3d silicon detectors for lhc upgrades - stanford university€¦ · atlas pixel atlas sct - barrel...

57
3D Silicon Detectors for LHC Upgrades 3D Silicon Detectors for LHC Upgrades 2009 Cinzia Da Viá, The University of Manchester For the 3DATLAS project S- 21 st January 2 •Introduction 3D ili i l d For the 3DATLAS project ster-SLAC –ADS 3D silicon pixel detectors: -Radiation Hardness t d dissi ti ersity of Manche -current and power dissipation -C, noise, timewalk and overdrive with AtlasFE-I3 -module design plans for the IBL for Atlas a Via’-The Unive Status of fabrication facilities Conclusions -Timescale and plans for 2009 Cinzia D Conclusions -Timescale and plans for 2009 C. Kenney, S. Parker (MBC, Hawaii), J. Hasi, S. Watts, J. Pater, J. Freestone, S. Kolya, S.Snow; R. Thompson (Manchester), M. Mathes M. Cristinziani, N. Wermes (Bonn), S. Stapnes, O. Rohne, E. Bolle (Oslo),G. Darbo, R. Beccherle (Genova), S. Pospisil, V. Linhart, T. Slaviceck (Praha), K. Einsweiler, M. Garcia-Sciveres (LBL) A. Kok, T-E Hansen (Sintef) – More generally the ATLAS-3D project team

Upload: others

Post on 13-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

3D Silicon Detectors for LHC Upgrades3D Silicon Detectors for LHC Upgrades20

09pgpgCinzia Da Viá,

The University of ManchesterFor the 3DATLAS project

S-21

stJa

nuar

y 2

•Introduction

3D ili i l d

For the 3DATLAS project

ster

-SLA

C –A

DS •3D silicon pixel detectors:

-Radiation Hardness t d dissi ti

ersi

ty o

f M

anch

e -current and power dissipation-C, noise, timewalk and overdrive with AtlasFE-I3-module design plans for the IBL for Atlas

aVi

a’-Th

e U

nive

•Status of fabrication facilities

•Conclusions -Timescale and plans for 2009

Cinz

iaD Conclusions -Timescale and plans for 2009

C. Kenney, S. Parker (MBC, Hawaii), J. Hasi, S. Watts, J. Pater, J. Freestone, S. Kolya, S.Snow; R. Thompson (Manchester), M. Mathes M. Cristinziani, N. Wermes (Bonn), S. Stapnes, O. Rohne, E. Bolle (Oslo),G. Darbo, R. Beccherle (Genova), S. Pospisil, V. Linhart, T. Slaviceck (Praha), K. Einsweiler, M. Garcia-Sciveres (LBL) A. Kok, T-E Hansen (Sintef)– More generally the ATLAS-3D project team

Page 2: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Introduction20

09S-

21st

Janu

ary

2st

er-S

LAC

–AD

Ser

sity

of

Man

che

aVi

a’-Th

e U

nive

Cinz

iaD

Page 3: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Track reconstruction at different luminositiesTrack reconstruction at different luminositiesd j f k kd j f k k

2009

need to reject fake tracksneed to reject fake tracksS-

21st

Janu

ary

2st

er-S

LAC

–AD

Ser

sity

of

Man

che

aVi

a’-Th

e U

nive

Cinz

iaD

CMS simulation-From Collins, VPI 2007

Page 4: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

From J. Nash/IC SLHC R&D, Cern 9 April 200820

09S-

21st

Janu

ary

2st

er-S

LAC

–AD

Ser

sity

of

Man

che

aVi

a’-Th

e U

nive

Cinz

iaD

Page 5: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

The LHC and SLHC challenge20

09

at full luminosity L=1034 cm-2 s-1:• ~23 overlapping interactions in each bunch crossing every 25

g

1016

SUPER - LHC (5 years, 2500 fb-1)Pixel (?) Ministrip (?)

S-21

stJa

nuar

y 2

ns ( = 40 MHz )

• inside tracker acceptance (|h|<2.5) 750 charged tracks per bunch crossing

5 1014 bb 1014 tt 20 000 hi b t l 10161015

51016

cm-2

] total fluence Φeqtotal fluence Φeq

Macropixel (?)

ster

-SLA

C –A

DS • per year: ~5x1014 bb; ~1014 tt; ~20,000 higgs; but also ~1016

inelastic collisions – impact parameter resolution important

• severe radiation damage to detectors:

– Fast Hadron dose at 4 cm after 10 years/500 fb-1 is 3 51014

5

Φeq

[c

neutrons Φeq

pions Φeq

th h d

ersi

ty o

f M

anch

e Fast Hadron dose at 4 cm after 10 years/500 fb is 3 x 1015 cm-2

– Fast Hadron Dose at 22 cm after 10 years/ 500 fb-1 is 1.5 x 1014 cm-2

0 10 20 30 40 50 60r [cm]

1013

other charged hadrons ΦeqATLAS SCT - barrelATLAS Pixel

(microstrip detectors)

[M.Moll, simplified, scaled from ATLAS TDR]

aVi

a’-Th

e U

nive • Inner detector key requirements: speed, radiation hardness

–SLHC L=1035cm-2s-1

Fast Hadron dose at 4cm after 5 Years is 1 6x1016cm-2

Displacement Damage in Silcon for Different Particles

1.0E+04

Cinz

iaD Fast Hadron dose at 4cm after 5 Years is 1.6x10 cm

2500 fb-1 after 5 years

~230 overlapping interactions Primary vertex detection! 1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

D/(9

5MeV

mb)

protons

electrons

pions

~7000 ch-tracks/bc- (rejection)1.0E-05

1.0E-04

1.0E-03

1.0E-10 1.0E-08 1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02 1.0E+04

particle energy [MeV]D neutrons

Page 6: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

General considerations for the next generationGeneral considerations for the next generationf i l d t t t h lf i l d t t t h l

2009

of pixel detector technologyof pixel detector technologyS-

21st

Janu

ary

2

Radiation hardness : for the IBL 3x1015 n/cm3

( up to~2x 1016 n/cm2 for the upgrade) -Preserve tracking performance

ster

-SLA

C –A

DS Preserve tracking performance

Power budget and max current limited – cables (now Vmax=600V )Cooling - HV power distribution

ersi

ty o

f M

anch

e Cooling HV power distribution

Layout improvement - Active edge sensors,IBL radius - material budget

aVi

a’-Th

e U

nive

IBL radius material budgetLorentz angle - MCM compatible –

Large scale production – industrial vendors availability

Cinz

iaD

g p yTimescale - Yield - Cost

Speed better than present planar technologyp p p yPileups, rate

Page 7: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Radiation Induced Bulk Damage in SiliconRadiation Induced Bulk Damage in Siliconin a ‘nut shell’in a ‘nut shell’

2009

From RD48/ROSERD50

in a nut shellin a nut shellS-

21st

Janu

ary

2

Primary Knock on Atom

Displacement threshold in Si:Frenkel pair E~25eV

ster

-SLA

C –A

DS p

Defect cluster E~5keV

Vacancy

ersi

ty o

f M

anch

e

V,I MIGRATE UNTIL THEY MEETVan Lint 1980

Interstitial

Effect on sensors

aVi

a’-Th

e U

nive

E

V,I MIGRATE UNTIL THEY MEETIMPURITIES AND DOPANTS TOFORM STABLE DEFECTS

CHARGED DEFECTS==>NEFF, VBIAS

DEEP TRAPS, RECOMBINATION

Cinz

iaD Ec

Ei V2(-/0)+Vn Ec-0.40eVV2(=/-)+Vn Ec-0.22eVVO- Ec - 0.17eVV6

V2O

CENTERS ==>CHARGE LOSS

GENERATION CENTERS==>LEAKAGE CURRENT

Ev

Ei

CIOI(0/+) EV+0.36eV

V2O

At higher fluencesTrapping dominates

Page 8: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

φλ 1

∝∝L

SEBy solving Ramo’s equation20

09

200

ns)

T = -20 oC

500

Leff e 3V/micronLeff h 3V/micron)

φLλ=effective drift length = τeff x vdrift

S-21

stJa

nuar

y 2

100

150

ft L

engt

h (m

icro Electrons

200

300

400

250K and 3V/micronScaled by 1.43 compared

to Kramberger data

ft Le

ngth

(mic

rons

)

ster

-SLA

C –A

DS

0

50

Fluence = 1015 protons cm-2

Eff

ectiv

e D

rif

Holes

0

100

200

Effe

ctiv

e D

rif

ersi

ty o

f M

anch

e 00 1 2 3 4

Electric Field ( Volt/micron )

Fox maximum Fox maximum

0 2 1015 4 1015 6 1015 8 1015 1 1016

24 GeV/c proton fluence

aVi

a’-Th

e U

nive

•Collect electrons 3 times higher bilit th h l

Signal Efficiency in Si:Signal Efficiency in Si:

3D

Technologies:

Cinz

iaD mobility than holes

•Work at vdrift saturated (~3V/mm)

n-on-n, n-on-p, MCz thin epi

•Small inter-electrode spacing LMCz,, thin, epiThen:Diamond, Gossip

Page 9: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Some history..3D silicon sensors were originally proposed by Sherwood ParkerSome history..3D silicon sensors were originally proposed by Sherwood Parkerand fabricated at Stanford by C. Kenney (MBC) who proposed “active edges”. and fabricated at Stanford by C. Kenney (MBC) who proposed “active edges”. And since 2000 by J. And since 2000 by J. HasiHasi (Manchester) (Manchester)

2009

yy ( )( )

l

S-21

stJa

nuar

y 2 Combine traditional VLSI processing and

MEMS (Micro Electro Mechanical Systems)technology.

h l h

ster

-SLA

C –A

DS Both electrode types are processed inside the

detector bulk instead of being implanted on the Wafer's surface.

h l f ll b

ersi

ty o

f M

anch

e The edge is an electrode (following an idea by C. Kenney). Dead volume at the Edge < 5 microns! Essential for forward physics experiments and material budget

aVi

a’-Th

e U

nive

2006 3DC collaboration was formed

1. NIMA 395 (1997) 328 2. IEEE Trans Nucl Sci 46 (1999) 12243. IEEE Trans Nucl Sci 48 (2001) 1894 IEEE Trans Nucl Sci 48 (2001) 1629

Cinz

iaD Core Members: Brunel/Manchester, Hawaii

Oslo University, Sintef and Stanford (MBC)4. IEEE Trans Nucl Sci 48 (2001) 1629 5. IEEE Trans Nucl Sci 48 (2001) 2405 6. Proc. SPIE 4784 (2002)3657. CERN Courier, Vol 43, Jan 2003, pp 23-268. NIM A 509 (2003) 86-919. NIMA 524 (2004) 236-244

2007 3D Atlas R&D approved 10. NIM A 549 (2005) 12211. NIM A 560 (2006) 12712. NIM A 565 (2006) 27213. IEEE TNS 53 (2006) 167614. NIM A 587(2008) 243-249

Page 10: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

ProcessingProcessing20

09

ProcessingProcessingS-

21st

Janu

ary

2

Currently performed at the Stanford-Nanofabrication-

ster

-SLA

C –A

DS

Facility (CIS) Stanford USA

C. Kenney (MBC), J. Hasi (Manchester)

ersi

ty o

f M

anch

e (Manchester)

1000m2

aVi

a’-Th

e U

nive

Manchester HAWAII

1000 1000m2

Cinz

iaD Manchester – HAWAII –

STANFORD (Molecular Biology Consortium)

SINTEF, Oslo, Praha form the 3DCConsortium, since February 2006

Page 11: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Aspect ratio:D:d = 11:1

Key processing steps (25Key processing steps (25--32)32)20

09

1- etching the 2-filling themelectrode with dopants

S-21

stJa

nuar

y 2

Step 1-3 field implant oxidize

Step 9-13 dope and fill n+

Dd

ster

-SLA

C –A

DS

WAFER BONDING (mechanical stability)Si-OH + HO-Si -> Si-O-Si + H2O

implant, oxidize and fusion bond wafer

and fill n+electrodes LOW PRESSURE

CHEMICAL VAPOR DEPOSITION(Electrodes filling with conformal doped polysilicon

ersi

ty o

f M

anch

e

Step 4-6 pattern and etch p+ window contacts

Step 14-17 etch n+

window contacts and electrodes

conformal doped polysilicon SiH4 at ~620C)2P2O5 +5 Si-> 4P + 5 SiO22B2O3 +3Si -> 4 B +3 SiO2

Both electrodes appear on both surfaces

aVi

a’-Th

e U

nive

290

μm

contacts

Step 18-23 dope and fill p+

p

Cinz

iaD

DEEP REACTIVEION ETCHING (STS) (electrodes definition)

Step 7-8 etch p+

electrodes

and fill p+electrodes

nMETAL DEPOSITION(electrodes definition)

Bosh processSiF4 (gas) +C4F8 (teflon)

Step 24-25 deposit and pattern Aluminum

Shorting electrodes of the same type with Al for strip electronics readoutor deposit metal for bump-bonding

Page 12: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Next step: Dual readoutNext step: Dual readout20

09

From Kenney US Atlas Upgrade meetingSeptember 08

S-21

stJa

nuar

y 2

Dual Readout – 3D Bump Side

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

e

C. Da Via et al., “Dual readout – strip/pixel systems”,NIM A594, pp. 7-12 (2008).

aVi

a’-Th

e U

nive

Dual Readout – 3D Non-Bump SideDevices being presently processedPrototypes available in

Cinz

iaD Prototypes available in

spring-summer09. Might be used for trigger at AtlasFPtrigger at AtlasFP

Page 13: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Active edge processingActive edge processing20

09

Active edge processingActive edge processingS-

21st

Janu

ary

2

A TRENCH IS ETCHED AND DOPED TO TERMINATE THE E-FIELD LINES

ster

-SLA

C –A

DS FIELD LINES

ersi

ty o

f M

anch

e

AFTER THE FULL PROCESS IS COMPLETED THE MATERIAL SURROUNDING

aVi

a’-Th

e U

nive THE DETECTORS IS ETCHED

AWAY AND THE SUPPORTWAFER REMOVED : NO SAWING NEEDED!!!

Cinz

iaD (NO CHIPS, NO CRACKS)

Page 14: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

MBCMBC--MANCHESTERMANCHESTER--HAWAIIHAWAIIDesign and fabrication by:

Financial support:STFC-UK for the FP420 projectDOE, USA for ATLAS Upgrade

2009 2E

50 μm

Thickness <210 μm>p-type substrate 12kΩcm

Design and fabrication by:J. Hasi, ManchesterC. Kenney, MBC at CIS-Stanford

S-21

stJa

nuar

y 2

400 μm50 μm

n

ster

-SLA

C –A

DS

3E

p 103μmVfd ~20V

Baby-2E Baby-3EATLAS pixel chip7.2 x 8 mm2

2880 pixels

ersi

ty o

f M

anch

e

400 μm50 μm

n Atlas chip picture from

aVi

a’-Th

e U

nive

4E

p71 μm

Vfd ~8V

picture from Bekerle Vertex03

Cinz

iaD 4E

400 μm50 μm

56 μmp

n

Vfd ~5V10 wafers being competed. Yield~80% (1 wafer)

Page 15: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Radiation hardness testsRadiation hardness tests20

09

S l /fl A d 1M V P

Irradiation and measurements performed in PragueC. Da Viá, T. Slaviceck, V. Linhart, P. Bem, S. Parker, S. Pospisil, S. Watts (process J. Hasi, C. Kenney)

S-21

stJa

nuar

y 2 Samples/fluence As measured

n/cm2

1MeV (1.784)n/cm2

Protons(1/0.51)p/cm2

2E, 3E, 4E 4.23 1014 7.55 1014 1.48 1015

2E 3E 4E 1 12 1015 2 00 1015 3 92 1015 amplifiers

ster

-SLA

C –A

DS 2E, 3E, 4E 1.12 1015 2.00 1015 3.92 1015

2E, 3E, 4E 4.94 1015 8.81 1015 1.73 1016

amplifiers

ersi

ty o

f M

anch

e

0 .0 01

0 .0 02

IR Laser1060nm

Oscilloscope Probeslaser

aVi

a’-Th

e U

nive

-0 .0 04

-0 .0 03

-0 .0 02

-0 .0 01

0

Sign

al [V

]

bias

Cinz

iaD

-0 .0 06

-0 .0 05

-3 1 0 -7 -2 1 0 -7 -1 1 0 -7 0 1 1 0 -7 2 1 0 -7 3 1 0 -7

T im e [s ]

T=-20C Gain = ~10000T=-20C

sample

Page 16: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Radiation hardnessRadiation hardness 8.81x1015n/cm2

1.73x1016p/cm220

09 80

100

120

ncy

[%]

2E120

1602E NI7.55e142.00e158.81e15

tude

[mV]

2E 45%

Irradiation and measurements performed in PragueC. Da Viá, T. Slaviceck, V. Linhart, P. Bem, S. Parker, S. Pospisil, S. Watts (process J. Hasi, C. Kenney)

2E50 μm

S-21

stJa

nuar

y 2

0

20

40

60

Sign

al e

ffici

en

C. Da Viá July 070

40

80

Sign

al A

mpl

it

C. Da Viá July 07

2E9000e-

Vb~130V

45%

threshold

400 μmμ

n

ster

-SLA

C –A

DS 0

0 2 1015 4 1015 6 1015 8 1015 1 1016

Fluence [n/cm2]

100

120

%]

120

140

1603E-NI7.55e142.00e158.81e15[m

V]

00 50 100 150 200

Bias Voltage [V]

3E 51%3E

50

p 103μmVfd ~20V

ersi

ty o

f M

anch

e

20

40

60

80

Sign

al e

ffici

ency

[%

3E

40

60

80

100

120 8.81e15

Sign

al A

mpl

itude

[3E10200e-

Vb~112V

51%400 μm

50 μm

pn

aVi

a’-Th

e U

nive

120

0

20

0 2 1015 4 1015 6 1015 8 1015 1 1016

S

Fluence [n/cm2]

C. Da Viá July 07

140

0

20

0 50 100 150 200Bias Voltage [V]

C. Da Viá July 07 threshold

4E

p71 μm

Vfd ~8V

Cinz

iaD

60

80

100

120

effic

ienc

y [%

]

4E

60

80

100

120

1404E NI7.55e142.00e15 8.81e15

Am

plitu

de [m

V]4E13200e-

Vb~94V

E

400 μm50 μm

0

20

40

0 2 1015 4 1015 6 1015 8 1015 1 1016

Sign

al e

Fluence [n/cm2]

C. Da Viá et al. July 070

20

40

0 50 100 150 200

Sign

al A

Bias Voltage [V]

C.DaVia July 07

Vb 94V66%

thresholdp

n

Vfd ~5V

Page 17: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Signal Efficiency and Signal Charge in 3DSignal Efficiency and Signal Charge in 3D20

09g y g gg y g g

structuresstructuresS-

21st

Janu

ary

2

particle3Dn+p+ n+n+n+ p+ p+p+ n+

⎤⎡λ

)exp(λx

dtdx

dxdVq

dtdS W −=

ster

-SLA

C –A

DS

--

--

++++

++

++

L Δ

⎥⎦⎤

⎢⎣⎡ −−= )exp(1

λλ xL

S

)(22 λλλ LSE ⎟

⎞⎜⎛

⎟⎞

⎜⎛

ersi

ty o

f M

anch

e

d

~50 μm

--

--

++ )exp(λ

λλλ LLLL

SE −⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−=

aVi

a’-Th

e U

nive ~ 500 μmActive edge ~4μm

Φ+= KL

SEτ6.01

1

Cinz

iaD

----

++

++++

L=Δi

Dv

L=Inter electrode distanceΔ thi k

PLANARn+

Trapping times from Kramberger et al. NIMA 481 (2002) 100 NIM A 501(2003) 138 (Vertex 2001)

Δ=thickness

Page 18: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Signal efficiency and signal chargeSignal efficiency and signal charge20

09

[9] C. Da Via et al.”, (NIMA-D-08-00587)[10] G. Kramberger at al., Nucl. Instr. Meths. A 554 (2005) 212-219[11] G. Kramberger, Workshop on Defect Analysis in Silicon Detectors, Hamburg, August2006. http://wwwiexp.desy.de/seminare/defect.analysis.workshop.august.2006.html[12] G. Casse et al., Nucl. Instr. Meths. A (2004) 362-365[14] T. Rohe et al. Nucl. Instr. Meths. A 552 (2005) 232-238

S-21

stJa

nuar

y 2

100 56μm 3D - 4E [9]71μm 3D - 3E [9]103μm 3D 2E [9]

25000.0103μm 3D - 2E [9]71 3D 3E [9]

[ ] ( )[16] F. Lemeilleur et al., Nucl. Instr. Meths. A 360 (1995) 438-444

ster

-SLA

C –A

DS

60

80

103μm 3D - 2E [9]75μm epi [11]150μm epi [11]285μm n+n pixels [14]285μm n+p strips[12]300μm p+n strips [16]

ency

[%]

15000.0

20000.0

71μm 3D - 3E [9]56μm 3D - 4E [9]50μm epi [10]75μm epi [11]150μm epi [11]285μm n+p strips[12]285μm n+n pixels [14]

ge [e

- ]

71μm 3D

ersi

ty o

f M

anch

e

20

40

Sign

al E

ffici

e

5000 0

10000.0

Sign

al C

harg

75 m

aVi

a’-Th

e U

nive

0

20

0 2 1015 4 1015 6 1015 8 1015 1 1016

Fluence [1MeV Equivalent n/cm2]

C.DaVia; S. Watts Aug08

0.0

5000.0

0 2 1015 4 1015 6 1015 8 1015 1 1016

Fluence [1 MeV equivelent n/cm-2]

C. Da Via S. Watts April 08

75μmepi

Cinz

iaD Fluence [1 MeV equivelent n/cm ]

S l 80 (λ/L) Δ 80λ 80 30 2400

Example at 1016 ncm2

SMIP planar ~ 80 (λ/L) x Δ ~ 80λ ~ 80x30 ~ 2400e-

SMIP 3D ~ 80λ x (Δ/L) ~ 2400 x 210/(71-22electrode implant) ~ 10290e-

Page 19: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

The geometrical dependence of the signal The geometrical dependence of the signal efficiency on the interefficiency on the inter--electrode spacing Lelectrode spacing L

2009 100

efficiency on the interefficiency on the inter electrode spacing Lelectrode spacing L

1

S-21

stJa

nuar

y 2

80

1E153.5E158.8E15

y [%

] LSE 1

ster

-SLA

C –A

DS

40

60

l Effi

cien

cy

L=Δ~300μm

ersi

ty o

f M

anch

e

20Sign

al

L=Δ~50μm epi

aVi

a’-Th

e U

nive

00 50 100 150 200 250 300

Inter-electrode spacing [μm]

C. Da Via' April 08

L=~50μm 3D

Cinz

iaD

[3D- 56-71-103 μm] C. Da Via et al.”, (NIMA-D-08-00587)[epi 25 - 50μm ] G. Kramberger at al., Nucl. Instr. Meths. A 554 (2005) 212-219[epi 75 μm] G. Kramberger, Workshop on Defect Analysis in Silicon Detectors, Hamburg, August2006 http://wwwiexp desy de/seminare/defect analysis workshop august 2006 html2006. http://wwwiexp.desy.de/seminare/defect.analysis.workshop.august.2006.html[planar 285μm] G. Casse et al., Nucl. Instr. Meths. A (2004) 362-365[planar 285μm] T. Rohe et al. Nucl. Instr. Meths. A 552 (2005) 232-238[F planar 300μm]. Lemeilleur et al., Nucl. Instr. Meths. A 360 (1995) 438-444

Page 20: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Test beam at the CERN SPSTest beam at the CERN SPS20

09

Bonn telescope

S-21

stJa

nuar

y 2

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

Page 21: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Noise characterisation using the Noise characterisation using the ATLAS FEATLAS FE--I3 chip I3 chip –– bumpbump--bonding IZM through Bonn Universitybonding IZM through Bonn University

2009

Tests by E. Bolle, O. Rohne (Oslo)

S-21

stJa

nuar

y 2

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

e

Leakage currents 2

aVi

a’-Th

e U

nive

L a ag curr nts before irradiation~325 pA/pixel1.5

2E C (fF)3E C (fF)4E C (fF)

r mic

ron

(fF)

Cinz

iaD

Noise vsBias voltage0.5

1

Cap

acita

nce

pe simulation

10 20 30 40 50 60

Voltage (V)

Noise vscapacitance

Page 22: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Reproducibility -1 Leakage currents after bump-bonding20

09

•1uA correspond to 350pA/pixel

S-21

stJa

nuar

y 2

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

e

3E-F

aVi

a’-Th

e U

nive

Noisy pixelsPossibly bump-bonding

Cinz

iaD

2E A

Possibly bump bonding

2E-A4E-B

Page 23: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Tracking efficiency June 06Tracking efficiency June 06bumpbump bonding at IZM (Bonn)bonding at IZM (Bonn)

2009

bumpbump--bonding at IZM (Bonn)bonding at IZM (Bonn)

M. Mathes1, C. DaVia2, J. Hasi2, S. Parker3, M. Ruspa4,L. Reuen1, J. Velthuis1, S. Watts2, M. Cristinziani1, K.Ei s il 4 M G i S i s4 K K 5 N W m s1 Data analyisis and silulation by M Mathes M Cristinziani (Bonn)

S-21

stJa

nuar

y 2 Einsweiler4, M. Gracia-Sciveres4,K. Kenney5, N. Wermes1

1Bonn, Germany2Manchester University, UK3University of Hawaii, USA4LBL, Berkeley, USA5Molecular Biology Consortium, Stanford, USA

3E 3200 e-

threshold

Data analyisis and silulation by M. Mathes, M. Cristinziani (Bonn)S. Watts (Manchster)

data

ster

-SLA

C –A

DS

0obeam

data

ersi

ty o

f M

anch

e simulation

ε = (95.9 ± 0.1) %

aVi

a’-Th

e U

nive

bdata

ε (95.9 ± 0.1) %

Cinz

iaD 15obeam

simulation

ε = (99.9 ± 0.1) %

Page 24: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Tracking performance 3E configuration 20

09g p g

Correlation with telescope planes

S-21

stJa

nuar

y 2

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

e

50μm direction:

aVi

a’-Th

e U

nive 50μm direction:

width (49.4±0.1)μm, sigma (4.8±0.1)μm

400μm direction:

Cinz

iaD 400μm direction

width (398.0±0.3)μm, sigma (6.4±0.2)μmM. Mathes1, C. DaVia2, J. Hasi2, S. Parker3, M. Ruspa4,L. Reuen1, J. Velthuis1, S. Watts2, M. Cristinziani1, K.Einsweiler4, M. Gracia-Sciveres4,K. Kenney5, N. Wermes11Bonn, Germany2Manchester University, UK3University of Hawaii, USA4LBL, Berkeley, USA5Molecular Biology Consortium, Stanford, USA

Page 25: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

4E electrode angular response 4E electrode angular response –– preliminarypreliminary20

09

b

1 pixel cross section 50 x 250 Vbias= 20V Th. = 4000e-

S-21

stJa

nuar

y 2 0o 10o 30o 45obeam

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

Page 26: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Charge sharing 20

09

Charge sharing Measurements A. La Rosa/CERN 241Am .

S-21

stJa

nuar

y 2

150

200

250

rons

)

Hole 1Hole 2 planar

ster

-SLA

C –A

DS

50

100

150

Y (M

icr

Electron 1 Electron 2

ersi

ty o

f M

anch

e

0290 300 310 320 330 340 350 360

X (Microns)

de

aVi

a’-Th

e U

nive

0

10

20

cron

s)

Electron 2

0.9

1

cent

ral e

lect

rod

3D

Cinz

iaD

-20

-10

0

Y (M

ic

Hole 1

Electron 1

Hole 2

Electron 2

0.6

0.7

0.8

Planar Y=50Planar Y=150Planar Y=2503D Y=-12.53D Y=-5

Frac

tion

to c

-30-50 -40 -30 -20 -10 0

X (Microns)

0.5-25 -20 -15 -10 -5 0

Distance from central electrode (Microns)

Page 27: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Preliminary results: Preliminary results: t t b J 2008t t b J 2008

Bump-bonding and telescope20

09 3E-40V 3E-10V

test beam June 2008test beam June 2008S-

21st

Janu

ary

2 3E 10V

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

e

Ed

Efficiency~92%

aVi

a’-Th

e U

nive Edge response

Cinz

iaD

10 90% 25Data presented at IEEE-NSS08 by O. Rohne, Olso Electrode efficiency~27%

10-90% ~25μmAnalysis ongoing

Page 28: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Radiation damage 3DRadiation damage 3D--FEFE--I3I320

09

I di ti diti

S-21

stJa

nuar

y 2 Irradiation conditions:

Stanford 3E-device bonded to Atlas FE-I3 front end

ster

-SLA

C –A

DS

Irradiated at PS with 24GeV protons under 40V biasTotal fluence 9.8x1014pcm2

Partially annealed during testing

ersi

ty o

f M

anch

e

y g g

Post irradiation:

aVi

a’-Th

e U

nive

Bond wires destroyed by corrosionSeveral repair attempt including replacement on new boardBias voltage limited to ~3V by hot spot (caused by thermal choc)

Cinz

iaD Bias voltage limited to ~3V by hot spot (caused by thermal choc)

Cooling during test beam limited to 0oC

Page 29: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Test beam dataTest beam dataIrradiated sampleIrradiated sample

Comparison to same typeIrradiated with neutrons

2009

140

1603E-NI7 55e14]

Irradiated sampleIrradiated sample Irradiated with neutronsTested with IR light

S-21

stJa

nuar

y 2

80

100

120

140 7.55e142.00e158.81e15

mpl

itude

[mV]

ster

-SLA

C –A

DS

Hot spot 20

40

60

Sign

al A

m

C Da Viá July 0720%

ersi

ty o

f M

anch

e Hot spot 00 50 100 150 200

Bias Voltage [V]

C. Da Viá July 07

3V bias voltage!

20%

aVi

a’-Th

e U

nive 3V bias voltage!

T=0oC

TOT overall

Cinz

iaD

50%TOT overall

TOT

1x1015pcm-2

Page 30: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Power dissipationPower dissipation Processing: J. Hasi Manchesteri, C. Kenney, MBCMeasurements: M.Hoeferkamp UNMT. Slavicek PragueAnalysis and simulation C.DaVia, S.Watts, Manchester20

09 200

4E n1

S-21

stJa

nuar

y 2

140

160

1804E n2E n3E n3E p

g Vo

ltage

[V]

0.1

4E at -10C neutrons3E at -10C neutrons2E at-10C neutronssimulation alpha 53E at -10C protonssimulation alpha 22 ]

ster

-SLA

C –A

DS

80

100

120

y = 88.075 + 7.4264e-15x R= 0.84247

y = 82.219 + 4.5391e-15x R= 0.99043

Ope

ratin

g

C DaVia and S J Watts July 08

0.01

s u at o a p a

wer

cm

-2 [

W/c

m2

ersi

ty o

f M

anch

e

1.0 10-4

protons

600 5x1015 1x1016 1.5x1016 2x1016 2.5x1016

Equivalent neutron fluence [n/cm2]

C. DaVia and S. J. Watts July 08

0.001

Pow

aVi

a’-Th

e U

nive

6.0 10-5

8.0 10-5

pIfd 20C

Ifd 0C

Ifd -10C

Cur

rent

[A]

0.0001

1014 1015 1016 1017

Fluence [ncm-2]

C. DaVia et al. Oct. 08

Cinz

iaD

2.0 10-5

4.0 10-5

Leak

age

C Fluence [ncm ]

Power/cm2 at -10oC

At 1.0x1015 ncm-2 ~ 3 mWcm-2

0.00 5 1015 1 1016 1.5 1016 2 1016 2.5 1016

fluence ncm-2

C. DaVia, M. Hoeferkamp July 08At 5.0x1015 ncm-2 ~ 33 mWcm-2

At 1.0x1016ncm-2 ~ 120 mWcm-2

At 2.1x1016 ncm-2 ~ 443mWcm-2

Page 31: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Timewalk and overdrive with FETimewalk and overdrive with FE--I3+3DI3+3D20

09

3500

4000

3D-4E

3D Overdrive measurements: Bolle, Heinsweiler, Rohne

F t ti lk ( ll

S-21

stJa

nuar

y 2

2000

2500

3000

3500IL68 IP68 standard

IL96 IP128 20%

IL64 IP192 40%

driv

e [e

-]

3D 2E

3D-3E

3D 4E

3D 3E

3D-4E

Faster timewalk (smalleroverdrive) by increasing FE current

ster

-SLA

C –A

DS

500

1000

1500

2000

Ove

rd

diamond

planar Si

3D-2E

3D-2E

3D-3E

3D-2E

3D-3E

3D-4E • Threshold triggered system• Difference between t and t gives the time walk• New bunch crossing every 25ns• Need to cross threshold within 20ns to be accepted

ersi

ty o

f M

anch

e

0

500

0 50 100 150 200 250 300 350

Noise [e-]

C. Da Via Oct.08

3500

p• How much overdrive is needed to cross threshold within

20ns?

Timewalk dependence on sensor Capacitance

aVi

a’-Th

e U

nive

2500

3000

3500Overdrive-IL68IP68

OverdriveIL128IP128

OverdriveIL64IP296

y = 1189.4 + 16.478x R= 0.98309

y = 833.01 + 9.8693x R= 0.95153

tron

s)

2E 0.188 fF/micron 39.5 fF 210 micron3E 0.392 fF/micron 82.3 fF 210 micron4E 0.660 fF/micron 138.6 fF 210 micron

N t 1 Pl 8 4 fF 250 i

Cinz

iaD

1000

1500

2000 y = 616.98 + 7.6539x R= 0.91972

Ove

rdriv

e (e

lect Note1: Planar 8.4 fF 250 micron

Note2: Using thicknesses of actual detectors as we have noise data for these

0

500

-100 -50 0 50 100 150

Sensor Capacitance (fF)

FlexPDE simulation

S. Watts, Manchester

Page 32: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

TimewalkTimewalk–– Overdrive Overdrive -- Required Signal and Required Signal and implications on the Power Budgetimplications on the Power Budget

2009 20000

4E-201um

0 8 1015 1.6 1016 2.4 1016Fluence [p/cm2]

Required Signal = (bare threshold d i ) 2

S-21

stJa

nuar

y 2

Sensor BareThreshold[e ]

OverdriveIP68 IL68[e-]

In timeThreshold[e ]

Required signal[e-]

15000

4E 201um3E-210um2E-210um

rge

[e-]

+overdrive) x 2

ster

-SLA

C –A

DS [e-] [e ] [e-] [e ]

Si planar 2500 1250 3750 7500

3D-2E 2500 1800 4300 8600

3D-3E 3200 2800 6000 120005000

10000

Sign

al c

har

ersi

ty o

f M

anch

e

3D-4E 3200 3340 6540 13080

Diamond 1500 800 2300 46000 5 1015 1 1016 1.5 1016

Fluence [n/cm2]

C. Da Via'/ Oct08

3.5 1015Compilation Si planar+diamond - Sadrozinski

aVi

a’-Th

e U

nive

FE-I3 power/module = 3.6W = 3.6W/13cm2 = 280mWcm-2

At -10 oC1

3D worse caseplanar 900V

Cinz

iaD

P3D3.5 ~30 + 280 = 310mWcm-2

P3D10 ~100+ 280 = 380mWcm-2

P l (500V 40 A 4 ( 25C 10C) 280 360 W 2

0.01

0.1p

W/c

m2 a

t -25

C

Ppl.3.5 ~(500Vx40μAx4 (-25C->-10C) +280 = 360mWcm-2

Ppl.10 ~(500Vx170x4)+280=620mWcm-2Planar data from Affolder, Orsay October08 0.0001

0.001

1014 1015 1016 1017

Fluence [ncm-2]

Page 33: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Overdrive and power dissipationOverdrive and power dissipationIL68 IP68 STANDARD PLANAR SETTINGS A l t 91 A VDDA 1 6V d VDD 2 0V

2009

8 1015 1 6 1016 2 4 1016Fluence [p/cm2]

P 30 280 56 366 W 2 t 10C

IL68 IP68 – STANDARD PLANAR SETTINGS: Analogue current=91mA., VDDA = 1.6V and VDD = 2.0VIL96 IP128- Analogue current=126mA (+38%) VDDA = 1.6V VDD= 2.0VIL64 IP192 Analogue current =158mA (+76%) VDDA = 1.6V VDD= 2.0V

S-21

stJa

nuar

y 2

Sensor Bare Threshold[e ]

OverdriveIP128 IL96[ ]

In timeThreshold[ ]

Required signal[e ]

15000

200004E-201um3E-210um2E-210um

e [e

-]

0 8 1015 1.6 1016 2.4 1016 P3.5 =30 + 280 + 56 = 366mWcm-2 at-10CP10 =100+ 280 + 56 = 436mWcm-2 at -10C

+20%

ster

-SLA

C –A

DS [e-] [e-] [e-] [e-]

Si planar 2500

3D-2E 2500 1120 3620 7240

3D-3E 3200 1830 5030 100605000

10000

Sign

al c

harg

e

ersi

ty o

f M

anch

e

3D-4E 3200 2130 5330 10660

diamond 15000

0 5 1015 1 1016 1.5 1016

Fluence [n/cm2]

C. Da Via'/ Oct08

3.5 1015

aVi

a’-Th

e U

nive

Sensor Bare Threshold

OverdriveIP192 IL64

In timeThreshold

Required signal15000

200004E-201um3E-210um2E-210um

0 8 1015 1.6 1016 2.4 1016Fluence [p/cm2] P3.5 =30 + 280 + 112 = 422mWcm-2 at -10C

P10 =100+ 280 + 112 = 492mWcm-2 at -10C

+40%

Cinz

iaD [e-] [e-] [e-] [e-]

Si planar 2500

3D-2E 2500 820 3320 6640

3D 3E 3200 1440 4640 92805000

10000

Sign

al c

harg

e [e

-]

3D-3E 3200 1440 4640 9280

3D-4E 3200 1600 4800 9600

diamond 15000

5000

0 5 1015 1 1016 1.5 1016

Fluence [n/cm2]

C. Da Via'/ Oct08

3.5 1015

Page 34: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Capacitance simulationCapacitance simulation20

09Capacitance simulationCapacitance simulation

S. Watts/Manchester

S-21

stJa

nuar

y 2

Flex-pde

Thi k d fl

Required Signal = (bare threshold +overdrive) x 2

ster

-SLA

C –A

DS

100

110

0 6

0.7

IE Distance (μm)

2 1016

ncm

-2]

Thickness and fluence

ersi

ty o

f M

anch

e

80

90

100

0.4

0.5

0.6

C/ μm(fF)

trode

Dis

tanc

e Capacitance/ 1 1016

1.5 1016

time

Thre

shol

d [n

aVi

a’-Th

e U

nive

60

70

80

0.2

0.3

0.4

Inte

r-E

lect

/micron (fF) 5 1015

1 10

2E - Phi N2E - Phi - 20%2E - Phi - 40%4E - Phi - Nen

ce fo

r tw

ice

In t

Cinz

iaD

50 0.12 3 4

Electrodes/cell

0180 200 220 240 260 280 300 320

4E - Phi -20%4E - Phi - 40%Fl

ue

Thickness [microns]

Page 35: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

3D sensors currently developed in 3DAtlas3D sensors currently developed in 3DAtlas20

09

3DC Fabricated at Stanford and tested with Atlas pixel

Full 3DActive edge

S-21

stJa

nuar

y 2

IRST Run n-on-p completed FE-I3 bump-bonded.

pReadout – and SLHC fluencesDesign at its 5thGeneration

3DC SINTEF

ster

-SLA

C –A

DS Run n on p completed FE I3 bump bonded.

Active edgeBeing included in layout

CNM n-on-p completed andFE-I3 waiting

3DC SINTEF FE-I3 n-on-n Bum-bonded. n-on-p withFE-I4 run started. Should be ready by spring 09

ersi

ty o

f M

anch

e for bump-bonding

Double column design

aVi

a’-Th

e U

nive

ICEMos- Being presently fabricatedWork performed in the RD50 frameworkno data available yet

Cinz

iaD

Full 3DNo active edge

Page 36: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

The Atlas 3D projectThe Atlas 3D project20

09p jp j

Development, Testing and Industrialization of Full-3D Active-Edge d M difi d 3D Sili R di i Pi l S i h

S-21

stJa

nuar

y 2 and Modified-3D Silicon Radiation Pixel Sensors with

Extreme Radiation Hardness Results, Plans.Proponents: C. Da Viá, S. Parker, G. Darbo

Status: APPROVED

ster

-SLA

C –A

DS

2. Participating Institutions 10 Institutions, 4 Fabrication Facilities

ATLAS groups participating are from Bergen University, Bonn University, Freiburg University, University of Genova, Glasgow University, the

ersi

ty o

f M

anch

e University of Hawaii, Lawrence Berkeley National Laboratory, Manchester University, the University of New Mexico, Oslo University and the Czech Technical University. At present C. Kenney (Molecular Biology Consortium) and Jasmine Hasi (Manchester University), working at the Stanford Nanofabrication Facility, made all of the Full-3D sensors. For this project industrial companies will join the above mentioned institutions to study the feasibility of a large volume production in time for the upgrade.

aVi

a’-Th

e U

nive

for the upgrade. They are: CNM/Valencia Spain, ,ICEMos, Ireland, IRST Italy and SINTEF Norway.

Topic(s) and goal(s) of the R&D proposal

The primary goal is the development fabrication characterization and testing with and without the front end readout

Cinz

iaD The primary goal is the development, fabrication, characterization, and testing, with and without the front-end readout

chip, of Full-3D – active-edge and Mod-3D silicon pixel sensors of extreme radiation hardness and high speed for the the Super-LHC ATLAS upgrade and, possibly, the ATLAS B-layer replacement. A secondary goal is to start design work for a reduced material B-layer detector module using these sensors.FP420 is used as a test bench for the technology

New groups since September 08: CERN and SLAC

Page 37: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Processing facility statusProcessing facility status20

09g yg y

S-21

stJa

nuar

y 2

ster

-SLA

C –A

DS

Site Technology Bump-Bonded Beam Test Comment

Stanford Full-3D Yes. 2006 2006/2007 Smallest hole diameter is around 17microns with 250 micron thick wafer.Best aspect ratio around 15:1.

ersi

ty o

f M

anch

e SINTEF Full-3D Yes. 2008 Radioactive sources Has new and excellent DRIE machines(Alcatel) with expected aspect rationof 20:1 or better. Long track record ofworking with HEP producing planardetectors. Does not have all polysiliconfilling equipment (n and p doping) in-house Investigating suitable suppliers

aVi

a’-Th

e U

nive house. Investigating suitable suppliers.

Holes filled at Stanford at present.

CNM Double sided 3D (no active edge) Wafer ready Radioactive sources Use Alcatel etcher and reachedaspect ratio of 25:1. Holes are notfully filled. Plans to move to full3D

Cinz

iaD 3D.

IRST Double sided 3D (no active edge) Yes, 2008 2006 using microstrip readout

Use Alcatel etcher. Holes are not fullyfilled but plans to solve the problem.Plans to move to a full 3D design withactive edges in near future.

Page 38: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

SINTEF/3DCSINTEF/3DCMounting Bonn - Bump-bonding IZM/BonnMeasurements O. Rohne, H Gjesdal

FE-I320

09S-

21st

Janu

ary

2st

er-S

LAC

–AD

Ser

sity

of

Man

che

Full3D with active edges10 assemblies bump-bondedn-on-n structuresHigh leakage after bump bondingdue to a missing oxide layer

241Am

Alcatel

aVi

a’-Th

e U

nive due to a missing oxide layer

Particles visible

FE-I4Process

etcher

Cinz

iaD ProcessJust started

Page 39: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Sintef layout mask containing FE-I4 chips20

09

Atlas FE I4 chips

Ready by summer 09

S-21

stJa

nuar

y 2

1E, 2E, 3E, 4E, 5E test structuresAtlas FE- I4 chips 2E configuration

ster

-SLA

C –A

DS

Medipix chips CMS type structures, 14.6 % of wafer area

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

ATLAS 1E, 2E, 3E, 4E, 5E chips

Page 40: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

FBKFBK--IRST TrentoIRST Trento--ItalyItaly20

09 • 3D-DDTC concept

S-21

stJa

nuar

y 2

(Double-side Double Type Column)

• Expected to have performance comparable

to standard 3D detectors (if d is small enough)

ster

-SLA

C –A

DS

Batch DDTC 1 DDTC 2

• 2 batches under fabrication

ATLAS pixel, single-chip

ersi

ty o

f M

anch

e Batch DDTC 1 DDTC 2

Substrate type n-type p-type

Subst. thickness (μm) 300 205 – 255

Column depth (μm) 200 180 – 200

(2, 3, 4 or 7 columns/pixel)

aVi

a’-Th

e U

nive

Column depth (μm) 200(not optimized)

180 200(optimized)

Strip design and pitch (μm)

AC/DC coupled, 80 – 100

AC/DC coupled, 80 – 100

Cinz

iaD

Pixel design ALICE, MEDIPIX ATLAS, CMS

Due by August September 2007Due by August 2007

September 2007

Page 41: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

FBK/IRST FBK/IRST ––GenovaGenova--CERNCERN FE-I3

Measurements. A. La Rosa (Cern)And G. Darbo (Genova)

2009

FBK/IRST FBK/IRST GenovaGenova CERNCERN FE I3S-

21st

Janu

ary

2st

er-S

LAC

–AD

S

needle70V

80V1μA

ersi

ty o

f M

anch

e 1μA

aVi

a’-Th

e U

nive

Cinz

iaD

Preliminary TOT needs calibration

Page 42: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

FBK/IRST FBK/IRST ––GenovaGenova--CERNCERN20

09FBK/IRST FBK/IRST GenovaGenova CERNCERN

Measurements. A. La Rosa (Cern)And G. Darbo (Genova)

S-21

stJa

nuar

y 2

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

Page 43: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

CNM/ Glasgow : single column 3D sensors fabricated and future CNM/ Glasgow : single column 3D sensors fabricated and future production of partialproduction of partial--and fulland full--double column designdouble column design

Celeste Fleta Richard Bates, Chris Parkes, David Pennicard – University of Glasgow20

09

Manuel Lozano, Giulio Pellegrini – CNM (Barcelona)

S-21

stJa

nuar

y 2

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

ICEMos Tech

Page 44: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

CNMCNM--FreiburgFreiburg--GlasgowGlasgow20

09gg gg

S-21

stJa

nuar

y 2

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

Page 45: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Processing Facilities plans for 200920

09

IRST-FBK CNM-GlasgowATLAS PixelsS-

21st

Janu

ary

2st

er-S

LAC

–AD

Ser

sity

of

Man

che

aVi

a’-Th

e U

nive

Cinz

iaD Bump-bonded 08 batch being tested

09/09 200 μm n-on-p with180μm column04/09 full3D double sided

2008 batch completedSuccessfully and beingBump-bonded

04/09 full3D double sidedProcessTo start in fall09 full3D withActive edges

Test samples irradiated

Page 46: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Evolution of IB layer design20

09 Current

IBLEvolution of IB-layer designS-

21st

Janu

ary

2 Current

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

ve

B-layer envelope

Cinz

iaD

y p45.5mm

From Neal Hartman, Nikef ATUW, 3 Nov. 08

Page 47: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

3D active edges 3D active edges E x B = 0 at 0 angle in solenoidfield - Lorentz angle

In 3D20

09f Lor ntz ang

S-21

stJa

nuar

y 2

NOW Big chips

Active edges

Effective Si thickness

680μ 605μ 515μC b

ster

-SLA

C –A

DS

~1.5 mm

thickness Can be pushed to 450u

ersi

ty o

f M

anch

e .5 mm

Present planar 2.2%Xo

aVi

a’-Th

e U

nive

11oWith active edgeCould aim at 1.6%X0

Cinz

iaD

~4μmModule looks the same, but there is no dead margin on the sensor perimeter, allowing less overlap Still 2 pixel radial overlap in phi This could be a good Single modules=>allowing less overlap. Still 2 pixel radial overlap in phi. This could be a good baseline starting point. From M. Garcia-Scieveres talkPresented at the ID ATLAS Upgrade Workshop. Liverpool 6-8 December 06

Single modules >High yield

Page 48: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

See O. Rohne presentation20

09

http://indico.cern.ch/getFile.py/access?contribId=66&sessionId=2&resId=3&materialId=slides&confId=32084

Plan for testing in spring-summer 09

S-21

stJa

nuar

y 2 Etched sensors fabricated at Stanford

(Hasi, Kenney)-FEchips LBL, mounting Genova,Testing Oslo.

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

M D d FE

Alignment system in Genova

SCM using 3D and FE-I3 3D stave

Page 49: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

ATLASFP – 2011-2012Forward Detectors = use LHC beam-line as a spectrometerP t n n l ss sults in p t n t j ct h i nt l d p tu

2009

Proton energy loss results in proton trajectory horizontal departureS-

21st

Janu

ary

2

IP1

ster

-SLA

C –A

DS

y(m

m)

220m

���� y(m

m)

420m

ersi

ty o

f M

anch

e

x(mm)x(mm)

���

V. Avati/Totem

V. Avati/Totem

aVi

a’-Th

e U

nive

Cinz

iaD

Page 50: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Tracking Detectors: at 420m 25x5mmTracking Detectors: at 420m 25x5mm2220

09

3D silicon with active edges

50 400

S-21

stJa

nuar

y 2 50μmx400μm

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

x,y50 m 14.4 m

12μσ μ= =

LHC EXPERIMENT

DIMENSIONS

RO SIGNAL

TRIGGER BUFFER

ATLAS 50x400 μm2

7.2x8mm2binary andti

Internal fast-OR

2 - 6.4μs40 MHz

R.ThompsonS.Kolya/Manchester

12time over threshold

Page 51: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

FullFull--3D sensor speed3D sensor speed3D Tests with 0.13 3D Tests with 0.13 μμm CMOS Amplifier chipm CMOS Amplifier chip(A Kok, S. Parker, C. Da Viá, P. Jarron, M. Depeisse, G. Anelli), fabricated at StanfordBy J Hasi C Kenney

2009

By J. Hasi, C. KenneyS-

21st

Janu

ary

2st

er-S

LAC

–AD

S Short collection distance

High average e-field at low Vbias

Parallel charge collection

ersi

ty o

f M

anch

ea

Via’-

The

Uni

ve

Raw oscilloscope trace

t 1

Cinz

iaD

3D signal simulation

2ns

T 300K

rt 1.5ns≈rt~1ns

3D Inter-electrodespacing = 50 μm

5��

T 300

Page 52: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Conclusions and Plans for 2009Conclusions and Plans for 200920

09

CNM-FBK-SINTEF successfully completed FE-I3 sensorsCERN and SLAC joined 3DAtlas pixel project

S-21

stJa

nuar

y 2

Progress in understanding of 3D behaviour with FE-I3 crucial for FE-I4 well advancedD t i di t d d i b t t i i

ster

-SLA

C –A

DS Data on irradiated sensors during beam test promising

and power budget within specs– Turbodaq Systems being installed in labs to speed up systematic testing

ersi

ty o

f M

anch

e testing

2009 plan:bump-bonding of existing sensors completed- preparation for test

aVi

a’-Th

e U

nive

bump bonding of existing sensors completed preparation for test beam at CERN. Distribution of existing assemblies to testing labs

organisation of systematic testing and database

Si f FBK l d d l d l

Cinz

iaD new runs at Sintef-FBK completed - dual readout test samples

ready for testing at Stanford

irradiation of sensors with protons and neutrons – testirradiation of sensors with protons and neutrons test

Test beams at CERN – May and Octoberdata analysis and report of systematic testing

Page 53: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Always keep an eye for new detector ideas....20

09

borrowed from P. Le Compte at the LiverpoolAtlas Tracker Upgrade Workshop Dec 2006

S-21

stJa

nuar

y 2

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

Page 54: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

2009

S-21

stJa

nuar

y 2

Additional slides

ster

-SLA

C –A

DS

ersi

ty o

f M

anch

ea

Via’-

The

Uni

veCi

nzia

D

Page 55: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

Production considerations Production considerations 20

09

•B-layer is ~1500-1800 cm2. This is around 4000 FE-I3 ATLAS Pixel sensors. If FE-I4 chips areused (336 x 80 or ~20 x17mm2 for a total area of 3.4cm2), the sensors will be five times as big, but

S-21

stJa

nuar

y 2

gthen the yield may reduce.

•The yield factor needs to be established. A combination of IRST, Sintef CNM and Stanford couldpossibly produce the required number of sensors (for b-layer ~1500 cm2 or ~1800 cm2 including

ster

-SLA

C –A

DS

spares for a total of ~520 FE-I4 sensors).

•IRST, Sintef and CNM would need to use 2009 to establish the process.

ersi

ty o

f M

anch

e •FE-I4 is being included in the next mask layouts but will need testing (Summer 09?).Stanford alone could produce two batches per year of 25 4 inch wafers

•~12 FE-I4 sensors would fit in a 4inch wafer so one would need 43 4 inch wafers divided by the

aVi

a’-Th

e U

nive yield to produce the 520 needed. The yield is not known. If one assumes 50% then 86 wafers or 4

batches. A reasonable timescale is ~2 years.

• SINTEF could produce more batches per year, but would at present need the holes filled at

Cinz

iaD Stanford (which can fill both 4 inch and 6 inch right now and can handle several hundreds wafers

per year for these steps). 100 wafers per year is considered aggressive but not impossible. Two orthree batches of 25 per year is reasonable. Currently they are processing 4 inch wafers for 3Dwork but could process 6 inch. This is a process change and would require further R&D.

•IRST and CNM could also contribute with 4 inch as soon as active edges are established (early09?)

Page 56: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

3D signal modelling and data fit 3D signal modelling and data fit using a 0.25using a 0.25μμmmFE chip (Jarron Anelli Cern MIC)FE chip (Jarron Anelli Cern MIC)

2009

A. Kok PhD ThesisFE chip (Jarron, Anelli, Cern MIC)FE chip (Jarron, Anelli, Cern MIC)S-

21st

Janu

ary

2

10V 10V

ster

-SLA

C –A

DS

40V 40V

ersi

ty o

f M

anch

e

10V 20V

aVi

a’-Th

e U

nive

10V 20V

Cinz

iaD

Simulation of signals rise and fall time distributions over a cell (full dot)distributions over a cell (full dot) and 90Sr data (open dot)

30V 40V

Page 57: 3D Silicon Detectors for LHC Upgrades - Stanford University€¦ · ATLAS Pixel ATLAS SCT - barrel hadrons Φ eq (microstrip detectors) [M.Moll, simplified, scaled from ATLAS TDR]

3D – Time Response Using 0.25 µm CMOS amplifier(P. Jarron, G. Anelli, A. Kok, C. Da Via, in A. Kok thesis)

2009

S-21

stJa

nuar

y 2

PreampPreamp

ster

-SLA

C –A

DS

DetectorDetector

ersi

ty o

f M

anch

e

0

5Sr-90 non-Irradiated 130k

0

2 Sr-90 Irradiated 130K

0

2

4Sr-90 Room Temperature

aVi

a’-Th

e U

nive

-10

-5

mV

-6

-4

-2

mV

15

-6

-4

-2

0

mV

Cinz

iaD

-10 -5 0 5 10-20

-15

ns-10 -5 0 5 10

-10

-8

ns

1 x 10 15

24 GeV p/cm2

-20 -10 0 10 20-12

-10

-8

ns

300K, RT=3.5ns Amplifier limit 130K, RT=1.5ns 130K, RT 1.5ns

After irradiation