4. incandescent and halogen lamps - fh münster. incandescent and halogen lamps contents ... ge)...

27
4. Incandescent and Halogen Lamps Contents 41 History 4.1 History 4.2 Physical Fundamentals 4.3 Construction 4.4 Lifetime 4.5 Halogen Incandescent Lamp 4.6 Interference Filter 4.7 Types of Halogen Lamps 48 New Developments 4.8 New Developments Chapter Incandescent and Halogen Lamps Slide 1 Incoherent Light Sources Prof. Dr. T. Jüstel

Upload: duongtuyen

Post on 04-May-2018

233 views

Category:

Documents


2 download

TRANSCRIPT

4. Incandescent and Halogen LampsContents

4 1 History4.1 History4.2 Physical Fundamentals4.3 Construction3 Co s uc o4.4 Lifetime4.5 Halogen Incandescent Lamp4.6 Interference Filter 4.7 Types of Halogen Lamps4 8 New Developments4.8 New Developments

Chapter Incandescent and Halogen LampsSlide 1

Incoherent Light SourcesProf. Dr. T. Jüstel

1820 A th d l Ri b l i Pt i i

4.1 History1820 Arthur de la Rive observes a glowing Pt-wire in vacuum1840 Joseph Wilson Swan experiments with carbonised paper wires1854 Heinrich Goebel constructs the first incandescent lamp with a bamboo fiber, which

finally leads to the carbon filament lampy pProblem: still not sufficiently well evacuated C + O2 CO2

1868 First fabrication of incandescent lamps by Swan (low lifetime)1879 Patent of Thomas Alva Edison

Edison improves incandescent lamps by better evacuation of the lamp bulbEdison improves incandescent lamps by better evacuation of the lamp bulb higher lifetime

1881 Demonstration (Presentation) of Edison Lamp at the World Exhibition in Paris Coil still made from CS hi f hi h lti t l T W R OSearching for high melting metals Ta, W, Re, OsWinner: Tungsten because of the lowest vapour pressure lowest blackening

1900 Max Planck: Theoretical basis (Planck's law) 1902 Osmium wire (Auer and Welsbach)( )1911 Ar/N2 filling1912 Tungsten wire1936 First lamp with a double coiled filament1958 First application of Xenon as a filling gas1958 First application of Xenon as a filling gas1960 Halogen cycle (Zubler and Mosby, GE)1971 First H4 automotive lamp (today also H7) 1973 First halogen lamp with interference filter2010 I d t l k t d h t b ll

Chapter Incandescent and Halogen LampsSlide 2

Incoherent Light SourcesProf. Dr. T. Jüstel

2010 Incandescent lamps marketed as heat balls

4.2 Physical Fundamentals

Input Power

Energy balance of an incandescent lamp

Electromagnetic radiation Conductivity losses Gas losses

Electric current I IR Visible UV

1

1.2

Tungsten filament with the electrical

resistance R

0.5

I ( )

V z( )

V() S t l iti it

resistance R

Electric loss for current I

P = U*I = R*I2

500 1000 1500 200000.

2000.200

nmz

nmWavelength [nm]

V() = Spectral sensitivity curveSpectrum of a glowing filament at about

T = 2700 K (incandescence)

Chapter Incandescent and Halogen LampsSlide 3

Incoherent Light SourcesProf. Dr. T. Jüstel

Wellenlänge in nmnm nmWavelength [nm]380 780

4.2 Physical FundamentalsTh bl k b d di ti b d fi d th li ht i i i th lThe black body radiation can be defined as the light emission in thermalequilibrium (thermal radiation)

3

Spectrum of a black body radiatorPlanck's radiation law (1900)

3x103

3x103

4x103

3000K

1cL T/c51

e

c1 = 2hc2 = 3.741832.10-16 Wm2 2x103

2x103

2500K

L e [W

m-2

nm-1

]1eλ T/c5e 2

c2 = hc/k = 1.438786.10-2 Km = Wavelength [m]Le = Spectral irradiance (radiation density)

5x102

1x103

2000K

L

T = Temperature [K]

Light source Color temperatureS 5800 K

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Wavelength [nm]

Sun 5800 KStudio halogen lamp 3400 KHalogen lamp 3000 K Incandescent lamp (b lb) 2700 K

Wien's displacement law

K]μm2880Tλmax [

Chapter Incandescent and Halogen LampsSlide 4

Incoherent Light SourcesProf. Dr. T. Jüstel

Incandescent lamp (bulb) 2700 K

4.2 Physical FundamentalsIncandescent and halogen lamps are spatially and temporally incoherent lightsources

Incoherence Temporally coherence Spatially and temporallyIncoherence Temporally coherence Spatially and temporally coherence

Through color filter and pinhole a small-area, t ll d ti ll

A color filter allows only light of a certain wavelength to

A light bulb radiates incoherent: the wavelengths of the individual

temporally and spatially coherent light source of very low intensity is created

pass through: the radiation is temporally coherent (monochromatic)

waves are different or between the various points of the radiating surface, there is no fixed phase relationship

Chapter Incandescent and Halogen LampsSlide 5

Incoherent Light SourcesProf. Dr. T. Jüstel

relationship

4.3 ConstructionFilament is double coiledTungsten filament

Fill gas = noble gas (Ar Kr Xe) + N2

(Mo)

noble gas (Ar, Kr, Xe) + N2(pressure = 1 bar) Typical: 80% N2 + 20% Ar

It is coiled initially on Mo, then Mo is removedthen Mo is removed

Ar 39,9 g/molKr 83,8 g/molX 131 3 / l

Screw thread = Edison-TypeBajonett-TypeC t t

Xe 131,3 g/mol

Bajonett-TypeDiameter in mm

Europe E10 E14 E27 E40USA E12 E17 E26 E39

Contact

Chapter Incandescent and Halogen LampsSlide 6

Incoherent Light SourcesProf. Dr. T. Jüstel

USA E12 E17 E26 E39

4.3 ConstructionFrom a glass bulb to an incandescent lamp

Chapter Incandescent and Halogen LampsSlide 7

Incoherent Light SourcesProf. Dr. T. Jüstel

4.3 ConstructionProduction of tungsten filament

Tungsten production Filament productionOres: CaWO4 or (Fe,Mn)WO4

“Scheelite” “Wolframite”W-staves

Hammering, rollingDi ti ith HCl

MeCl2 + WO3.H2O “Tungstite”

W-plates

Pulling

Digestion with HCl

(NH4)10[H2W12O42] “Paratungstate”W-wires

g

Winding/coiling

Leaching with NH3

WO3

W-filament

Winding/coiling600 °C

-W-metal powder

Doping, H2, 450 °C

Pressing + sintering to W-staves

Chapter Incandescent and Halogen LampsSlide 8

Incoherent Light SourcesProf. Dr. T. Jüstel

4.4 LifetimeBlackening of incandescent lamps

Tungsten which evaporates from the filament condenses i id f th l b lbinside of the glas bulb

WasserT OsWasserT OsReTaW

Tungsten has the lowest vapour pressure of all metals and the highest melting point of all metals (Tm 3410 °C) Carbon (graphite) melts at 3550 °C

Chapter Incandescent and Halogen LampsSlide 9

Incoherent Light SourcesProf. Dr. T. Jüstel

of all metals (Tm = 3410 °C), Carbon (graphite) melts at 3550 °C

4.4 LifetimeThe hotter is the filament, the more efficient is an incandescent lamp, however blackening is then also stronger

Operating conditions of an incandescent lamprepresent a compromise between the energy efficiency and lifetime t.efficiency and lifetime t.

Typical values for operation at nominal voltage: = 13 lm/W and t = 1000 h

in K = 13 lm/W and t = 1000 h

„Hot spot“- mechanismW i b thi

W

W-wire becomes thinner Resistance increases Local output and temperature increase Vapour pressure increases Burning-out at „hot spot“

Chapter Incandescent and Halogen LampsSlide 10

Incoherent Light SourcesProf. Dr. T. Jüstel

4.5 Halogen Incandescent LampFunctional principle

In halogen incandescent lamp tungsten is transported Wback to the filament from glass bulb via chemical transport Glass bulb remains clear

Filling gas = nobel gas + O2 + X2 (X = Br, I)

= Solubility curve = p + p + p += pW+ pWO+ pWBr+ .....

Chapter Incandescent and Halogen LampsSlide 11

Incoherent Light SourcesProf. Dr. T. Jüstel

4.5 Halogen Incandescent LampChemical transport in halogen incandescent lamps

The position of the chemical equilibrium ΔSΔHl K00

is temperature dependent: W + O2 + X2 ⇌WO2X2 van‘t HoffRΔS

TRΔHlnK

Halogen-cycle

lnK

W + O2 + X2 ⇌ WO2X2 Chemical transport

lnK2 > 0 T2 = Wall WO2X2(g)

WBrO

lnK = 0

lnK1 < 0 T1 = Filament

Wendel

1/T

1

1/T1/T

1 W(s) + O2(g) + X2(g)

Chapter Incandescent and Halogen LampsSlide 12

Incoherent Light SourcesProf. Dr. T. Jüstel

1/T21/T1

4.5 Halogen Incandescent LampLimitation of the W-Recycling

• Although W back transport is efficient, no curing of the W-filament occursg p g• Gaseous W condenses at the cold spot (thickest section due to lowest resistance)

W + ½ O2 ⇌ WOW ½ O2 ⇌ WO

WO + ½ O2 ⇌WO2

WO2 + ½ O2 ⇌WO3

2 W + 3 O ⇌ 2 WO ΔH 764 kJ/ lTungsten crystals

2 W(s) + 3 O2(g) ⇌ 2 WO3(s) ΔH = -764 kJ/mol

Chapter Incandescent and Halogen LampsSlide 13

Incoherent Light SourcesProf. Dr. T. Jüstel

4.5 Halogen Incandescent LampSet of problems with UV-radiation

Due to the higher filament’s temperature halogen incandescent lamps emit alsoDue to the higher filament s temperature, halogen incandescent lamps emit also some of UV-A and UV-B radiation, since the quartz bulb is transparent to UV radiation.

T i i t

Transmission and emission spectrum of Ce3+ doped silica glass

Transmission spectrum of quartz glass

100

0,8

1,0 Transmission spectrum Emission spectrum

ty [a

.u.]

60

80

on (%

)

0,4

0,6

mis

sion

inte

nsit

40

60

Tran

smis

sio

300 400 500 600 700 8000,0

0,2Em

W l th [ ]120 140 160 180 200

0

20

W l th

Chapter Incandescent and Halogen LampsSlide 14

Incoherent Light SourcesProf. Dr. T. Jüstel

Wavelength [nm]Wavelength nm

4.5 Halogen Incandescent LampAdvantages over incandescent lamps

In halogen incandescent lamp remains the (bulb) wall, during the chemical g p gtransport, clear Reduction of bulb size Increase the noble gas pressure Increase the noble gas pressure Lower evaporation rate of tungsten gives a higher lifetime, what gives partly higher efficiency (higher filament temperature)

T [K] [lm/W] [%]

2700 13 10 Incandescent lamp2800 16 113000 22 13 Typical halogen lamp3200 29 163400 36 20

Special halogen lamp (Projectors, TV-studios)

Chapter Incandescent and Halogen LampsSlide 15

Incoherent Light SourcesProf. Dr. T. Jüstel

( j

4.6 Interference FilterSince incandescent lamps and halogen incandescent lamps emit substantially IR-radiation, even higher efficiencies can be achieved by IR filter

Principle on the example of the halogen lamp

Visible light is transmitted

IR light is reflected back to the filament = 20 lm/W 40 lm/W

Selective mirror

IR light is reflected back to the filament

ctan

ce

Interference filter

Ref

lec Interference filter

Chapter Incandescent and Halogen LampsSlide 16

Incoherent Light SourcesProf. Dr. T. Jüstel

UV 380 Visible 780 IR [nm]

4.6 Interference Filter Interference filters consist of a sequence of low-and highly refractive inorganic layers

m. Constructive interferencem Constructive interferenceHigh reflectance

Path difference = 2nd - /2

Glass (n = 1.5) TiO2, ZnS, ... (n = 2.3 – 2.7)(k+1/2) Destructive interference

Low reflectance

dd

Example: 2nd = 500 nmLow reflectance

k=0 = 500 nm n

Visible IR

k=0 = 500 nmk=1 = 500/2 = 250 nmk=2 = 500/3 = 167 nm......

High reflectance

Ref

lect

ion

1 Layer

U t 40 lHigh reflectancem=0 = 500/0.5 = 1000 nmm=1 = 500/1.5 = 333 nmm=2 = 500/2.5 = 200 nm 200 400 600 800 1000 [nm]

Up to 40 layers

Chapter Incandescent and Halogen LampsSlide 17

Incoherent Light SourcesProf. Dr. T. Jüstel

......

4.6 Interference FilterEnergy saving filter

IRVIS

C ld li ht i i i i filtCold light mirror Cold light mirror is an inverse energy saving filter: It reflects visible light and let IR radiation pass through.

IR

VIS

C ld li ht fl t t f t i d d d d bl i ibl b hi d th l

VIS

Chapter Incandescent and Halogen LampsSlide 18

Incoherent Light SourcesProf. Dr. T. Jüstel

Cold light reflector are not perfect, i.e. deep red and deep blue are visible behind the lamp

4.6 Interference FilterInterference filter as colour filter

Application in light sources and spectrometersfle

xion

Ref

380 780 IR [nm]

Lack of blue in emission spectrum yellow filter

Chapter Incandescent and Halogen LampsSlide 19

Incoherent Light SourcesProf. Dr. T. Jüstel

4.7 Types of Halogen LampsHalogen lamps for general lighting P = 200 - 500 W

U = 230 VP = U2/R, i. e. U R, R = *l/A Longer and thinner filament Filament is less stable Filament is less stable Tfilament is lowered decreases in comparison with

low voltage lampsLow-voltage halogen lamps High-voltage halogen lamps

low voltage lamps

Outer envelope PAR = Parabolic U = 12, 24 V (Transformator is required)

Chapter Incandescent and Halogen LampsSlide 20

Incoherent Light SourcesProf. Dr. T. Jüstel

(hot & fingerprints) reflector lampP = 20 - 50 W

4.7 Types of Halogen LampsLow Voltage vs. High Voltage Halogen Lamps

Lamp type Low voltage High voltageVoltage U [V] 12 230

Power P [W] 20 20Power P [W] 20 20

Filament length l [cm]

2,21 15,81[ ]Diameter d [μm] 54,1 7,558

Chapter Incandescent and Halogen LampsSlide 21

Incoherent Light SourcesProf. Dr. T. Jüstel

4.7 Types of Halogen LampsCar head lights

Di d h d li ht (l b )Drive light (high beam)

Dimmed head lights (low beam)Drive light (high beam)

Dimmed head lights (low beam) Dimmed head lights (low beam)

Low beamHigh beam Low beamHigh beam

H7-Lamps(1 Filament)

H4-Lamps(2 Filaments)

Chapter Incandescent and Halogen LampsSlide 22

Incoherent Light SourcesProf. Dr. T. Jüstel

(1 Filament) (2 Filaments)

4.7 Types of Halogen LampsHalogen lamps SSTV Market (Stage-Studio-TV)

Headlamp

Sphericalmirror f

Fresnel lensFresnel lens

Original filament Picture of a filament

Chapter Incandescent and Halogen LampsSlide 23

Incoherent Light SourcesProf. Dr. T. Jüstel

4.8 New DevelopmentsWhite LEDs are becoming strong competition for halogen incandescent lamp

Light source Luminous flux Efficiency Brightness CRI Lifetime CostsLight source Luminous flux Efficiency Brightness CRI Lifetime Costs[lm] [lm/W] [Mcd/m2] [kh] [$/Mlm.h]

Incandescent 60 W 900 15 10 100 1 7.2Halogen 50 W 1000 20 20 100 2 6 3Halogen 50 W 1000 20 20 100 2 6.3LED 2002 125 25 3 75 60 6.0LED 2013 1000 250 10 90 60 < 1.0

Further development of incandescent and halogen bulbs

Tungsten filament with photonic band structure via 3D-structuring.Aim: Reduction of the IR-emission and therefore increasing gthe light efficiency.

Chapter Incandescent and Halogen LampsSlide 24

Incoherent Light SourcesProf. Dr. T. Jüstel

4.8 New DevelopmentsSpecialties

High performance lamps Colored incandescent lampHigh performance lamps Colored incandescent lamp(up to 20 kW) (coated with inorganic metal oxides )

i h C Al O i h F OChapter Incandescent and Halogen LampsSlide 25

Incoherent Light SourcesProf. Dr. T. Jüstel

with CoAl2O4 with Fe2O3

4.8 New DevelopmentsSpecialties

Doping of the lamp glass, e.g. by Nd2O3 (GE Lighting: Reveal®)op g o e p g ss, e.g. by Nd2O3 (G g g: eve )Aim: Increase of the color temperature without loss of color rendering

Enhancement of the contrast between red and green

Chapter Incandescent and Halogen LampsSlide 26

Incoherent Light SourcesProf. Dr. T. Jüstel

4.8 New DevelopmentsSpecialties

2010: Marketing of incandescent lamps as heatballs as a reaction on the ban2010: Marketing of incandescent lamps as heatballs, as a reaction on the ban of incandescent lamps driven by the EU

2016: Ban of halogen lamps implemented

Chapter Incandescent and Halogen LampsSlide 27

Incoherent Light SourcesProf. Dr. T. Jüstel