2010 kiev arw nato bondarenko

Upload: kholostov

Post on 09-Apr-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    1/39

    This is invited talk presentedby Vitaly Bondarenko at

    1st Ukrainian-French SeminarSemiconductor-on-Insulator Materials,

    Devices and Circuits: Physics,Technology and Diagnostics and6th International SemOI Workshop

    Nanoscaled Semiconductor-on-Insulator

    Materials, Sensors and Devices25-28 September, 2010

    Cultural Center Jerelo, Kyiv, Ukraine

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    2/39

    ZnO films and nanocrystalson bulk silicon and SOI wafers:Formation, Properties and Applications

    V. Bondarenko, E. Chubenko

    Belarusian State Universityof Informatics andRadioelectronics,

    Minsk, Belarus

    A. Belous, V. Malyshev

    Technical CentreBelmicrosystems,

    Integral Corporation,Minsk, Belarus

    M. Balucani

    Rome University La Sapienza,Rome, Italy

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    3/39

    Content

    Introduction

    - What is ZnO- Industrial ZnO Applications- ZnO in Electronics: Technologies- ZnO in Electronics: Applications- ZnO vs Si and others: Properties- ZnO vs Si: Applications and Technological Issues

    Integration of ZnO with Si substrates- Motivation- Technological requirements- Possible solutions for ZnO & Si integration

    Low temperature ZnO deposition- Electrochemical

    - Hydrothermal

    Applications Conclusions

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    4/39

    What is Zinc Oxide ?

    Zinc oxide is an inorganic compoundwith the formula ZnO.

    It usually appears as a white powder,nearly insoluble in water.

    It is one of the so-called II-VI semiconductors, andhas wide direct band gap

    In nature ZnO occurs as the mineralZincite

    http://en.wikipedia.org/wiki/Zinc oxide

    page 03/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    5/39

    Industrial ZnO Applications

    Total world production of ZnO:105 tones

    < 0,1 %

    Total world production of silicon:6106 tones

    page 04/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    6/39

    ZnO in Electronics: Technology

    page 05/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    7/39

    ZnO in Electronics: Applications

    page 06/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    8/39

    Parameter (300 K) Si GaAs ZnO GaN -SiC

    Eg, eV1,12

    indirect

    1,42

    direct

    3,35

    direct

    3,45

    direct

    3,05

    direct

    Luminescenceefficiency, %

    10-4 60-70 70 70-80 -

    Electron / Hole Hallmobility, cm2/(Vs)

    1600 /430

    8500 /400

    300 / 10 500 / 150 900 / 40

    Crystal lattice cubic cubic hex hex hex

    Lattice constants0 and 0,

    5,43 5,653 3,245,21

    3,195,19

    3,0715,11

    Thermal expansioncoefficient, umm1K1

    2,6 5,76,51

    3,02

    3,17

    5,59

    4,3

    4,7

    Thermal conductivity,W/(cmK) 1,49 0,55 0,60 2 4,9

    ZnO vs Si and others

    page 07/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    9/39

    ZnO vs Si: Applications and Technological Issues

    Integrated circuitry- MOS- CMOS- BipolarHighSpeedHighDensityHighReliabilityNoLEDs

    NoPiezo

    OptoelectronicsPiezoeffect based devicesSAW DevicesNo Integrated circuitry

    Silicon Zinc Oxide

    ZnO (25 mm) $ 3500

    Si (100 mm) $ 15Si SOI (150 mm) $ 300

    page 08/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    10/39

    Integration of ZnO with Si substrates: Motivation

    ZnO devices and Si devices integrated on a single die We can use the Si fab to fabricate ZnO devices Lower cost of the ZnO devices

    ZnO

    ZnO

    Si

    Processing

    Si

    SiDicing

    SOI bulk Si

    Direct integration

    Hybrid Integration

    Discrete Devices

    Packaging

    page 09/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    11/39

    and as a result

    Major Problem

    Genesis of Defects in Heterostructures

    CRACK!

    page 10/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    12/39

    Integration: Marriage of ZnO with Si

    What we do know: Marriage is result of love(not always but ....)

    Does Si love ZnO ? No !(Si wafer is thick, ZnO layer is thin)

    Does ZnO love Si ? - Yes !(ZnO layer is thin, Si wafer is thick. It is very

    convinient to live on the thick substrate)

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    13/39

    Integration: Marriage of ZnO with Si

    What to do ?Lets introduce buffer layer between partners !!!

    What about childrens ??? (We will see !!!)

    Porous silicon (PS) as a buffer layer

    reducing mismatch stress

    increasing adhesion

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    14/39

    How to do it, if we know what to do ?

    E.B. Chubenko, V.P. Bondarenko, M. Balucani, Tech. Phys. Lett. 35 (2009) 1160.

    PS with metal sublayerPS

    page 11/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    15/39

    Local Low T Deposition:- electrochemical- hydrothermal

    Thermal Budget Issue: When to deposit ZnO ?

    ~ 700technological steps

    Hence:T

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    16/39

    Electrochemical deposition of ZnO on Si

    ZnO can be electrochemically deposited from aqueoussolution at low temperature (T = 80C)

    BUT:Porous silicon buffer layer due to its huge effective surface is easily

    etched in hot water (T > 50C) solution with pH > 6

    How to solve the problem of PS etching: protect porous silicon with thin metal layer deposit ZnO from non aqueous solution

    page 13/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    17/39

    Realization: Equipment

    100 mm Si waferwith

    ZnO layer

    page 14/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    18/39

    Realization: Solutions & Regimes

    Solutions for ZnO depositionAqueous:

    Base Pure water

    Components 0.05 0.1 M of Zn(NO3)2

    Deposition velocity 1 1.5 microns/min

    Current density 2 10 mA/cm2

    Temperature 60 85C

    Non aqueous:

    Base DMSO

    Components 0.03 M of ZnCl

    0.1 M of KCl (for good conductivity)

    Deposition velocity 0.1 0.2 microns/min

    Current density 0.3 0.5 mA/cm2

    Temperature 95 100C

    page 15/37

    16/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    19/39

    Realization: Local Deposition of ZnO

    page 16/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    20/39

    18/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    21/39

    Electrochemical deposition of ZnOfrom aqueous solution

    E.B. Chubenko, V.P. Bondarenko, M. Balucani, Tech. Phys. Lett. 35 (2009) 1160., J. Cembrero, D. Busquets-Mataix, Thin Solid Films 517 (2009) 2859.

    current density

    Depending on process parameters:current density, temperature, time, concentration,different ZnO morphology types can be obtained

    continuousporousprismaticneedle-like

    page 18/37

    19/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    22/39

    ZnO deposition on metal buffer layer (aqueous)

    Deposition potential

    Current density

    Voltammograms

    page 19/37

    page 20/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    23/39

    ZnO deposition on metal buffer layer

    j = 2,5 /2

    j = 5 /2

    j = 7,5 /2

    page 20/37

    Z O d iti PS b ff l f page 21/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    24/39

    ZnO deposition on PS buffer layer fromnon-aqueous solution)

    Cross section Top viewTime

    min

    0

    25

    45

    page 21/37

    page 22/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    25/39

    ZnO photoluminescence

    Electrochemically deposited ZnO showsyellow band photoluminescence

    page 22/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    26/39

    page 24/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    27/39

    Hydrothermal ZnO deposition on Si

    HMTA hexamethylenetetramine

    Film of prisms Prismatic columns Rosettes

    Depending of temperature and solutioncomposition various structures can beobtained

    75 C 85 C 95 C

    page 24/37

    page 26/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    28/39

    Hydrothermal deposition of ZnO on seed layer

    Hydrothermally grown ZnO rods shows emissions inboth UV and visible range,

    page 26/37

    page 27/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    29/39

    Hydrothermal deposition of ZnO on seed layer

    PS buffer layer with different thickness H

    ZnO seed layer was electrochemically deposited

    H = 1 m H = 4 m H = 6 m

    page 27/37

    page 28/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    30/39

    Hydrothermal deposition of ZnO on seed layer

    H = 1 m H = 4 m H = 6 m

    Same sampleses after hydrothermal treatment inZn(NO3)2 + HMTA solution at 85 C

    page 28/37

    page 29/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    31/39

    ZnO deposition into porous alumina oxide

    1 m

    Al sputtering

    Al anodization

    ZnO deposition

    Ti

    Ni

    Al2O3

    ZnO

    Si

    TiO2

    surface cross-section

    page 29/37

    page 31/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    32/39

    Possible Applications of ZnO grown on PS

    Photodetectors

    Photovoltaic cells (solar cells)

    Betta-voltaic cells Gas sensors

    Others (scintillation counter, piezo

    energy generators, nanomechanics)

    page 31/37

    page 32/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    33/39

    Photodetectors: ZnO/PS heterojunction

    page 32/37

    ZnO is transparent conductive material

    page 33/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    34/39

    Cu

    rrent/mA

    Voltage / V

    Photovoltaic cells: ZnO/Si heterojunction

    p g

    Z O f b t lt ipage 34/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    35/39

    ZnO for beta voltaicbatteries

    pincell

    Electron beam current / A

    Shortcircuitc

    urrent/A

    Principle of Operation

    p g

    page 35/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    36/39

    Chemical gas sensors

    Porous ZnO film surface

    p g

    page 36/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    37/39

    Others

    Piezoenergy generators Expected characteristics:Voltage up to 20 mV

    Current up to 1 A

    Scintillationcounter

    High performanceLongevityHigh stopping powerWide luminescence range

    (compatible with Si)

    p g

    page 25/37

  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    38/39

    BoltHead

    BoltRod

    Nanoscrews for Nanomechanics Nanolamps

    ZnO crystalls grown on low porosity PS

    page 37/37

    http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Gluehlampe_01_KMJ.jpg
  • 8/8/2019 2010 Kiev ARW NATO Bondarenko

    39/39

    As a conclusion: Problems to be solved

    Development of the p-type ZnO doping techniques

    Improvement of crystalline structure of electrochemicallydeposited ZnO

    Improvements of the ZnO deposition process into PAAO matrix

    Acknowledgements

    This work has been funded by the Belarussian Foundationfor Basic Research under the Project 06-3029 and

    by the Rice Technology S.r.l. (Italy)