2 chain drives

35
ME205 : Element of machine dynamics and design Dr. Muhammad Wasif Assistant Professor – I.M.D. Ph.D. (CAD/CAM – Canada), M.Engg. (Mfg. Engg. – NEDUET), B.E. (Mech. Engg. – NED UET). Member ASME and PEC Room : 1 st on LHS of main corridor, ground floor – IM Building Machine dynamics : Chain Drives 1

Upload: a-s111

Post on 25-Dec-2014

346 views

Category:

Engineering


10 download

DESCRIPTION

This Books is uploaded By Muhammad Ahsan. My facebook Group Is " Chemical Technology (M.A.S)

TRANSCRIPT

Page 1: 2 chain drives

ME‐205 : Element of machine dynamics and design

Dr. Muhammad WasifAssistant  Professor – I.M.D.

Ph.D. (CAD/CAM – Canada), M.Engg. (Mfg. Engg. – NEDUET), B.E. (Mech. Engg. – NED UET). Member ASME and PEC

Room : 1st on LHS of main corridor, ground floor – IM Building

Machine dynamics : Chain Drives

1

Page 2: 2 chain drives

Chain Drives• Roller chain is mostly used to transmit power.

• A chain is a power transmission element made

as a series of pin‐connected links.

• Load is applied by the driving sprocket on the

chain, the load is transmitted to a bushing, pin,

and pair of link plates, pins and link plates push

the driven sprocket to run.

2ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 3: 2 chain drives

Chain Drives

3ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 4: 2 chain drives

Chain Drives ‐ Advantages• Due to no slippage, constant velocity is obtained.

• Less width is occupied, due to metal strength.

• Can be used for short as well as long center distances.

• High transmission efficiency (97‐99%).

• One chain can transfer power to multiple shafts.

• Can be operated at high temperature.

• Permits high speed ratio of 8 to 10.

• Multiple reduction stages are made, for high reduction ratio.4ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 5: 2 chain drives

Chain Drives ‐ Limitations• Installation and component cost is higher.

• Require maintenance and lubrication.

• Velocity fluctuation occurs, when mounted inaccurately.

5ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 6: 2 chain drives

Chain Drives – Roller chainsRoller dia (d)

b1

6ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 7: 2 chain drives

Chain Drives ‐ Nomenclature• Pitch

Is the distance between the centers of two adjacent pins.

• Pitch circle radius (rc)

Distance between the pin

center and the center of

sprocket, when the hinge

is meshed with that

sprocket.

7ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 8: 2 chain drives

Chain Drives ‐ Classification• Hoisting and hauling  (or crane) chains

‐ Can be used up to 0.25m/s‐ Two types : Oval and square links

• Conveyor Chains‐ Used for elevating and conveying  within 0.8 to 3m/s.‐ Two types : Detachable or hook  joint, closed joint type.

8ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 9: 2 chain drives

Chain Drives ‐ Classification• Power Transmitting Chains‐ Used for short center distance.‐ Three types :‐ Block or bush chain‐ Bush roller chain‐ Silent chain

9ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 10: 2 chain drives

Chain Drives – Lubrication• The performance of chain assembly is improved by

proper lubrication. It reduces the friction and act as

a coolant.

• Improper lubrication produces premature chain

failure.

• Lubrication types depend upon the speed and

environment.

10ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 11: 2 chain drives

Chain Drives – Lubrication• Manual lubrication : Lube is applied periodically

using brush or oil can. e.g. cycle or bike chain.

• Drip lubrication : oil drips with sufficient flow is

directed on the chain. e.g. Conveyor chains, engine.

11ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 12: 2 chain drives

Chain Drives – Lubrication• Bath or Disc lubrication : chain runs

through an oil sump or bath in the drive

housing. In disc lubrication, a disc picks

up the oil and deposit on chain. Oil

level is to be maintained in these cases.

• Stream lubrication : Some nozzles

attached with supply of oil, are set on

chain to spray the oil on chain near

sprocket engagement.

12ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 13: 2 chain drives

Chain Drives – Roller chains

13ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 14: 2 chain drives

Roller chains ‐ Recommendations

• 17, 120

, = No. of teeth on small, large sprocket

• Velocity Ratio (V.R.) =n1 n2⁄ 7

• 30 pitches center distance (C) 50 pitches

• Pitch (p) should be even.

• Chain length (L)=2C ∙

14ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 15: 2 chain drives

Roller chains – problem solving steps1. Specify a service factor and compute the design power.

Ks=K1.K2.K3 ;        Pt=Ks x P

Multiple strand factor (1,2,3) ‐ Km=1.7, 2.5, 3.3 – Pt/Km15ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 16: 2 chain drives

Roller chains ‐ Calculation2. Compute the velocity ratio. V.R. = n1/n23. Select the chain pitch, and rpm of smaller sprocket.

16ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 17: 2 chain drives

Roller chains ‐ Calculation

17ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 18: 2 chain drives

Roller chains ‐ Calculation4. Number of teeth of small sprocket.

5. Pitch of the chain

18

Page 19: 2 chain drives

Roller chains ‐ Calculation

Roller dia (d)

b1

19ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 20: 2 chain drives

Roller chains ‐ Calculation6. Compute number of teeth of larger sprocket.

T2 = T1 V.R  (check in catalogue)

7. Compute the actual expected output speed

n2= n1  (T1/T2)

8. Compute the pitch diameters of the sprockets.

°⁄ °⁄

9. Compute the length of the chain (L).20ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 21: 2 chain drives

Roller chains ‐ Calculation10. Corrected center distance.

14 ∙ 2 2 8 ∙ 2

11. Compute the angle of wrap of the chain for eachsprocket

180 ° 2. − /2

180 ° 2. − /2

21ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 22: 2 chain drives

Roller chains ‐ CalculationDesign a chain drive for a heavily loaded coal conveyorto be driven by a gasoline engine through a mechanicaldrive. The input speed will be 900 rpm, and thedesired output speed is 230 to 240 rpm. The conveyorrequires 15.0 hp. (variable load with mild shock, 20 hr)

1. Ks=1.25(.8)(1.4)=1.4; Pt=Ks x P = 1.4 x 15 = 21hp

2. V.R. = n1/n2 = 900/235 = 3.83

3. Pt = 15hp = 21hp x 0.7456 kW/hp = 15.6576kW

22ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 23: 2 chain drives

Roller chains ‐ Calculation3. Select the chain pitch, and rpm of smaller sprocket.

23ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 24: 2 chain drives

Roller chains ‐ Calculation4. Number of teeth on sprockets.

5. Pitch

24

Page 25: 2 chain drives

Roller chains ‐ Calculation6. T2= T1 x V.R = 23 x 3.83 = 88.09 89

7. n2= n1x(T1/T2) = 900(23/89) = 232.58 rpmRange given 230‐240 – OK

8. °⁄ = .

°⁄ 139.902mm

°⁄ = .

°⁄ 539.790mm

25ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 26: 2 chain drives

Roller chains ‐ Calculation9. Length of the chain

C = 40pitch (30 to 50 is recommended)

L 2C ∙

L 138.757pitch 140 pitches (even recommended)L 140(19.05) 2667 mm

Corrected center distance

C ∙ 8 ∙

C 40.64 pitch

C = 40.64(19.05) = 774.248mm26ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 27: 2 chain drives

Roller chains ‐ Calculation

10. Angle of wrap

180 ° 2. − /2 =175.114°

180 ° 2. − /2 184.885°

27ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 28: 2 chain drives

Design summary

175.114°184.885°

774.240mm

139.902mm

539.790mm

ChainPitch  : No. 12B, 19.05mm Length  : 140pitches = 2667mmCenter distance  : 774.24mm maximumSprockets : Single strand, No. 12B, 19.05mm pitchSmall  : 23 teeth, D = 139.902mmLarge : 89 teeth, D = 539.790mmLubricationBath lubrication is recommended due to 1000 rpm, large sprocket dip in bath.

28ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 29: 2 chain drives

Compact Redesign 1. Transmitted power (design for 3 strands) Km=3.3

Pt = 15.6576/3.3 = 4.745kW2. V.R. = 3.833. Chain selection

29

Page 30: 2 chain drives

Roller chains ‐ Calculation4. Number of teeth on sprockets.

5. Pitch

30

Page 31: 2 chain drives

Roller chains ‐ Calculation6. T2= T1 x V.R = 23 x 3.83 = 88.09 89

7. n2= n1x(T1/T2) = 900(23/89) = 232.58 rpmRange given 230‐240 – OK

8. °⁄ = .

°⁄ 93.268mm

°⁄ = .

°⁄ 359.860mm

31ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 32: 2 chain drives

Roller chains ‐ Calculation9. Length of the chain

C = 35pitch (30 to 50 is recommended)

L 2C ∙

L 129.151pitch 130 pitches (even recommended)L 130(12.7) 1651mm

Corrected center distance

C ∙ 8 ∙

C 35.443 pitch

C = 35.443(12.7) = 450.137mm32ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 33: 2 chain drives

Roller chains ‐ Calculation

10. Angle of wrap

180 ° 2. − /2 =171.592°

180 ° 2. − /2 188.408°

33ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 34: 2 chain drives

Design summary

171.592°188.408°

450.137mm

93.268mm

359.860mm

ChainPitch  : No. 08B, 12.7mm Length  : 130pitches = 1651mm Center distance  : 450.137mm maximum      (41.86% reduced)Sprockets : three strand, No. 08B, 12.75mm pitchSmall  : 23 teeth, D = 93.268mm (33.33% reduced)Large : 89 teeth, D = 359.860mm (33.33% reduced)LubricationBath lubrication is recommended due to 1000 rpm, large sprocket dip in bath.

34ME‐205, Elements of Machine design and dynamics, conducted by Dr. Muhammad Wasif (Asst. Professor ‐ IMD, NEDUET)

Page 35: 2 chain drives

Refernces

35

• R.S. Khurmi, G.K. Gupta, 2005, A text book of machine design, New Dehli‐ India, EURASIA PUBLISHING HOUSE.

• R. G. Budynass, J.K. Nisbett, 2005, Shigley’s Mechanical Engineering Deisgn, New York –USA, McGraw Hill.

• R. L. Mott, 2004, Machine Elements in Mechanical Design, USA, Pearson Prentice‐Hall.

• R. L. Norton, 1996, Machine design an integrated approach, NJ USA, Prentice‐Hall.• B. J. Hamrock, B. O. Jacobson, S. R. Schmid, 1999, Fundamental of Machine 

Elements, New York –USA, McGraw‐Hill.• U. C. Jinbal, 2010, Machine Design, India, Pearson .• R. O. Parmley, 2005, Machine devices and components, USA, McGraw‐Hill.