imamo

y(n) + p1y(n−1) + p2y

(n−2) + · · ·+ pn−1y′ + pny = pn(λ)eλx,

gdje jepn(x) = λn + p1λ

n−1 + · · ·+ pn−1λ + pn.

Kako je eλx > 0, zakljucujemo da je

y(n) + p1y(n−1) + p2y

(n−2) + · · ·+ pn−1y′ + pny = 0,

ako jepn(λ) = 0.

Dakle, ako su λi, i = 1, . . . , n, korijeni karakteristicne jednacine (6.28), tada sufunkcije yi(x) = eλix, i = 1, . . . , n, rjesenja jednacine (6.27). Moguci su sljedecislucajevi :

Page 154: 81932337 Etf Analiza Zoran Mitrovic

154 GLAVA 6. DIFERENCIJALNE JEDNACINE

(i) Korijeni λ1, λ2, . . . , λn su realni i razliciti. Tada opste rjesenje jednacine(6.27) ima oblik

y = C1eλ1x + C2e

λ2x + · · ·+ Cneλnx.

(ii) Korijeni karakteristicne jednacine su realni, ali su neki od njih visestruki.Na primjer, ako je λ1 = λ2 = . . . = λk = λ, a svi ostali korijeni su razlicitionda opste rjesenje ima oblik

y = C1eeλx + C2xe

eλx + C3x2eeλx + · · ·+ Ckxk−1e

eλx+

+Ck+1eλk+1x + · · ·+ Cneλnx.

(iii) Svi korijeni su razliciti, ali se medju njima nalaze i kompleksni korijeni.Neka je na primjer λ1 = α + iβ, λ2 = α − iβ, λ3 = γ + iδ, λ4 = γ − iδ, aostali korijeni su realni. Tada opste rjesenje ima oblik

y = C1eαx cosβx + C2e

αx sin βx + C3eγx cos δx + C4e

γx sin δx+

+C5eλ5x + · · ·+ Cneλnx.

(iv) Medju korijenima se nalaze visestruki kompleksni korijeni. Na primjer, uslucaju da je λ1 = α + iβ korijen visestrukosti k karakteristicne jednacine(k ≤ n

2

), tada je λ2 = α − iβ, takodje korijen visestrukosti k. Ako su

ostalih n− 2k korijena realni i razliciti onda je opste rjesenje

y = C1eαx cos βx + C2e

αx sin βx + C3xeαx cos βx + C4xeαx sin βx+

· · ·+C2k−1xk−1eαx cos βx+C2kxk−1eαx sin βx+C2k+1e

λ2k+1x+· · ·+Cneλnx.

Primjer 6.14. Naci opste rjesenje jednacine

y′′′ − 2y′′ − y′ + 2y = 0.

Rjesenje. Karakteristicna jednacina je

λ3 − 2λ2 − λ + 2 = 0.

Odavde je(λ + 1)(λ− 1)(λ− 2) = 0,

pa su korijeni karakteristicne jednacine

λ1 = −1, λ2 = 1, λ3 = 2.

Dakle, korijeni su realni i razliciti, pa je opste rjesenje

y = C1e−x + C2e

x + C3e2x.

Page 155: 81932337 Etf Analiza Zoran Mitrovic

6.3. LINEARNE DIFERENCIJALNE JEDNACINE VISEG REDA 155

Primjer 6.15. Naci opste rjesenje jednacine

y′′′ − y′′ − y′ + y = 0.

Rjesenje. U ovom slucaju karakteristicna jednacina je

λ3 − λ2 − λ + 1 = 0.

Odavde je(λ− 1)2(λ + 1) = 0,

pa jeλ1 = 1, λ2 = 1, λ3 = −1.

Korijeni su realni, pri cemu je jedan od njih visestrukosti dva, pa je opsterjesenje

y = C1ex + C2xex + C3e

−x.

Primjer 6.16. Naci opste rjesenje jednacine

y(5) − 2y(4) + 2y′′′ − 4y′′ + y′ − 2y = 0.

Rjesenje. Karakteristicna jednacina je

λ5 − 2λ4 + 2λ3 − 4λ2 + λ− 2 = 0,

ili(λ− 2)(λ2 + 1)2 = 0,

pa su korijeniλ1 = 2, λ2 = λ3 = i, λ4 = λ5 = −i.

Opste rjesenje je

y = C1e2x + (C2 + C3x) cos x + (C4 + C5x) sin x.

Linearna diferencijalna jednacina

xny(n) + p1xn−1y(n−1) + · · ·+ pn−1xy′ + pny = f(x), (6.29)

gdje su p1, . . . , pn konstante naziva se Ojlerovom diferencijalnom jednacinom.Ona se smjenom x = et svodi na linearnu jednacinu sa konstantnim koeficijen-tima. Naime,

dy

dt=

dy

dx· dx

dt=

dy

dx· 1

t,

tdy

dt=

dy

dx.

Slicno, dobijamo

d2y

dt2=

d(

dydx · 1

t

)

dt=

d2y

dx2· 1t2− dy

dx· 1t2

,

Page 156: 81932337 Etf Analiza Zoran Mitrovic

156 GLAVA 6. DIFERENCIJALNE JEDNACINE

t2d2y

dt2=

d

dx

(d

dx− 1

)y.

Matematickom indukcijom se moze pokazati da je

tkdky

dtk=

d

dx

(d

dx− 1

)(d

dx− 2

)· · ·

(d

dx− k + 1

)y.

Primjer 6.17. Rijesiti jednacinu

x3y′′′ + x2y′′ + 3xy′ − 8y = 0.

Rjesenje. Uvedimo smjenu x = et. Imamo

xdy

dx=

dy

dt, x2 d2y

dx2=

d

dt

(d

dt− 1

)y =

d2y

dt2− dy

dt,

x3 d3y

dx3=

d

dt

(d

dt− 1

)(d

dt− 2

)y

=d

dt

(d

dt− 1

)(dy

dt− 2y

)=

d

dt

(d2y

dt2− 2

dy

dt− dy

dt+ 2y

)

=d

dt

(d2y

dt2− 3

dy

dt+ 2y

).

Dakle,

x3 d3y

dx3=

d3y

dt3− 3

d2y

dx2+ 2

dy

dx,

pa data jednacina postaje

d3y

dt3− 3

d2y

dt2+ 2

dy

dt+

d2y

dt2− dy

dt+ 3

dy

dt− 8y = 0,

to jestd3y

dt3− 2

d2y

dt2+ 4

dy

dt− 8y = 0.

Njena karakteristicna jednacina je

λ3 − 2λ2 + 4λ− 8 = 0,

odakle je(λ− 2)(λ2 + 4) = 0,

pa jeλ1 = 2, λ2 = −2i, λ3 = 2i.

Zakljucujemo da je

y = C1e2t + C2 cos 2t + C3 sin 2t,

opste rjesenje ove jednacine. Vracajuci promjenljivu x imamo

y = C1x2 + C2 cos 2 ln |x|+ C3 sin 2 ln |x|.

Page 157: 81932337 Etf Analiza Zoran Mitrovic

6.4. ZADACI 157

6.4 Zadaci

1. Rijesiti jednacine :

(a) (1 + y2)dx + xydy = 0,

(b) e−y(1 + y′) = 1,

(c) y′ = cos(x + y),

(d) y′ = ax + by + c, a, b, c,∈ R.

2. Naci rjesenja jednacina koja ispunjavaju date uslove

(a) (1 + ex)yy′ = ex, y(0) = 1,

(b) x2y′ + cos 2y = 1, y → 10π

3, x → +∞,

(c) (x + 1)y′ = y − 1, y je ograniceno kad x → +∞.

3. Rijesiti jednacine :

(a) xy′ = y + x cos2y

x,

(b) 2x2y′ = x2 + y2,

(c) (x + y)dx + (x− y + 1)dy = 0,

(d) (x− 2y + 1)dx + (4x− 8y + 3)dy = 0.

4. Rijesiti jednacine :

(a) y′ + 2xy = e−x2,

(b) y′ =1

x cos y + sin 2y,

(c) (2x− y2)y′ = 2y,

(d)(

e−y2

x − xy

)dy − dx = 0.

5. Odrediti rjesenje y(x) jednacine

x2y′ cos1x− y sin

1x

= −1,

za koje vrijedi limx→∞

y(x) = 1.

6. Rijesiti jednacine :

(a) y′ + 2xy = 2xy2,

(b) 2y′ ln x +y

x= y−1 cosx,

(c) (x2 + y2 + 1)dy + xydx = 0,

(d) 2x2y′ = y3 + xy.

Page 158: 81932337 Etf Analiza Zoran Mitrovic

158 GLAVA 6. DIFERENCIJALNE JEDNACINE

7. Koristeci smjenu, svesti jednacinu

y′ − tg y = ex 1cos y

,

na linearnu jednacinu, a zatim je rijesiti.

8. Koristeci smjenu, svesti jednacinu

yy′ + 1 = (x− 1)e−y2

2 ,

na Bernulijevu jednacinu, a zatim je rijesiti.

9. Rijesiti jednacine :

(a) y = x(1 + y′) + y′2,

(b) y = xy′ + ey′ ,

(c) x =y

y′+

1y′2

.

10. Ako je y1(x) partikularno rjesenje linearne jednacine

y′ + p(x)y = q(x),

pokazati da je njeno opste rjesenje dato sa

y(x) = y1(x) + Ce−R

p(x)dx.

11. Odrediti krive kod kojih svaka tangenta sijece y−osu u tacki koja je pod-jednako udaljena od dodirne tacke i od koordinatnog pocetka.

12. Rijesiti Rikatijevu jednacinu

y′ =5x4− y2,

ako je poznato da ima partikularno rjesenje oblika

y1(x) =a

x+

b

x2.

13. Rijesiti jednacine :

(a) xy′′ + y′ = 0,

(b) y′′ = y′(1 + y′),

(c) y′′′ = 3yy′.

14. Naci Vronskijevu determinantu za funkcije

y1(x) = aex, y2(x) = bex, y3(x) = cex.

Page 159: 81932337 Etf Analiza Zoran Mitrovic

6.4. ZADACI 159

15. Rijesiti jednacine :

(a) y′′ − 4y′ + 3y = 0,

(b) y′′′ + 27y = 0,

(c) y′′ − 2y′ + 5y = 0.

16. Rijesiti jednacine :

(a) y′′ + 4y = sin2x,

(b) y′′ + y′ = ex,

(c) y′′ + 12y′ + 5y = x + 1.

17. Rijesiti jednacinux2y′′ + xy′ − y = 0.

18. Koristeci smjenu x− 2 = z, svesti jednacinu

(x− 2)2y′′ − 3(x− 2)y′ + 4y = x,

na Ojlerovu jednacinu, a zatim je rijesiti.

Page 160: 81932337 Etf Analiza Zoran Mitrovic

160 GLAVA 6. DIFERENCIJALNE JEDNACINE

Page 161: 81932337 Etf Analiza Zoran Mitrovic

Glava 7

Literatura

1. Adnadevic, D., Kadelburg, Z., Matematicka analiza I, Naucna knjiga,Beograd 1989.

2. Demidovic, B. P. i saradnici, Zadaci i rijeseni primjeri iz vise matematikes primjenom na tehnicke nauke, Tehnicka knjiga, Zagreb 1971.

3. Gajic, LJ., Teofanov, N., Pilipovic S., Zbirka zadataka iz Analize I, Uni-verzitet u Novom Sadu, 1998.

4. Hadzic, O., Takaci, Dj ., Matematika za studente prirodnih nauka, Uni-verzitet u Novom Sadu, 1998.

5. Keckic, J. D., Matematika za farmaceute, medicinare, hemicare i biologe,Gradevinska knjiga, Beograd 1977.

6. Merkle, M., Matematicka analiza, Beograd 1996.

7. Vojvodic G., Algebra za studente tehnickih fakulteta, Institut za matem-atiku, Novi Sad 1987.

161