6 , 7 2. vector functions lesson 6 7

55
Vector Functions Lesson 6 UTP/JBJ 1 Objectives At the end of the lesson you should be able to: 1. Define a vector function. 2. Find the limit of a vector function. 3. Differentiate a vector function. 4. Evaluate a given integral.

Upload: nur-hanna

Post on 26-Nov-2014

133 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6 , 7 2. Vector Functions Lesson 6 7

Vector FunctionsLesson 6

UTP/JBJ 1

Objectives

At the end of the lesson you should be able to:

1. Define a vector function.

2. Find the limit of a vector function.

3. Differentiate a vector function.

4. Evaluate a given integral.

Page 2: 6 , 7 2. Vector Functions Lesson 6 7

Vector Function

UTP/JBJ 2

Definition:

A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors.

In notation,

t

were

kthjtgitftr

thtgtftr

,

)()()()(

)(),(),()(

a real number

Page 3: 6 , 7 2. Vector Functions Lesson 6 7

Examples of Vector Functions

ktjtittr

ttttr

)sin()(cos)()2

5,1,)()1 3

UTP/JBJ 3

Page 4: 6 , 7 2. Vector Functions Lesson 6 7

Limit

UTP/JBJ 4

The limit of a vector function r(t) is defined by taking

limits of its component function,

Definition:

If

)(lim,)(lim),(lim)(lim thtgtftratatatat

provided the limits of of the component functions exists.

What is a Continuous Function?

A vector function r is continuous at a if )()(lim artrat

Page 5: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 5

That is if and only if f,g, and h are continuous at a.

To find the limit of the vector function,

1. Substitute in the function.

2. Otherwise use L’Hospital’s Rule.

L’Hospital’s Rule:

atast

.0

0mindet

)(

)(lim0)('

)('

)('lim

)(

)(lim

orliketypeformateerin

becomesxg

xfandxgwere

xg

xf

xg

xf

ax

axax

Page 6: 6 , 7 2. Vector Functions Lesson 6 7

Example of Limit

1. Evaluate the limit of

4/)(sin)(cos)( tasktjtittr

Solution:

4,707.0,707.0)(lim

4707.0707.0)(lim

4)

4lim(sin)

4lim(cos)(lim

4

4

4

t

t

t

tr

kjitr

kjitr

UTP/JBJ 6

Page 7: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 7

Example 2

Evaluate the limit of

ttttt

ln,sin,coslim0

For the first two functions, limit exist, i.e. substitute t = 0. For the third function, substituting the value of t, limit does not exist. By L’Hospital’s Rule,

0lim

1

1

lim

1

lim1

lnlim)ln(lim

0

2

02000

t

tttt

tt

ttt

t

ttt

0,0,1)(lim tr

Page 8: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 8

tt

t

t

et

t 1

3,

11,

1lim

0

Use L’Hospital’s Rule for the first two components.

Your answer should be

3,2

1,1)(lim tr

Example 3:

Evaluate the

Page 9: 6 , 7 2. Vector Functions Lesson 6 7

Derivatives of Vector Functions

The derivative r’(t) of a vector function r(t) is

defined as much the same way as for real valued

functions.

h

trhtr

dt

dr

trdt

dr

h

)()(lim

)('

0

UTP/JBJ 9

Page 10: 6 , 7 2. Vector Functions Lesson 6 7

Geometric Interpretation of the Derivative

UTP/JBJ 10

vectoranttrhtr

vectorgenttr

sec)()(

tan)('

P)(' tr

Q

)( htr

x y

z

C

0

See Figure!

r(t)

Page 11: 6 , 7 2. Vector Functions Lesson 6 7

UTP/ JBJ 11

Theorem:

If

handgfwere

kthjtgitftr

thtgtftr

,

)()()()(

)(,)(),()(

are differentiable functions, then

kthjtgitftr

thtgtftr

)(')(')(')('

)('),('),(')('

Rules for derivatives are similar to rules for real valued

functions. In addition are the following:[ v and u are

differentiable vector functions]

Page 12: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 12

1.

RuleChaintfutftfudt

d

tvtutvtutvtudt

d

tutvtvtutvtudt

d

,))((')(')}]({[

)(')()()(')]()([

)()(')()(')]()([

2.

3.

Added Rules are the Following:

Page 13: 6 , 7 2. Vector Functions Lesson 6 7

Second Derivative

)' ' ( ) ( "r t r

Rules are the same as the real valued functions

Smooth Curves

A curve given by a vector function r(t) on an interval I

is called smooth if r’(t) is continuous and r’(t) is not

equal to 0. (except possibly at any endpoints of I)

UTP/JBJ 13

Page 14: 6 , 7 2. Vector Functions Lesson 6 7

Example 1 Derivative

a) Find the first derivative of

kjtittr 21 1sin)(

UTP/JBJ 14

0,1

,1

1)('

0,12

2,

1

1)('

22

22

t

t

ttr

t

t

ttr

Answer

Page 15: 6 , 7 2. Vector Functions Lesson 6 7

Example 2: Derivative of a Dot Product

If and

find .

ktjtitu 32 32)( ktjtittv sincos)(

)()(')()(')()( tutvtvtutvtudt

d

JBJ/UTP 15

Solution:

tttttt

tttttttt

ttttttttt

tttttdt

d

cos3sin11cos41

cos3sin21sin9cos40

3,2,1cos,sin,1sin,cos,9,4,0

sin,cos,3,2,1

32

322

322

32

Page 16: 6 , 7 2. Vector Functions Lesson 6 7

Derivative of a Cross Product

Example : Differentiate

22 4,,)1(2,, tttttat

Answer: ttattattt 232,2412,416 223

Rule: )(')()()(')()( tvtutvtutvtuDt

UTP/JBJ 16

Page 17: 6 , 7 2. Vector Functions Lesson 6 7

Example 3: Second Derivative

Find the second derivative of

ttbtattr cos,sin,3cos)(

,sin,cos,3cos3sin3)('

sin,cos,3cos)3sin3()('

cos,sin,3cos)(

ttbtatattr

ttbtatattr

ttbttatr

UTP/JBJ 17

Page 18: 6 , 7 2. Vector Functions Lesson 6 7

The second derivative is

ttbtatattr

ttb

taattattr

cos,sin,3sin63cos9)("

cos,sin

,3sin3)3(3sin3cos33)("

Use the same rules and find the second derivative for each component.

On page 897, do problems 9-16.

UTP/JBJ 18

Page 19: 6 , 7 2. Vector Functions Lesson 6 7

Integrals

UTP/JBJ 19

The definite integral of a continuous vector r(t) can be defined in much the same way as for real valued functions except that of the integral is a vector.

b

a

b

a

b

a

b

a

kdtthjdttgidttfdttr ))(())(())(()(

The Fundamental Theorem of Calculus

)()()}({)( aRbRtRdttrb

a

ba

Page 20: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 20

Example 1 : Integrals

Evaluate 1

0

32 )( dtktjtti

kji

tttdtttt

4

1

3

1

2

1

4

1,

3

1,

2

1

4,

3,

2,,

1

0

432321

0

Page 21: 6 , 7 2. Vector Functions Lesson 6 7

UTPJBJ 21

4

0)sin2sin2(cos.2 dtkttjtit

Example 2 : Integrals

)4

1(2

2,2/1,2/1

)]0sin0()4/sin4/cos4/[(

,)0cos2/(cos2/1,)0sin2/sin(2/1

sincos,2cos2

1,2sin

2

1

sin,2sin,2cos

4

0

4

0

ttttt

dttttt

Page 22: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 22

Practice More!!!

On page 898 Solve Nos. 33-38

Page 23: 6 , 7 2. Vector Functions Lesson 6 7

Arc Length and CurvatureLesson 7

At the end of the lesson you should be able to :

1. Define arc length.

2. Find arc length.

3. Reparametrize the curve with respect to arc length.

4. Define curvature.

5. Find curvature.

6. Define TNB

7. Find TNB.

UTP/JBJ 1

Page 24: 6 , 7 2. Vector Functions Lesson 6 7

Arc Length

JBJ/UTP 2

Definition:

The length of a smooth curve r(t) = x(t)I + y(t)j + z(t)k,

that is traced exactly once a t increases

from a to b is (arc length)

1.

b

a

b

a

dtdt

dz

dt

dy

dt

dxL

dtthtgtfL

222

222 )]([)]('[)]('[

bta

Page 25: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 3

Example 1: Arc Length

Find the length of a given curve

Use

1010,cos2,5,sin2)( tttttr

dt

tt

thtgtftrwheredttrb

a

29

29

)sin2(5)cos2(

)]('[)]('[)]('[)(',)('

10

10

222

222

Answer: How? 2920

Then,

Page 26: 6 , 7 2. Vector Functions Lesson 6 7

Example 2: Arc Length

Find the length of the curve given

.80,)3/2()( 2/3 tktittr

3

52)127(

3

2

)1(3

21

)(01

80

38

0

22/1228

0

L

tdttL

dttL

UTP/JBJ 4

Solution:

Page 27: 6 , 7 2. Vector Functions Lesson 6 7

JBJ/UTP 5

2. For a plane curve with vector equation

dtdt

dy

dt

dxL

dttgtfL

continuousaregandf

tgyandtfx

equationsparametricwithbta

tgtftr

b

a

b

a

22

22 )]('[)]('[

.,','

)(,)(

)(),()(

Page 28: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 6

Our formulas therefore are the following:

.

)]('[)]('[)]('[)('

)(')(')(')(')

.

)]([)]('[)(')

)(')(')('

)('

222

22

curvespacefor

thtgtftr

kthjtgitftrb

curveplanefor

tgtftra

jtgitftrwere

dttrLb

a

Page 29: 6 , 7 2. Vector Functions Lesson 6 7

Reparametrize the Curve with Respect to Arc Length

How to do this?

The parameter t must be expressed in terms of another parameter s.

dudu

dz

du

dy

du

dxduurtss

t

a

t

a

222

)(')(

Differentiating both sides you get

)(' trdt

ds

UTP/JBJ 7

Page 30: 6 , 7 2. Vector Functions Lesson 6 7

Arc Length Parametrization

Example 2:

Find an arc length parametrization of the circle of radius 4 centered at the origin.

Solution:

The arc length from u=0 to u=t is given by

20,sin4)(;cos4)(: tttgyttfxC

4,

4)cos4()sin4()(

))('())('()(

22

0

22

0

sttherefore

tduuuts

dtuguftsL

t

t

UTP/JBJ 8

Substitute this to C.

Page 31: 6 , 7 2. Vector Functions Lesson 6 7

Example 3: Reparametrize a Curve

Reparametrize the curve r(t) = 2t i +(1-3t)j + (5+4t) k with respect to arc length from the point t = 0 in the direction of increasing t.

29

294)3(2)(

)(')(

222

0

0

st

tdutss

duurts

t

t

UTP/JBJ 9

Page 32: 6 , 7 2. Vector Functions Lesson 6 7

Then using the given curve, replace t by

29

)(

29

tss

ks

js

is

tsr

tstststsr

)29

45()

29

31(

29

2))((

29

)(45,

29

)(31,

29

)(2))((

UTP/JBJ 10

Page 33: 6 , 7 2. Vector Functions Lesson 6 7

Curvature

UTP/JBJ 11

At any given point the curvature is a measure of how

quickly the curve changes directly at that point. Or, it is

the magnitude of the rate of change of the unit tangent

vector T with respect to arc length.

.)('

)(")('

,sin

)('

)('

3tr

trxtr

Theoremtheguor

tr

tT

ds

dT

where the curve is traced out by the vector function r(t).

Page 34: 6 , 7 2. Vector Functions Lesson 6 7

JBJ/UTP/2004 12

For a special case , like the plane curve, where y= f(x)

the curvature is

2/32)]("[1

)(")(

xf

xfx

Curvature is a scalar quantity!!!

Page 35: 6 , 7 2. Vector Functions Lesson 6 7

The TNB

y

z

x

TB

r

N

T - the unit Tangent vector

represents the forward

direction.

N- the unit Normal vector

represents the direction in

which your turning

B- is the Binormal vector a

tendency of your motion to

“twist”out of the plane

UTP/JBJ 13

Page 36: 6 , 7 2. Vector Functions Lesson 6 7

Unit Tangent Vector

UTP/JBJ 1 4

vectorgenttrweretr

trtT tan)('

/)('/

)(')( It is

xy

z

C

PQ

)(' tr

)( tr)( htr

)()( hrhtr

Page 37: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 15

Example 4: Unit Tangent Vector

Find the unit Tangent vector T(t) of

.1,2,4,6)( 35 tttttr

Use .)('

)(')(

tr

trtT

262

1,6,15

2622

1,6,152)1(

1048

2,12,30)1(

1,2)12()30(

2,12,30)(

2222

24

T

T

twhentt

tttT

Answer is

Page 38: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 16

Example 5. Curvature

Find the curvature of

at the point (1,0,0) .

ttetetr tt ,sin,cos)(

To find the curvature you can use

3)('

)(")(')(

)('

)(')(

tr

trtrtor

tr

tTt

The given point (1,0,0) is satisfied when t = 0. ( substitute t = 0 in r(t)).

Page 39: 6 , 7 2. Vector Functions Lesson 6 7

Solution

1,sincos,cossin)('

,sin,cos)(

tetetetetr

ttetetrtttt

tt

a)

When t = 0,

3)1('1,1,1)0(' randr

b)

0,2,0)0("

0,cos2,sin2)("

0,sincoscossin

,sincossincos)("

r

tetetr

tetetete

tetetetetr

tt

tttt

tttt

c)

2,0,2

0,2,01,1,1)0(")0(' rr

UTP/JBJ 17

Page 40: 6 , 7 2. Vector Functions Lesson 6 7

69

2

3

2

3

2

)3(

8

1,1,1

2,0,2

)0('

)0(")0(')0(

3

3

r

rr

Your answer!

UTP/JBJ 18

Using the other formula will give you the same answer. Decide which formula would be easier to use…

Page 41: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 19

Normal and Binormal Vectors

The Unit Normal of the Principal Unit Vector is defined as:

/)('/

)(')(

tT

tTtN

The Binormal Vector is defined as a vector

perpendicular to both T and N and also a unit vector.

)()()( tNtTtB

Page 42: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 20

See the Figure!!!

C

)( tT)( tB

)( tN

Page 43: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 21

Example 6: Normal Vector and Binormal Vector

Find the N(normal vector) and the B ( binormal vector)

given . (The point is satisfied

when t = 1). .

)1,3

2,1(,,

3

2,)( 32 ttttr

Solution:

a)

1,2,2

12

1

12

1,2,2

)('

)(')(

)('

)(')( 2

22

2

tttt

tt

tr

trtTwhere

tT

tTtN

so that at t = 1,

1,2,23

1)1( T

Page 44: 6 , 7 2. Vector Functions Lesson 6 7

)('

)(')(

tT

tTtN

Where

3

2,2,1)1(

12

2,2,12)(

,12

4,4,24)('

2

2

22

2

N

t

ttttN

thent

ttttT

UTP/JBJ 22

Page 45: 6 , 7 2. Vector Functions Lesson 6 7

b) The Binormal Vector at t = 1 is

.1

3

2,

3

1,

3

2)1(

2,2,13

11,2,2

3

1)1(

)1()1()1(

)()()(

twhen

B

B

NTB

tNtTtB

UTP/JBJ 23

Page 46: 6 , 7 2. Vector Functions Lesson 6 7

Practice TaskFind the curvature and TNB given the

following:

1..1,,2,)( 2 twhenttttr

2. .0,2sin,,2cos3)( twhenttttr

UTP/JBJ 24

Analyze the curvature of a straight line what will it be?

Compare the curvature between a big circle and a small circle. What can you say about it?

Page 47: 6 , 7 2. Vector Functions Lesson 6 7

UTP/JBJ 25

Practice More!!!

Solve the following problems on page 904-905

Nos. 1, 9, 13 , 17, 21, 39 and 40.

Page 48: 6 , 7 2. Vector Functions Lesson 6 7

Motion in Space

UTP/JBJ 26

Page 49: 6 , 7 2. Vector Functions Lesson 6 7

Motion in Space: Velocity and Acceleration

A vector function r(t) may represent as the position of a particle in space at time t.

v(t) = r’(t) is the velocity vector and is the

speed

a(t)=r”(t) is the acceleration vector.

and

)(' tr

Thus, dttvtr )()( dttatv )()(

UTP/JBJ 27

Page 50: 6 , 7 2. Vector Functions Lesson 6 7

Find the velocity and position at time t of a particle whose

position is i+j, initial velocity is j + k, and the acceleration

is a(t) = 12 t i + 2 kInitially, (t = 0) jirkjvo )0(;

Answers:

kttjtittr

ktjittv

)()1()12()(

)12(6)(23

2

UTP/JBJ 28

Example

Page 51: 6 , 7 2. Vector Functions Lesson 6 7

Example

What force is required in order for a 5 kg mass to be pushed

in such a way that, at time t, its position is

?23)( 342 ktjtittr

Use F(t)=m a(t)

Answer: ktjtitatF 606030)(5)( 2

UTP/JBJ 29

Page 52: 6 , 7 2. Vector Functions Lesson 6 7

Example

A projectile is fired with a velocity of 200 m / sec at an inclination of 30 degree from a point 10 meters from the ground. Find the vector function that describes the path of motion.

10m

y

x

Use a(t)= - g j

jgt

tittr

jtgitv

jijiC

CvtAt

Cjtgtv

)102

100(3100)(

)100(3100)(

100310030sin20030cos200

;,0

)(

2

00

0

UTP/JBJ 30

Page 53: 6 , 7 2. Vector Functions Lesson 6 7

Acceleration Determined by Unit Tangent Vector and Unit Normal Vector

The acceleration can be found by the combination of T(t) and N(t)

'

"'

'

"':

)()(

r

rraand

r

rrawhere

tNatTaa

NT

NT

Or

'

"''

'

''')(

),('

2

32

r

rrr

r

rrcurvatureisva

vspeedisva

N

T

UTP/JBJ 31

vv

Page 54: 6 , 7 2. Vector Functions Lesson 6 7

Example:

Find the tangential and the normal components of acceleration for

.)( 342 ktjtittr

Answers:

24

24

24

24

9164

649362;

9164

18484

tt

ttta

tt

tta NT

UTP/JBJ 32

'

"'

'

"':

)()(

r

rraand

r

rrawhere

tNatTaa

NT

NT

Use This!

Page 55: 6 , 7 2. Vector Functions Lesson 6 7

Practice More!!!

Do the following problems on page 914-915

Nos. 5, 9, 11, 13, 16, 18, and 35

UTP/JBJ 33