4 meth deform

64
CIVIL-706 - displacement-based methods EPFL-ENAC-SGC 2005 -1- Doctoral School: Structures CIVIL-706 Advanced Earthquake Engineering Displacement-based methods

Upload: micutulro

Post on 27-Nov-2014

403 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -1-

Doctoral School: StructuresCIVIL-706 Advanced Earthquake Engineering

Displacement-based methods

Page 2: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -2-

Content

• Link to force-based methods

• Assumptions

• Reinforced concrete: chord rotation

• Capacity curve

• Examples: RC shear walls and frames

• Unreinforced masonry

• Example: masonry shear walls

Page 3: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -3-

Link to force-based methods• Application of behavior factor q specified in

the codes SIA 262-266

• For existing buildings, non ductile behavior(q = 1.5 or q = 2.0 for reinforced concrete)

• Displacement-based method: more realisticapproach of real seismic behavior

• Allows to justify an higher value of q

Page 4: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -4-

Displacement-based Method (DbM)• Applicable to deformable structures

• Brittle failure modes excluded:- shear failure- bending with concrete failure before steel yielding- bending with steel failure without sufficient plastic deformation- failure of overlapping zones or anchorage zones

Page 5: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -5-

Displacement-based Method (DbM)• More realistic approach of real behavior

Joe’s

Beer!Beer!Food!Food!

lateral displacement

lateralforce

Joe’s

Beer!Beer!Food!Food!

small change inforce level

large change indeformation level

Page 6: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -6-

Method included in SIA 2018• Slides prepared by

Prof. Alessandro Dazio, IBK- ETH ZürichErdbebeningenieurwesen und Baudynamik

Page 7: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -7-

Reinforced concrete: chord rotation

V

V

M

θ

shear wall

M

M

θV

V

column

θ

Vl

Ml

Vr

Mr

beam

Page 8: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -8-

Reinforced concrete: chord rotation• Angle formed by the tg to element axis at

Mmax location and the chord joining this pointto the zero moment point

• Represents the element sollicitation(removal of rigid displacements)

• Verification by the comparison (demand-capacity) of chord rotations at the elementlevel

Page 9: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -9-

Chord rotation θ: definitions

rigid body rotation

V

V

M

θ

shear wall

M

M

θV

V

column

θ

Vl

Ml

Vr

Mr

beam

= chord= tangent to element axis= zero moment point

Page 10: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -10-

Yielding chord rotation θy

Fy

Vy

My

θy

Lv

moment

My φy

curvature Fy

Vy

My

Δy

vyvv

y

2vy

3vy

y LL3

L3

LEIM

EI3LF

!=""#="==$

Page 11: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -11-

Ultimate chord rotation θu

Fu

Vu

Mu

θu

Lv

moment

Mu φyφp

φu

curvature

Lpl

Lpl = plastic hinge

( )blsvstpl dfLaL !!+!= 022.008.0

hsp

hsp = strain penetration

hpl

hpl = plastic zone

Page 12: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -12-

Ultimate chord rotation θu

Fu

VuMu

Δyφyφp

φu

Lpl Lpl

θy

Lv

( ) )L5.0L(LLL plvplyuvyvuu !"!!#"#+$=$=%

Δp

Δu

θp

θu

Page 13: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -13-

Δ

F

Non-linear force-displacement relationship

F

V

M

θ

Lv

Δ

reality

Δy Δu

Fy

Fu

approximation

Δy = f(φy), Fy = f(My), Δu = f(φy, φu), Fu = f(Mu),

Page 14: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -14-

Bending moment-curvature relationship

φ’y

M’y

φy

Mn

φy = φ’y Mn / M’y

M

φ

Page 15: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -15-

Bending moment-curvature relationship• shear wall

N = -1099 kN

200

4000

36 Ø82 Ø20 2 Ø20

Page 16: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -16-

Bending moment-curvature relationship

First yieldεs = εyεc = 0.002

φ’y

M’y

Nominal strengthεs = 0.015εc = 0.004

φy

Mn

Nominal yield

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7curvature [10-3 m-1]

bend

ing

mom

ent

[MN

m] Ultimate

εs = εs,max, εc = εc,max

φu

Page 17: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -17-

Bending moment-curvature relationship

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7curvature [10-3 m-1]

bend

ing

mom

ent [

MN

m]

φ’y φy φu

Mn

M’y

1st approximation

modified approximation

Page 18: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -18-

Bending moment-curvature relationship• nominal yield curvature φy

Page 19: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -19-

Bending moment-curvature relationship• Material mechanical properties

Page 20: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -20-

Material mechanical properties

0

5

10

15

20

25

0 1 2 3 4 5strain [‰]

stre

ss [M

Pa]

a) concrete BH300, SIA 168/68

1) fcd acc. to SIA 262 2) fck acc. to SIA 2018 3) fck(t) acc. to SIA 2018

1)

2)

εcu

3)

fck(t)

0

100

200

300

400

500

600

0 10 20 30 40 50strain [‰]

stre

ss [M

Pa]

b) steel IIIa, SIA 168/68

1) fsd acc. to SIA 262 2) fsk approx.3) fsk type

1)

2)3)

εuk

ftk

fsk

Page 21: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -21-

Material mechanical properties• Characteristic values

• Partial factor for deformation capacity γD = 1.3

• Ultimate concrete deformationεcmax = εcu = 0.004 (in general)

• Peak steel strain εsmax = αεsu - in general: α = 1.0

- if Mu<2Mcr: α = 0.5- special cases: α = ?

Page 22: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -22-

Application of DbM• Non-linear element behavior

• Equivalent SDOF

• Force-displacement relationship of structure

• Capacity curve

• Seismic displacement demand

• Shear strength verification

Page 23: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -23-

Example: reinforced concrete

• 5 stories

• Building end of 60’

• 1 x direction « wall »

• 1 x direction « frame »

• Zone 3b, CS C, CO I

Main properties

Page 24: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -24-

Example RC: dimensions and structurem5=213t

m4=380t

m3=380t

m2=380t

380t

A

B

C

1 2 3 4 5

11 12 13 14 15

16 17 18 19 20

6

7 8 9

10

mtot = 1733t

Page 25: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -25-

Example RC: element dimensionsshear wall cross-section

beam at mid span beam at connection

column type A column type B

Page 26: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -26-

Example RC: shear walls direction

Fd

wStructure réelle

m1

m2

m3

m4

m5

Fd

w(MDOF)

kMDOF =Σkwalls

m*=1163t

Fd

h*=1

1.95

m

k*

w/Γ

(SDOF)

Page 27: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -27-

Example RC: shear walls direction• Force-displacement relationship

0

100

200

300

400

500

600

700

800

900

0.00 0.05 0.10 0.15 0.20horizontal displacement, w/Γ [m]

glo

bal h

oriz

onta

l for

ce F d

[kN

m]

shear walls

building

Fu=828kN

Fy=744kN

Fu=414kNFy= 372kN

wy/Γ=0.039m wu/Γ=0.119m

Page 28: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -28-

Example RC: shear walls direction• ADRS spectrum with capacity curve

0

1

2

3

4

5

0.00 0.05 0.10 0.15 0.20Sud, w/Γ [m]

S ad,

F d/m

* [m

/s2 ]

elastic design spectrum (Z3b, CO I, CS C)

T=1.55s

wd/Γ wu/ΓwR,d/Γcapacity curve

Page 29: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -29-

Example RC: frame direction• Force-displacement rel.: ∑frames A, B and C

• Torsion neglected

A

B

C

Page 30: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -30-

Example RC: frame direction• Modelisation

Elément traverse

Lpl Lpl

L

αEIg (var.)

Elément pilier

Lpl

Lpl

L αEIg

Page 31: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -31-

Example RC: frame direction• Column element type A

M

MV

VLpl/2

= plastic hinge M/θ (rigid-plastic with softening)

Lpl/2

N

N

0100200300400500

0 10 20 30 40curvature [10 -3 m-1]

bend

ing

mom

. [K

Nm

]

N=-1500kN

-1000kN-500kN

0kN

0100200300400500

0 5 10 15 plastic rotation [10-3]

bend

ing

mom

. [K

Nm

]-1000kN

N=0kN-500kN

-1500kN

Page 32: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -32-

Example RC: frame direction• Beam element

-400

-300

-200

-100

0

100

200

-100 -50 0 50 100 150 200

Courbure [10-3 m-1]

Mom

ent [

KN

m]

= Rotule plastique M/! (rigide-plastique avec adoucissement)

Type 2Type 8

Type 6

Type 4

V

M

V

M

Lpl/2 Lpl/2

-400-300-200-100

0100200

-20 0 20 40 60

Rotation plastique [10-3]

Mom

ent [

KN

m]

Type 2Type 8

Type 6

Type 4

2

Type 8

6

4

2

6

4Type 8

Page 33: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -33-

Example RC: frame direction• Force-displacement relationship

0

500

1000

1500

2000

2500

0.00 0.05 0.10 0.15 0.20 0.25 0.30

horizontal displacement Wd [m]

gl

obal

hor

izon

tal f

orce

Fd [

kN]

frame A

frame B

building = 2 x frame A + 1 x frame B

Fy=2032kN

wy=0.098m wu=0.182m

onset of plastichinge softening

Page 34: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -34-

Example RC: frame direction• Ultimate deformation of frame B

Fd

wd

= Rotule= Rotule (rupture atteinte)

Page 35: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -35-

Example RC: frame direction• ADRS spectrum with capacity curve

wu/ΓwR,d/Γ0

1

2

3

4

5

0.00 0.05 0.10 0.15 0.20Sud, wd/Γ [m]

S ad,

F d/m

* [m

/s2 ]

elastic design spectrum (Z3b, CO I, CS C)

T=1.52s

wd/Γ

capacity curve

Page 36: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -36-

Unreinforced masonry• Application of DbM more delicate

Page 37: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -37-

DbM: unreinforced masonry• Assumptions

(FEMA 356)

plastic deformationsconcentrated in someelements (piers)

Page 38: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -38-

DbM: unreinforced masonry• Limitation: out-of-plane failure excluded

Molise 2002EERI

Page 39: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -39-

Masonry: out-of-plane failure• Control with h/t ratio (FEMA 356)

Page 40: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -40-

Masonry: out-of-plane failure• Control with h/t ratio (SIA 2018)

≤ 17≤ 18≤ 19all other cases

≤ 18≤ 19≤ 20first story of multistorybuilding

≤ 17≤ 18≤ 18top story of multistorybuilding

Z3 / CO IZ3 / CO II

CO III

Z2 / CO IZ2 / CO II

Z1 / CO IZ1 / CO II

seismic zone / building class

limit values of ratioh/tw

Page 41: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -41-

Masonry: out-of-plane failure• More elaborated with stress fields

(SIA 266)

Page 42: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -42-

Masonry: deformation capacity• Compression depending (tests EPFZ)

V

δ

0

100

200

300

400

500

600

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Schiefstellung

Schu

bkra

ft [k

N]

W6

W4

W1

W7W2

drift

late

ral

forc

e [k

N]

Page 43: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -43-

Masonry: deformation capacity• Influence of compression

0

100

200

300

400

500

600

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Schiefstellung

Schu

bkra

ft [k

N]

W6

W4

W1

W7W2

large compression

low compression

drift

late

ral

forc

e [k

N]

Page 44: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -44-

Masonry: deformation capacity• In function of normal force (K. Lang, 2002)

based on test results

nu !" #$= 25.08.0

maximuminterstorey drift

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Normalspannung [MPa]

Stoc

kwer

kssc

hief

stel

lung

[%]

compression stress [MPa]

i

nte

rsto

rey d

rift

[%

]

Page 45: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -45-

Strength of unreinforced masonry• In function of the inclination of σ2

Page 46: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -46-

Lateral strength of URM elements• Determination with stress fields

Principe:

superposition of avertical fieldand aninclined field

Page 47: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -47-

Lateral strength of URM elements• Determination with stress fields

Page 48: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -48-

Lateral strength of URM elements• Determination with stress fields

Page 49: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -49-

Lateral strength of URM elements• Determination with SIA 266

ydwvd ftlkV !!!=1

xd

dzw

N

Mll 1

12 !"=

Page 50: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -50-

Lateral strength of URM elements• Determination with SIA 266

ydwvd ftlkV !!!=1

xd

dzw

N

Mll 1

12 !"=

Page 51: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -51-

Failure modes• Rocking

Page 52: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -52-

Failure modes• Shear

Page 53: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -53-

Lateral strength of URM elements• Simplified formulae (FEMA, EC8)

rocking (FEMA):

shear (FEMA):

with

0

,2

9,0h

lNV w

xdRRd!

!!=

wwdSRd tlV !!!= "67,0,

!!"

#$$%

&

'+''=

ww

xdmdd

tl

N(( 75,05,0

2/35,0 mmN

m

mkmd !=

"

##

!

"mk# 0,5 N /mm

2

Page 54: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -54-

Lateral strength of URM elements• Simplified formulae (FEMA, EC8)

rocking (EC8):

shear (EC8):VRd,S = fvd · t · lc

withfvd = fvd0 + 0,4 · Nxd / (lc · t)

fvd ≤ 0,065 · fb

!

VRd ,R =

lw" N

xd

2 " h0

" 1#1,15 " Nxd

lw" t

w" f

xd

$

% &

'

( )

Page 55: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -55-

Masonry: deformation capacity• According to EC8

rocking:

shear:

[%]8.00

wu

l

h!="

[%]4.0=u!

Page 56: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -56-

Unreinforced masonry buildings• Swiss typical building (Yverdon)

Page 57: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -57-

Example: unreinforced masonry• Simplified typology

Page 58: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -58-

Example: unreinforced masonry• Lateral strength in transversal direction

1440690total

624

216

96

with total couplingeffect

VRd [kN]

3671520lw = 6.0 m

117360lw = 5.0 m

22180lw = 2.0 m

without couplingeffect

VRd [kN]Nd [kN]

Page 59: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -59-

Example: unreinforced masonry• Displacement determination (Lang 2002)

Page 60: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -60-

Example: unreinforced masonry• Capacity curve in transversal direction

0

100

200

300

400

500

600

700

0 5 10 15 20 25top building displacement [mm]

horiz

onta

l str

engt

h [

kN]

wall 2m wall 5m wall 6m building y

capacity curve in y direction

wR

Page 61: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -61-

Example: unreinforced masonry• Without frame effect

displacement capacity:

target displacement:(equal displacement rule)

2063.0* TSaSw gdfudd !!!!== "

mm7.71042.015.16.00.1063.032

=!!!!!=

mmwR 16=

mmw

wd

RdR 3.12

3.1

16

,===

!

mmw

wdR

dR 1.935.1

3.12*

,

,==

!=

Page 62: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -62-

Masonry: lot of uncertainties• Real element deformation capacity?

• Effective coupling effect?

• Effective element stiffness (crack pattern)?

• Research efforts needed

Page 63: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -63-

Real behavior ?• Coupling effect (frame effect)

flexible floors(without coupling effect):

very stiff lintels(total coupling effect):

Htot

hst

lo

lo

hst

h0

Htot

hst

lo

lo

hst

h0

F2

F1

F2

F1

!

h0 "2

3 # htot

!

h0 "12 # hst

Page 64: 4 Meth Deform

CIVIL-706 - displacement-based methodsEPFL-ENAC-SGC 2005 -64-

Masonry: experimental research• Master project Békir Omérovic, EPFL 2005