2 cellular systems

18
Chapter 2 Cellular Systems Wireless communications links are especially useful for mobile applications; and wireless communications systems are often designed to cover such areas by splitting them into many smaller cells. That cellular property introduces many difficulties such as how to handover (or handoff) from one cell to another, while maintaining good service quality. Coverage, capacity, interference, and spectrum reuse are important concerns of cellular systems; this chapter reviews these aspects as well as the technologies, tools, and standards used to optimize them. 2.1 Cellular Concepts The many frequency blocks detailed earlier are used for a variety of communications services. Higher frequencies (say above 6 GHz) are mostly used for pointtopoint services such as dedicated private lines. Lower frequencies are better suited for broader coverage, and are split into geographical cells. 2.1.1 Frequency Reuse Covering a large geographic area with limited amount of spectrum leads to the reuse of the same frequency in multiple locations; this leads to cochannel interference considerations, meaning interference from different areas (or cells) that use the same frequency channel. 1 Cochannel interference considerations are usually approached by considering the following parameters: S t : total number of RF channels available (given the amount of spectrum and channel width dictated by technology standard), S 0 : number of channels per cell, which reflects system capacity at a given location, K: the reuse factor, the number of cells that is repeated to provide coverage over a large area. The three quantities are linked by the straightforward relation: (2.1) The reuse factor K is therefore an important parameter for capacity. The lowest reuse factor (K = 1) maximizes capacity; but this has to be balanced with interference considerations: indeed a higher reuse factor (K = 3, 4, 7, or higher) provides more distance between cells using the same frequency, which lowers interferences. 2.1.2 Interference Considerations in Reuse To quantify interference due to reuse we have to consider how a signal propagates from one cell to another. We will study propagation models later in chapter ??, but we need a few simple notions here. Assume a propagation model using a power path loss exponent n, that is a model where power decays in 1∕R n (R being the distance separating transmit station from receiver). This means that the ratio of received power to transmit power may be expressed as P r ∕P t = A∕R n , where A is some constant.

Upload: sushant-rajput

Post on 16-Dec-2015

6 views

Category:

Documents


0 download

DESCRIPTION

its good

TRANSCRIPT

  • Chapter2CellularSystems

    Wirelesscommunicationslinksareespeciallyusefulformobileapplicationsandwirelesscommunicationssystemsareoftendesignedtocoversuchareasbysplittingthemintomanysmallercells.Thatcellularpropertyintroducesmanydifficultiessuchashowtohandover(orhandoff)fromonecelltoanother,whilemaintaininggoodservicequality.Coverage,capacity,interference,andspectrumreuseareimportantconcernsofcellularsystemsthischapterreviewstheseaspectsaswellasthetechnologies,tools,andstandardsusedtooptimizethem.

    2.1CellularConcepts

    Themanyfrequencyblocksdetailedearlierareusedforavarietyofcommunicationsservices.Higherfrequencies(sayabove6GHz)aremostlyusedforpointtopointservicessuchasdedicatedprivatelines.Lowerfrequenciesarebettersuitedforbroadercoverage,andaresplitintogeographicalcells.

    2.1.1FrequencyReuse

    Coveringalargegeographicareawithlimitedamountofspectrumleadstothereuseofthesamefrequencyinmultiplelocationsthisleadstocochannelinterferenceconsiderations,meaninginterferencefromdifferentareas(orcells)thatusethesamefrequencychannel.1Cochannelinterferenceconsiderationsareusuallyapproachedbyconsideringthefollowingparameters:

    St:totalnumberofRFchannelsavailable(giventheamountofspectrumandchannelwidthdictatedbytechnologystandard),S0:numberofchannelspercell,whichreflectssystemcapacityatagivenlocation,K:thereusefactor,thenumberofcellsthatisrepeatedtoprovidecoverageoveralargearea.

    Thethreequantitiesarelinkedbythestraightforwardrelation:

    (2.1)

    ThereusefactorKisthereforeanimportantparameterforcapacity.Thelowestreusefactor(K=1)maximizescapacitybutthishastobebalancedwithinterferenceconsiderations:indeedahigherreusefactor(K=3,4,7,orhigher)providesmoredistancebetweencellsusingthesamefrequency,whichlowersinterferences.

    2.1.2InterferenceConsiderationsinReuse

    Toquantifyinterferenceduetoreusewehavetoconsiderhowasignalpropagatesfromonecelltoanother.Wewillstudypropagationmodelslaterinchapter??,butweneedafewsimplenotionshere.Assumeapropagationmodelusingapowerpathlossexponentn,thatisamodelwherepowerdecaysin1Rn(Rbeingthedistanceseparatingtransmitstationfromreceiver).ThismeansthattheratioofreceivedpowertotransmitpowermaybeexpressedasPrPt=ARn,whereAissomeconstant.

  • Figure2.1:FrequencyreusepatternsK=3,4,and7,onhexagonalcells.Boldcontourshowsthepatternofcellsrepeatedtoprovidewideareacoverage.Dishowstheshortestdistancebetweencellsreusingthesamefrequency.

    Withthismodel,signaltointerferenceratiosareestimatedas

    (2.2)

    wherei0isthenumberofcochannelcellsnearesttothecell(calledfirsttierortierone)thatnumberincreaseswithK.AndDiisthedistancetothetieronecellsreusingthesamefrequency(asshowninfigure2.1).Inthecaseofhexagonalcellapproximationtheexpressionsimplifiesto[1]:

    (2.3)

    Wellseemoredetailsonnfurther,itsvaluesvarytypicallybetween2and4withthetypesofterrain.Wellalsoseethatspecificwirelesstechnologiesrequireacertainsignaltonoiseandinterferenceratio(mostlybasedondatarates)soequation(2.3)leadstoaminimalacceptablevalueforK.

    2.1.3MultipleAccess

    Amajorrequirementofcellularnetworksistoprovideanefficienttechniqueformultipledevicesto

  • accessthewirelesssystem.Thesetechniquesinclude:

    FDMA:frequencydivisionmultipleaccess,perhapsthemoststraightforward,inwhicheveryuserdeviceusesitsownfrequencychannel.Thismethodwasusedinthefirstgenerationanalogsystems.

    TDMA:timedivisionmultipleaccess,inwhicharadiochannelisdividedintimeslots,andusedevicesusetheirallocatedtimeslots.InfactTDMAsystemsareoftenhybridFDMAaswellasmultiplechannelsareused,most2GsystemswereTDMA.

    CDMA:codedivisionmultipleaccess,inwhichorthogonal(orpseudoorthogonal)codesareusedtodifferentiateuserdevices.CDMAisveryspectrumefficient,andwasusedby3Gstandards.ThereareseveralapproachestoachieveCDMA,suchasfrequencyhooping(FHCDMA)ordirectspreading(DSCDMA).

    Thesearethemainmultipleaccesstechniques,butsubtleextensionsandcombinationscanbedevisedtoobtainmoreefficientschemes,whichwewillexamineinlaterchapters(includingorthogonalfrequencydivisionmultiplexingOFDMA).

    2.2SystemCapacity

    Wirelesscommunicationsdealwithatleasttwomainconcerns:coverageandcapacity.Wewilllookatcoveragepredictioninthenextchapters,andstartherewithafewwordsoncapacity.

    2.2.1ChannelCapacity

    Onefundamentalconceptofinformationtheoryisoneofchannelcapacity,orhowmuchinformationcanbetransmittedinacommunicationchannel.Inthe1940sClaudeShannoninventedformalcharacterizationofinformationtheoryandderivedthewellknownShanonscapacitytheorem(Theorem17in[13],p.628).Thattheoremappliestowirelesscommunications.Agreatpresentationofthisequationcanbefoundin[10]p.82itpresentsaconcisederivationoftheequation,andincludesagoodintroductiontoimportantinformationtheoryconceptssuchasinformationandentropy.2

    TheShannoncapacityequationgivesanupperboundforthecapacityinanonfadedchannelwithaddedwhiteGaussiannoise:

    (2.4)

    whereC=capacity(bits/s),W=bandwidth(Hz),SN=signaltonoise(andinterference)ratio.

    Thatcapacityequationassumesonetransmitterandonereceiver,thoughmultipleantennascanbeusedindiversityschemeonthereceivingside.Theformulawillberevisitedformultiantennasystemsin9.1.3.Theequationsinglesouttwofundamentallyimportantaspects:bandwidthandSNR.Bandwidthreflectshowmuchspectrumawirelesssystemuses,andexplainswhythespectrumconsiderationsseenin1.2aresoimportant:theyhaveadirectimpactonsystemcapacity.SNRofcoursereflectsthequalityofthepropagationchannel,andwillbedealtwithinnumerousways:modulation,coding,errorcorrection,andimportantdesignchoicessuchascellsizesandreusepatterns.

    2.2.2CellularCapacity

  • PracticalcapacityofmanywirelesssystemsarefarfromtheShannonslimit(althoughrecentstandardsarecomingclosetoit)andpracticalcapacityisheavilydependentonimplementationandstandardchoices.

    Digitalstandardsdealintheirownwaywithhowtodeployandoptimizecapacity.Mostsystemsarelimitedbychannelwidth,timeslots,andvoicecodingcharacteristics.CDMAsystemsareinterferencelimited,andhavetradeoffsbetweencapacity,coverage,andotherperformancemetrics(suchasdroppedcallratesorvoicequality).

    Cellularanalogcapacity:Fairlystraightforward,everyvoicechannelusesa30kHzfrequencychannel,thesefrequenciesmaybereusedaccordingtoareusepattern,thesystemisFDMA.Theoverallcapacitysimplycomesfromthetotalamountofspectrum,thechannelwidthandthereusepattern.

    TDMA/FDMAcapacity:IndigitalFDMAsystems,capacityimprovementsmainlycomefromthevoicecodingandelaborateschemes(suchasfrequencyhopping)todecreasereusefactor.Thefrequencyreusefactorhidesalotofcomplexityitsvaluedependsgreatlyonthesignaltointerferencelevelsacceptabletoagivencellularsystem([1]ch.3.2,and9.7).TDMAsystemscombinemultipletimeslotsperchannels.

    CDMAcapacity:ausualcapacityequationforCDMAsystemsmaybefairlyeasilyderivedasfollows(forthereverselink):firstexamineabasestationwithNmobiles,itsnoiseandinterferencepowerspectraldensityduestoallmobilesinthatsamecellisISC=(N1)S,whereSisthereceivedpowerdensityforeachmobile,andisthevoiceactivityfactor.OthercellinterferencesIOCareestimatedbyareusefractionofthesamecellinterferencelevel,suchthatIOC=ISC(usualvaluesofarearound12).ThetotalnoiseandinterferenceatthebaseisthereforeNt=ISC(1+).NextassumethemobilesignalpowerdensityreceivedatthebasestationisS=REbW.EliminatingISC,wederive:

    (2.5)

    where

    Wisthechannelbandwidth(inHz),Ristheuserdatabitrate(symbolrateinsymbolpersecond),EbNtistheratioofenergyperbitbytotalnoise(usuallygivenindBEbNt7dB),isthevoiceactivityfactor(forthereverselink),typically0.5,andistheinterferencereusefraction,typicallyaround0.5,andrepresentstheratioofinterferencelevelfromthecellinconsiderationbyinterferencesduetoothercells.(Thenumber1+issometimescalledreusefactor,and1(1+)reuseefficiency)

    Thissimpleequation(2.5)givesusanumberofvoicechannelsinaCDMAfrequencychannel3.

    WecanalreadyseesomehintsofCDMAoptimizationandinvestigatecertainpossibleimprovementfora3Gsystem.Inparticular:improvingcanbeachievedwithdimandburstcapabilities,withinterferencemitigationandantennadowntiltconsiderations,Rwithvocoderrate,WwithwiderbandCDMA,EbNtwithbettercodingandinterferencemitigationtechniques.

    Someaspectshoweverareomittedinthisequationandarerequiredtoquantifyothercapacityimprovementsmainlythoseduetopowercontrol,andsofter/softhandoffalgorithms.

  • Ofcourseotherlimitationscomeintoplayforwirelesssystems,suchasbasestation(andmobile)sensitivity,whichmaybeincorporatedintosimilarformulasandfurtherconsiderationscomeintoplaysuchas:forwardpowerlimitations,channelelementblocking,backhaulcapacity,mobility,andhandoff.

    Afinalnoteoncapacity:voicecapacityisoftengiveninErlang,andreferstotrunkingefficiencygivenacertainblockingprobability.([1]3.6,[2]p.350.)

    2.3ModulationandCoding

    Modulationtechniquesareanecessarypartofanywirelesssystem,withoutthem,nousefulinformationcanbetransmitted.Codingtechniquesarealmostasimportant,andcombinetwoimportantaspects:firsttotransmitinformationefficiently,andsecondtodealwitherrorcorrection(toavoidretransmissions).

    2.3.1Modulation

    Acontinuouswavesignal(atacarrierfrequencyfc)initselfencodesandtransmitsnoinformation.Thebitsofinformationareencodedinthevariationsofthatsignal(inphase,amplitude,oracombinationthereof).Thesevariationscausetheoccupiedspectrumtoincrease,thusoccupyingabandwidtharoundfcandtheoptimaluseofthatbandwidthisanimportantpartofawirelesssystem.Variousmodulationschemesandcodingschemesareusedtomaximizetheuseofthatspectrumfordifferentapplications(voiceorhighspeeddata),andinvariousconditionsofnoise,interference,andRFchannelresourcesingeneral.

    Classicmodulationtechniquesarewellcoveredinseveraltexts[1][10],andwesimplyrecallhereafewimportantaspectsofdigitalmodulations(thatwillbeimportantinlinkbudgets).Themaindigitalmodulationsusedinmodernwirelesssystemsareoutlinedintable2.1.

    Modulation Bitsencodedby: ExamplesAmplitudeShiftKeying Discreteamplitudelevels On/offkeyingFrequencyShiftKeing MultiplediscretefrequenciesPhaseShiftKeying Multiplediscretephases BPSK,QPSK,8PSKQuadratureAmpl.Mod. Bothphaseandamplitude 16,64,256QAM

    Table2.1:Digitalmodulations

    Modulationisapowerfulandefficienttoolusedtoencodeinformationafewsimpledefinitionsarecommonlyused:

    Symboldenotesthephysicalencodingofinformation,overaspecificsymboltime(orperiod)Ts,duringwhichthesystemtransmitsamodulatedsignalcontainingdigitalinformation.

    Bitdenotesalogicalbit(0or1)ofinformationoneormorebitsareencodedbyamodulationschemeinasymbol.

    Higherordermodulationscanencodemultiplebitsinasymbol,andrequirehigherSNRtodecodeerrorfree.Figure2.2illustrateshowmultiplephasesandamplitudesareusedtocombinemultiplebitsintoonesymboltransmission.ThetradeoffbetweenbitsencodedpersymbolisoftenreferredtoasameasureinbitsperHertz(b/Hz),itsrelationtoSNRisboundedbyShannonstheoremseenearlier

  • (2.2.1).

    Figure2.2:Digitalmodulationsencodemultiplebitsofinformationoverthetransmittedsignal.Thesimplestmodulation(BPSK)simplyencodesonebitofinformationinthesignofthewave.Higherordermodulationscombineorthogonalsignals(sineandcosine)andmultipleamplitudestoencodemultiplebits:2inQPSK,4in16QAM,and6in64QAM.

    2.3.2Coding

    Efficientcodingschemesarethepowerfulenginesbehindthegrowthofthewirelessindustry.Theyhaveallowedwirelesssystemstobebothspectrallyefficientandrobustintermsoferrorcorrections.

    Blockcodingaretheclassicalapproach:blocksofdataareusedasinputtoproduceusuallylargeroutputblockscontainingaddedredundancy.

    SecondgenerationwirelesssystemslikecdmaOneintroducedtheuseofconvolutionalcoding.Thecodingschemeprovidesanefficientredundantanderrorcorrectingscheme.Thisisparticularlyusefulforvoicetransmissionwheretheneedforretransmissioncausesdelaysanddegradesvoicequality.

    Figure2.3:Convolutionalcodingconsistsinsendingadatastreamofbitsintoanencoderthatproducesmultipleoutputstreams.

    Wirelessdatasystemsofhigherratesoftenuseturbocoding,whichareacombinationoftwoconvolutionalcodersreadingeachother(thenamecomesfromtheturbochargedengine,whichusessomeofitsoutputpowertocompresssomeairfedtotheintake,andissomewhatreminiscentoftheturbocodingdiagramoffigure2.4).

    Figure2.4:Turbocodingconsistsinsplittingadatastream,andsendingitandaninterleavedreplicaintoconvolutionalencoders.

    Convolutionalcodingandturbocodingareexampleofcontinuouscodingschemes,whereabitstreamisencodedintoanotherbitstream,usuallyofgreaterspeed(withamultiplierof2,3,4ormore).Theaddednumberofbitscanbeseenasspreadingthespectrum,andtheinformation,whichrequiresmoredatatotransmit,butinherentlycontainsusefulredundancyproperties(aformoftimediversity).Thedecodingofsuchschemeswashistoricallydifficultandhasbecomepossibleonlywithrecentprocessingpower(seeforinstanceViterbialgorithms[102]).

    2.3.3CombinedModulationandCoding

    Thecombinationofmodulationandcodingprovidesgreatflexibilitybetweenredundancyand

  • throughput.Highermodulationincreasesspectralefficiencyingoodpropagationconditionwhenconditionsworsen,lowermodulationhelps,butincreasedredundancyissometimesanefficientalternative.Combined,thetwoschemescanreachimpressiveefficiencies,closetoShannonslimit(2.2).

    2.4StandardAirInterfaces

    Wefirstbrieflyreviewcurrentmobiledigitaltechnologies,howtheywereinitiallyintroduced,andhowandtheyevolved.4

    FirstGenerationAnalogcellularphones:Advancedmobilephoneservice(AMPS)wasdevelopedbyBellLaboratoriesinthe1970s,andstartedintheUSafterFCCallocationin1983of40MHzpairedspectruminthe800MHzfrequencyrange.Thesystemusedafrequencydividedmodulationaccess(FDMA),duplexfrequenciesforupanddownlink(frequencydivisionduplexingFDD),with30kHzchannels,oneuserperchannel,analogvoicemodulation(FM),blankandbursttransmission.

    RFchannel 30kHzReusepattern typically7Duplex FDDMultipleaccess FDMAMultiplex 1trafficchannelperRFchannelVoice FMmodulation

    SecondGenerationDigitalwirelesssystems:Secondgenerationcellularsystemsarecharacterizedbytheintroductionofvoicedigitizinganddigitalencoding,thusopeninganumberofDSPpossibilitiessuchasforwarderrorcorrectionschemes.Frequencyortimedivisionmultipleaccesstechniquesareused(FDMAorTDMA).Codedivisionmultipleaccess(CDMA)isintroducedbyQualcomm(TIAEIAIS95,orANSI95)andbecomesthebasisforthemain3Gsystems.Overallcapacityisincreased,signalingcapabilitiesandsystemintelligenceisconsiderablyenriched.

    RFchannel 30kHz,200kHzinGSM,1.25MHzforCDMAReusepattern 7(lesswithfrequencyhopping),1forCDMADuplex mostlyFDD(emergenceofTDD)Multipleaccess FDMA,TDMA(8fullratetimeslotsforGSM),orCDMAVoice Digitalencoded:GSMfullrate13.4kbps,CDMA13kbpsQCELPor

    8kbpsEVRC

    Thirdgenerationsystems:Digitalsystemswerefurtherimprovedupon,mostlyforhighervoicecapacityandhigherdataratestheyevolvedintothirdgenerationstandards.

    RFchannel 1.25,5,10,15MHzReusepattern 1(CDMA)Duplex mostlyFDD,someTDDMultipleaccess CDMAVoice Digitalencoded:bitrates8kbpsandbelowData UptoseveralMbps(3.1MbpsforEVDO,15MbpsforHSDPA)

    Fourthgenerationsystems:Fourthgenerationstandardsdealwithhigherthroughput,lowlatency,IPnetworkarchitecture.AirinterfacesfocusonmulticarriertechniqueslikeOFDM,andadvancedantennasystemssuchasmultipleinputmultipleoutput(MIMO)systems.

    RFchannel generallywider:10,20MHz,more

  • Reusepattern 11.5(OFDMAsee8.3.3)Duplex FDDorTDDdependingonspectrumMultipleaccess OFDMAVoice basedonVoIPData IPbased,flatarchitecture,convergence

    2.5SpeechCoding

    TheintroductionofdigitalwirelesssystemsmeansthattheacousticvoicewavefrontisnotsimplyconvertedtoanelectricalsignaldirectlytransmittedoverRFchannel.Voiceisnowdigitized,encoded,andtheresultingbitstreamistransmittedandofcoursedecodedonthereceivingside.Althoughthisprocessrequiresadditionaldigitalsignalprocessing(DSP),itopensthedoortomanyoptimizationalgorithmsandismuchmoreefficientthanusualanalogvoicetransmission.

    2.5.1BasicVocoderTheory

    Digitalvoicecoding(vocoding)isveryimportantyetverysubjective.Voicecodingtheoryisadomainofstudyofitsownintroductoryoverviewsarepresentedforinstancein[1]ch.8or[2]ch.15.

    2.5.2ClassicCellularVocoders

    AnalogvocodershaveemergedatBellLaboratoriesinthelate1920s,andhavebecomemoreelaborateandefficientindealingwithharmonicsimportanttoagoodunderstandingofvoice(500Hzto3400Hz)whileminimizingbandwidth.Thedigitalareabroughtsignificantchanges.Initialdigitalsystemssampledthatrange,whichattheNyquistrateleadstoa64kilobitspersecond(kbps,kbit/s,orkb/s)bandwidth.Thisisreferredtoaspulsecodemodulation(PCM).Moreelaboratealgorithmshowevercanachievereasonablygoodvoicetransmissionbytransmittingacodebook(setofparametersforagivenvoicecodingalgorithm)withaslittleas2.4kbpsrate:a26foldimprovement.Usuallythesealgorithmsprovideacceptablevoicequality,butmayprovidepoorperformanceinspecificsituationssuchasinanoisyenvironment,withbackgroundmusic,orwhencombinedwithdifferentvoicecodingsystems(suchasPCMorvoicemailsystems).Severalvocodersystemsexistandhavebeenchosenin2Gand3Gstandards:

    CELP:CodeExcitedLinearPrediction,2.4and4.8kbps,FederalStandard1016,usedinSTUIII.

    QCELP:QualcommCodeExcitedLinearPrediction,developedin1994,wasusedininitialIS95CDMAnetworks.Twobitratesavailable:QCELP8andQCELP13using8and13kbpsrespectively,whichiswelladaptedforthisstandards9.6kbpsand14.4kbpsframes.ItwaslaterimproveduponbyEVRC.

    RCELP:RelaxedCodeExcitedLinearPrediction,amoreadvancedadvancedalgorithmthatdoesnotattempttomatchtheoriginalsignalexactlybutasimplifiedpitchcontour.

    EVRC:EnhancedVariableRateCODECisaspeechcodecusedinCDMAnetworks,itusesRCELP8kbpsandimprovesqualityover8QCELP.HalfrateEVRCwerealsodevelopedtofurtherlowerbitrateatthecostofsomequality.

    CVSD:ContinuouslyVariableSlopeDeltamodulation,16kbps,usedinwidebandencryptorssuchastheKY57.

    MELP:MixedExcitationLinearPrediction,MILSTD3005,2.4kbps.

  • ADPCM:AdaptiveDifferentialPulseCodeModulation(G.721,G.726).

    Comparingthequalitydifferencesbetweenvocoderisusuallydonebytestinganumberofstandardphrases,andassessingthequalityofthetransmittedresultundervariousconditions.ThatassessmentissubjectiveandisusuallygivenagradecalledMeanOpinionScore(MOS)between0(completelyunintelligible)and4(perfectquality).Initialtestsreliedonactualopinionsurveys,buttestdevicesnowofferalgorithmsprovidingaMOSandareregularlyusedbywirelessnetworkoperatorstobenchmarknetworkquality.

    2.6Migrationto3G

    Secondgenerationcellularsystemscertainlyachievedmajorcapacityimprovementsandcontributedtothefastadoptionofwirelesshandsetsthroughouttheworld.Andthegrowthcontinues.

    Thirdgenerationsystemsfocusedonincreasingcapacityyetagain,andonintroducingefficienthighspeedmobiledatasystems.Givenpastheavyinvestmentsindifferent2Gnetworks,adoptionofacommon3Gstandardhadtremendouscostimplicationsandcompetitiveadvantages.

    Theseeffortsfromthewirelessindustryfocusedonimprovingwidelydeployedsystems,andmigratethemtowardsathirdgeneration.Allmajordigitaltechnologiesproposedanevolutionpathtoanextgeneration,typicallybroaderband(inthroughputandspectrum).

    Severalproposals:Initially10newproposalsweresubmittedtotheITUbodyresponsibleforstandardizingnextgenerationsystems:2TDMA,8CDMA.(SeedetailsinaUScontributiontotheITU:US8F0116,February2001.)

    Harmonizationprocess:Adifficultharmonizationeffortwasundertakenfrom1998to2001bytheITU.Manytechnicalcomparisonsanddiscussionsensued,resultinginsomeharmonization,butfallingshortofselectingoneuniqueworldwidestandard.

    Successes:TDMAsolutionsdisappeared.CDMAsolutionswerenarroweddowntotwo.Otherissuessuchasspectrumplansandemissionlevelswerealsodiscussedandapprovedwithrelativesuccess.

    Failures:Onemajorissueremained:tomergethelasttwoCDMAcamps:the3Gpartnershipproject(3GPP)proposedUMTS(WCDMA),and3GPP2proposedcdma2000.Theformerwasveryreluctanttotreadonintellectualpropertyofthelatter,andthelatterwasadamantaboutconservingsmoothevolutionandbackwardcompatibilitywithcdmaOne.Anddiscussionsstalleditseemedobviousthatneithercamphadanyincentiveingivingin,hencetwocompetingstandards:UMTSWCDMAandcdma2000.

    Figure2.5:ExistingCDMAcarrieruse(left)isconvenientformigrationtomulticarrierstandard,butmaybelessefficientthanfullspreadingonsamefrequencyblock(right).

  • Inshorttwomajor3Gstandardsremainincompetition,andthechoiceofanycarrierisclear:GSMoperatorsclearlyoptforamigrationtoUMTS(3GPP),andcdmaOneoperatorstocdma2000(3GPP2).Thelatteriscertainlyinitiallycheaper,hasadvantagesinequipmentavailability,andhaswellknownperformancesbuttheformermaybenefitfromlargereconomiesofscalesasGSMcarriersmigratetoUMTSservices.

    In2002,CDMAAmericasCongress(SanDiego,December2002)estimatedthatcdmaOneoperatorsbenefitedfromasmoothtransitionandawellknownstandard,thusgivingthemaoneortwoyearadvanceoverGSMeffortstowardsUMTS.Indeedcdma2000(3G1X)systemshavebeenavailablesince2002,IS856(3G1XEVDO)havebeenwidelyavailableintheUSandAsiasince2004.GPRSandUMTSarefinallycatchingupin2006.Highspeeddataservices(HSPA)stilllagincoveragebehindEVDOin2008,butmostdenseareasintheUSarewellcoveredbybothtechnologies.

    Choosingamigrationpathisonlythefirststepupgradingthenetworkisofcourseverycostly.Initiallyserviceprovidershadtodecidehowlongtodelaynetworkupgrade:voicecapacityandtimetomarketforhighspeeddataserviceswerethedrivingfactors.Nowserviceprovidershavetodecidehowmuchresourcestodedicatetovoiceversusdata.

    2.7Anothermigrationto4G

    Secondgenerationcellularsystemsachieveddigitalvoiceefficiency,thirdgenerationsystemsfocusedonincreasingcapacityanddatarates,whatmorecanafourthgenerationstandardachieve?

    Accordingtomostdefinitions(fromtheITUinparticular),4Gsystemsarerequiredtoachievethroughputratesaround100Mbpsformobilityand1Gbpsforfixedwirelessaccesssotheairinterfacehastobeincrediblyefficient.Therearecertainlyadditionalrequirements(mostlyonthenetworkinfrastructure)suchaslowlatency,flatIParchitecture,andtheuseofsmallcells,heterogeneousnetworks,andmore(whichwellreviewinlaterchapters).

    Themain3Gstandardshaveanevolutiontowardsa4Gstandard,evenifnotallaspectsareetinitsearlyiteration,these4Gstandardshaveevolutionlinestowardstrue4Grequirements.Theyhaveanumberofcommonalities:

    LTE:LongTermEvolutionofthecurrentGSM/UMTS/3GPPsetofstandardisOFDMAontheforwardlink,andSCFDMA(asinglecarrierOFDMAscheme)onreverselink.Interestingly,GSMcarriersmigratedoncetoCDMA,andnowproposetoabandonitforOFDMA.LTEpromisestocarrymuchoftheinternationalcrowdofoperatorsandcreateeconomiesofscale,allowforinternationalroaming,etc.

    WiMAX:WiMAXisawirelessstandardbasedonIEEE802.16e(anditsevolution802.16m).Itsstrengthisthat(unlikeother4Gstandards)itsevolutionpathpreservesbackwardcompatibilitywithcurrent802.16esystems.

    Oddlyenoughtwodifferentcampsseemtoemergeagain:LTEandWiMAX,eachbackedupbydifferentsuppliers,anddifferentoperators,bothusingverysimilartechnologies(basedonOFDMA),andwithveryfewtechnicalreasonswhytheyshouldnotharmonizetoauniquestandard.

    Animportantargumenttoconsideristhatofspectrum:thevastmajorityofmobileoperatorsoperateinFDDspectrum(seesections1.2.3and1.3)LTEprovidedanevolutionfirstinthatmode.WiMAXontheotherhandchosetofocusfirstonTDDbandsandistheobviouschoiceforTDDspectrumowners.Theoveralltimelineforevolutionisalsoimportant:somecellularprovidershavemadesignificantinvestmentsinEVDOorinHSPA.Newcomersontheotherhandwhoneedhigh

  • dataratestodaywithsmoothevolutiontowards4GlatermaybemorelikelytochoseWiMAX.Practicallyhowever,since2010thevastmajorityofthemobileindustryisfollowingLTEplans,andthatstandardisbecomingthedefactostandardforthe4Gmobilewirelessworld.

    2.8TechnologyAdvances

    Recenttechnologyadvancesaimatincreasingcapacityfurther.Technologyimprovementsaresometimestheresultofamajorstandardmodification,butsometimessimpleschemesthatcanbeaddedtoexistingstandardsandallowforadditionalimprovementswithminimalinfrastructurechanges.

    2.8.1SpeechCodingImprovement

    VoicecodingalgorithmsandDSPcapabilitieshaveimproved,andcurrentvoicecodecsoperateonlesspower,andwithgreaterprocessingefficiencies.(Referto[2]ch.15,or[1]ch.8forspeechcodingdetails).GSMforinstanceisimprovingvoicedigitizationandquantizingfromRPELPTtoaseriesofAMRstandards.IS95systemshaveaparallelevolution,withEVRC,andhalfrateEVRC.

    Anotherstandardforselectablemodevocoder(SMV)wasintheworkbutneversawanysuccessintheindustryitbasedrequirementson:operationinpresenceofframeerasures,noisesuppressionrecommendedforbackgroundnoises,reasonableperformancewithmusicforonholdsituations,equivalentperformanceswithdifferentlanguages,multiplequalitymodesandmultiplebitrates,seamlesstransitionfrommodetomode.SMVwasdesigntoofferfourmodesofoperations:

    Mode0isdesignedtoimprovevoicequalityoverEVRCwiththesamecapacityrequirementsasEVRC.Mode1isdesignedtomaintainthequalityprovidedbyEVRCwhilerealizingacapacitybenefit.Mode2isforthesystemoperatorwhoiswillingtosacrificesomevoicequalityrobustnessinordertorealizeasignificantcapacitygain.Similarly,Mode3ofSMVprovidesevenmorecapacitygains.Butthevoicequalityis,bytollgradestandards,poor.

    Theresultingcapacityvs.qualitytradeoffsseemusefulandattractivetoserviceproviders,yetthisstandardnevertookoff,whichmayillustratethatsomestandardevolutions(evenwhenbasedonsoundrequirementsandgoodimprovements)maymisstheirwindowofopportunity.

    2.8.2EfficientCodingandModulation

    Forsystemsprimarilydesignedforvoice,latencywasamainconcern,andmodulationswerechosentobereliableandoperatingwellatfairlylowSNR(likeQPSK).Fordatasystemsitisadvantageoustotakeadvantageofhighermodulationschemessuchas16QAMand64QAMwhentheradiolinkallowsit.Highermodulationsaremorespectralefficientbutpronetomorebiterrorratesandmaycausemoreretransmissions,latency,orjitter.

    Databursts:whenlowSNRallowsforit,usehighermodulationandcodingratesforbetterspectralefficiency.

    Adaptivemodulation:fastmodulationchangesframebyframeallowforefficientschedulingofhighspeeddataburstswhentheradiochanneliscapableofit.

    ForwardErrorCorrection:averyimportantaspectofwirelesscommunication:errorcorrectingcodingvariesfromvoiceto

  • databurstsblockcoding,convolutionalcoding,andturbocodingcanbeusedoptimizeefficiency.

    ARQ:automaticretransmitrequestsareusedtolowermodulationwhennecessaryandretransmitfadeddata.

    2.8.3InterferenceMitigation

    Interferencesmaybecancelledormitigatedbychangingantennapatternsasrequired.Suchsystemsaresometimesreferredtoassmartantennas,andareinessenceanelaborateextensionofsectoring.Theaimmaybetobalancetheload,orsteeramainlobetowardauser,orcreateanullinthedirectionofaninterferer.Somesystemsarestatic,othersaredynamicandchangewithcellload.Somesystemsarepassiveothersincludeactiveamplificationdevices.Themaintypesofsmartantennasystemsmaybedescribedasfollows:

    Activeantennas:Anarrayofpassiveandactiveelementsusingmultiplepoweramplifiersonthetransmitside,andalownoiseamplifieronthereceiveside.

    Switchedbeams:Afixedarrayofnarrowbeams,combinedtoformvarioussizesectors.

    Adaptivearrays:Anarrayofelementsofferingseveraldegreesoffreedomtosteerabeaminacertaindirection,orcreatenulls.Arrayelementaresometimesamplified,orattenuated,orarepurelypassiveandutilizephaseshifttocreatethewantedpatterns.

    SpatialDivisionMultipleAccess(SDMA):Asophisticatedcombinationofmanyadaptiveelements.

    Smartantennasystemsareefficientindenseareas.Theircostofequipmenthowever(sometimesduetothecomplextransmitaspect)andlargeantennasizesaremajordrawbacks[11].SmartantennasarenowreplacedbyMIMOsystemscoveredinchapter9.

    2.8.4Diversity

    Antennadiversityisawonderfultechniquetoimprovelinkbudgetsreceivingdiversitysimplyconsistsinhavingmorethanoneantennaatthereceivingsite.Giventhepowerlimitationsofamobilehandset,receivingdiversityhasbeenimplementedatcellsitefromtheearlydaysofcellularsystems.Gooddiversityschemescanadd8to11dBontheuplinkbudget,thussignificantlyimprovingcoverage,qualityandcapacityonthatlink.Thegoalofantennadiversityistoprovidetwouncorrelatedpathsandcombinethetwosignals,thusreducingtheprobabilityofdeepfades.Ageneralguidelineistomeasureorcalculatethecorrelationcoefficient,,andtrytoachievethelowestpossiblecorrelationbetweenthetwopaths.

    Diversityimprovementsareoftwokinds:improvementsonexistingreceivediversityintheuplink,andintroductionoftransmitdiversityfortheforwardlink.

  • Figure2.6:TestsetuptomeasureseveralantennaspacingforhorizontalspacediversityforaPCSsystem:antennasareplaced2,5,and10apart.

    Figure2.7:Cellularnetworksutilizemanytypesoftowersandpoles,andevensomedisguisedependingontheareastocover.Differentantennasmakeuseofdifferentdiversityschemes(spaceforthelefttwo,polarizationforthefarright).Andsomeantennasareslightlydowntilted(right)toreduceinterferencestoneighboringcells.

    Receivediversityhasbeenusedfromtheearlydaysofcellular,andisaspopularasever.Classicdiversityschemesusetwoantennasatthebasestationandsomealgorithmstocombinesignals5

    Spatialdiversity:Usedateverysector,wellknowncombiningtechniques,probablythemostefficienttypeofdiversity.

    Angulardiversity:Typicallyoflittleuse,itsbenefitsareusuallyexploitedbysofterhandoff(withinasite)orsmartantennas.

    Timediversity:HeavilyusedinmodernstandardslikeCDMA:interleaving,halfchipoffsetinIandQ

  • transmission,rakereceivers.Polarizationdiversity:

    Widelyused,convenientforsmallbasestationsiteswhereantennascannotbeseparated.

    Transmitdiversityisanimportantfeatureforforwardlinkcapacityimprovement.Sincehandsetsarerathersmall,theirreceivediversitycapabilitiesarelimitedandtheretransmitdiversityschemeswerelongignored,butarenowusedinmanystandards.

    OrthogonalTransmitDiversity(OTD):Codedsymbolstreamsaresplitintotwodatastreams,eachcontaininghalfthenumberofsymbols,modulatedandspreadseparately(withtwodifferentcodes),andtransmittedontwodifferentantennasthusdoublingtransmitrate.

    SpaceTimeSpreading(STS):Codedsymbolstreamsareduplicatedintotwoidenticalstreams,modulatedandspreadseparately(withtwodifferentcodes),andtransmittedontwodifferentantennas.ThekeydifferencewithOTDisthatinSTSallofthedataissentoutoneachantenna.Thisschemeprovidesredundancyratherthandatarateimprovement.

    Multipleinput,multipleoutputsystems(MIMO):Thesesystemsarekeytorecentwirelessstandards,fromwirelessLANlike802.11ntocellularevolutionslikeLTE.MIMOsystemsusemultiplestreamsencodeddifferently,transmittedoverdifferentantennas,andreceivedbymultipleantennas.(SeemoreonMIMOinchapter9.)

    2.8.5OtherOptimizationTechniques

    Technologyadvancesandstandardimprovementstargetanincreaseincapacity,coverage,datarate,orsomeothersystemperformanceaspect.Inmanycaseshoweversomesimpleoptimizationtechniquescanbeusedtoincreaseperformance:

    Antennaheight:higherforfurtherrange,orlowertoreduceinterference.Cellsplitting(intosmallercells:microcells,picocells,femtocells).Sectoring:often3to6sectors.ImprovingRFcomponents:duplexers,combiners,jumpercables,connectors.Rangeextensionbyrepeatersorlownoiseamplifiersincreasecoverage.Changingantennasaccordingtoneeds:diversity,gain,beamwidth,downtilt,etc.Andanumberofparameteradjustments(powerlevels,handoffparameters,etc.)

    Thesetechniquesareveryimportanttoolsusedbyoperatorstooptimizecapacityandcoverage.Insomecasesoptimizationmaybeseasonalduetofoliageordifferentusagepatterns.InallcasesRFnetworkdemandconstanttweakingtoprovideoptimalperformance.Morerecentlyselfoptimizingnetworks(SON)havetheabilitytocontinuallyandautomaticallyoptimizetheseparameters.

    2.9FixedWirelessAccess

    Fixedwirelessaccessissometimesreferredtoaswirelesslocalloop(WLL),andisanalternativetoprovidePlainOldTelephoneServices(POTS)andhighspeeddataservicesinremoteareaswherewiredsolutionsareimpracticalforvariousreasons.Inmostcases,trenchinglongdistancestoplacecommunicationconduits(forfiberorcopper)isverycostly,suchasinmountainousareas.Cellularserviceisoftenscarcetooinremoteareas.

    2.9.1ClassicArchitectures

    Radiosolutionsforwirelesslocalloopswererolledoutextensivelysincethe1970s.Somesuchradioservicesarestillinplace,andinusetoday.Earlysystemsuseanalogradiostooffervoiceserviceover

  • fairlylongdistances.NewerWLLsystemneedtobecosteffective,reliable,adaptabletoawiderangeofsituations,andcompliantwithlocalexchangecarriertechnical,legal,andregulatorystandards.ButthedemandforWLLservicesaregenerallylow,andsuppliersconsequentlytreattheopportunityasafairlylowpriority.

    InitiallyWLLfocusedonprovidingextensionsofthepublicswitchedtelephonenetwork(PSTN)toreachremotecustomers.AsthePSTNevolvedtodigitalvoice,digitalswitching,andClass5features(suchascallwaiting,callerID,3waycalling,andothers),WLLsystemsevolvedtoincludemanyofthesefeatures.WLLproductsthereforefocusedonprovidingfeatureparityfortheseclass5services.ConnectivitytoClass5switcheslikeLucent5ESSorNortelDMS100isspecifiedinTelcordiastandardssuchasGR303orGR008andWLLsystemsevolvedtousethesestandardinterfacestothePSTN.

    Radiofrequencieswereallocatedforwirelesslocalloopapplications,andarereferredtoasLandMobileRadio(LMR).LMRradiolinksfortelephonyusefrequenciesintheUHF/VHFband(138512MHz),whichprovidegreatpropagationcharacteristicsevenindifficultterrainandheavytreedensity.Thesefrequencieshoweverarebecomingveryrare.Infact,theyareinsuchdemandthattheFCCrecentlymandatedradiosystemstoincreasetheirspectralefficiencies,anduseonlyanarrowbandofspectrum.ManylegacyLMRequipmentusing2025kHzRFchannelsmustmigratetonarrowbandLMR12.5kHzchannelsbyJanuary1,2013.Inaddition,theFCCordermentionsthegoaltoreach6.25kHzchannelizationsonewWLLsystemsareurgedtodeploythesenarrowRFchannels.6

    Otherradiosolutionsworkinthe2.4GHzand5GHzunlicensedbands,buildingonthepopularityandthereforeeconomiesofscaleof802.11a/b/gradios.UnfortunatelythepopularityoftheseradiosforWiFiLANalsocreatesalotofinterferences,whichisaconcernwhenprovidingemergencyservice(911lifeline).Afewsystemsthereforehavea900MHzversionalthoughlessspectrumisavailableandlesspowerisallowed,thatfrequencycanbeaveryusefulalternative.Finally,newTVwhitespacesareawonderfulnewopportunitytoexplore.

    2.9.2CellularWLL

    Inadditiontofrequenciesmentionedabove,wirelesscarrierscanusetheirlicensedspectrumtoprovidefixedapplications.Fixedradiolinksusuallybehavedifferentlyfrommobileradiolinks,theyaretypicallylessvariableintime(thereforeeasiertopredictandequalize),andtheirfadingstatisticsaregenerallyeasiertodealwith.Consequentlyfixedpropagationisusuallyadvantageousforawirelesssystem.Severalimportantaspectsoffixedsystemshouldbeemphasized.

    Propagation

    Mobilecommunicationslinkaremorelikelytobeobstructedandhaveahighpathlossexponent(seechapter??fixedlinksontheotherhandcanuseelevatedantennasinordertoestablishnearlineofsightwiththebasestationandthereforeimprovepropagationcharacteristics.

    Propagationmodelingofafixedradiolinkhasfundamentaldifferenceswiththatofamobilelink.Wirelesspropagationmodelsnearlyalwayscomefromextensivedrivetesting(hencemobile)collectingfixeddataforanempiricalmodelismoredifficult:inmanycasesexperimenterspresentmethodstolocallyaveragedata(overonehalfofawavelength)toremovesmallscalefadingduetomultipath.(Smallscalefadingisdifficulttoquantifyaccurately,andevenalargenumberoffixeddatapointswouldprovideinsufficientsamplingtobeabletoevaluateitsimpact.)Anotherimportantissueisthatofantennabeamwidth(ordirectivity).Mobiledatacollectionsareconductedusinganomnidirectionalantenna(isotropicwithrespecttoazimuth).Ithaslongbeenknownthattheantennabeamwidthandmorespecificallythedistributionofanglesofarrivalwithrespecttothedirectionofmotionofamobileareimportantparameterstoquantifythefadingofamobilelink[1].

  • Consequentlyfixeddatamodelsmaydifferinsomecasesfromtheusualempiricalmodels.Goodfixedmodelswouldbepreciousforfixedwirelessaccess,butthecurrentuseofmobilemodelsislikelytocontinueforanumberofreasons:first,theyprovideagoodestimateforinitialdesign(sitespecificmodelsandsimulationsareusedformoreprecisepredictions)second,sometimeisnecessarytorolloutlargefixedwirelesssystemsthatcanbeusedandanalyzedinordertoprovideawidemodelingrangelastly,thefocusofwirelessaccessmostlyremainsonmobility.

    AdvantagesofFixedLinks

    Fixedlinkshaveafewimportantdifferencesinpropagationcharacteristics,whichhaveasignificantimpactonreach,capacity,andthereforeoverallcostofafixedwirelesssystem.

    Mobileradiolinksoftenincurfastchangingfadingconditions.Fixedlinksontheotherhandexperienceslowerfading,mostlyduetothechangesintheneighboringscatterers.AsaresulterrorratesaretypicallyimprovedforagivenSNR.InanIS95CDMAsystemforinstance,theindustryusuallyacceptsEb/Nolevelsof4forfixedcommunication,ratherthan7neededformobility.Allotherparametersbeingequal,areductionofEb/Notargetof3dBnearlydoublescapacity.(RefertoCDMAcapacityin2.2.)Fixedusersusingnarrowantennabeamwidthsorientedtowardagivenbasestationoffersmoreefficientspectrumreusepatternsthanwhatmobileomnidirectionalusersrequire.Fixedusageincreasessystemcapacityasitdoesnotrequiretheradioresourcesthatmobileusersneedtohandoverbetweenbasestations.Anotheradvantageofnarrowbeamwidthantennasisthatantennagainisimproved.Inaddition,repeaterscanbestrategicallyplacedatcustomerpremisetofurtherimprovethelink.Antennaheightscanbeincreasedtobenefitpropagationcharacteristics.Antennascanbeplacedoutdoorswithacablereachinganindoordevice.Anotherimportantaspectofthewirelesschannelisitsvariability:themobilechannelistypicallymuchmorevariable,afixedaccesschanneliseasiertopredictandcanthereforebemorespectralefficient.

    Fixedwirelesslinkscanthereforeprovideincreasedreachandcapacitythanequivalentmobilelinks.Asaresult,someoftheseotherwisecostlycellularsystemshavebeenusedforfixeduse,sometimeswithminormodifications.Insomecases,wirelesslocalloopbasestationsbecamehandytodeployinruralareastoprovideextendedcoverage,andreachminimumservicemandatedbytheFCCforPCSspectrumauctionsforinstance.Morerecently3Gand4Gsystemsareadvertisingtheirfixedcapabilitiesagainandmaybetryingtocompetewithotherwiredbroadbandservices.

    2.9.3VoiceIntegration

    VoiceoverIP(VoIP)isanefficientandwidelyacceptedmethodofprovidingtelephony.Whenconsideringwirelesstransport,theefficientcompressionofVoIPisanespeciallyvaluableproperty.MostrecentWLLradiosolutionsthereforeuseVoIPtransportthisisespeciallyconvenientasmostconsumerandenterpriseradiosolutionsarebasedonIPandEthernet.ConsequentlyfairlycheapofftheshelfsystemscanbeadaptedtoWLLvoiceanddatadelivery.Theproblemremainshowevertointerfacethesesystemswiththenearesttelephonynetwork.SeveralarchitecturesarepossibleforWLL,dependingonthelocationofnetworkelementswithvoicefeatures.

  • Figure2.8:Fixedwirelesslinks,orwirelesslocalloop(WLL)providefixedwirelessvoiceand/ordatalinks.VoiceservicesuseavoiceoverIPgatewayadditionaldataservicesareroutedtoabroadbanddatanetwork,andbypassthevoicegateway.

    Inmostruralareas,alocalcentralofficehasTDMvoicecircuitsavailableratherthanaVoIPsystem,soaVoIPgatewayisrequiredforWLLpurposes.SuppliersofWLLsystemsoftenhaveaVoIPgatewayaspartofthesolutionuntilrecently,thesesolutionswerestilldifficulttorolloutbecauseoftheVoIPgatewaycost,anditsoperationsintegration.Todaysmallsizegatewaysareavailableatreasonablepriceswithgoodinterfacestandards.Interfacesfromthegatewaytotheswitchingfabrichavetorelyonlegacytelephonystandards.OnesolutionistoconnecttheVoIPgatewaytoatelephonyCLASS5switchviaGR008orGR303.TheseTelcordiastandardsallowforagatewaytoconnecttoaswitch(withoneortwoT1lines),andtoaccessclass5features(suchascallwaiting,callerID,3waycalling,etc.)AnalternativesolutionwhenGR008orGR303interfacesarenotsupportedaretosimplyinterfacewithanalogtipandringlines,butthatmethodhasthedisadvantageofofferingnoremotealarmingortroubleshootingcapability.

    TheremainderofthevoicetransportbetweenthevoicegatewayandthecustomerendpointfollowstypicalIPtransportarchitectures.NetworkelementsusuallyinterfacewithEthernet(10/100sometimes1000bT).ManyradiosystemsuseasomewhatproprietaryphysicalandMAClayertoinsurereliablevoicetransport,butoftenthesesystemsarebasedonWiFiorWiMAXphysicallayers.AnumberofprotocolsareavailabletoestablishareliableIPsessionthatcanprovidevoicetransport,includingsessioninitiationprotocol(SIP),orandMediaGatewayControlProtocol(MGCP)ITUrecommendationH.323alsoprovidesinteroperabilitystandardsformultimediacommunicationsoverIPincludingvoicefeatures.

    2.9.4DataServices

    DatafeaturesarealsoavailableonmanyWLLradios,butaresomewhatdifferent.Featureslikefaxandlowdatarates(upto56kbps)arefairlysimpletoaddtomostWLL,butthetaskisslightlydifferentwhentryingtoaddhigherdatarates(inthemultipleMbpsrange).Indeed,higherdataratescannolongerinterfacewiththevoiceswitchandneedtobesplitintoadatanetworkofitsown.Ifahighspeedinternetnetworkisavailableinthearea,datasessionshavetoberoutedtothatnetworkwhilevoicetrafficneedstobeidentifiedassuch,androutedtowardstheVoIPgateway.

    2.10Homework

    1. Inatable,listallthewirelesstechnologiespopularinmodernwirelessservices(2G,3G,WiFi,WiMAX,HSPA,LTE).Researchandlisttheirmainparameterssuchas:(a)frequencyofoperation(b)RFchannelbandwidth(c)peakuplinkanddownlinkdatarates(d)standardbodyforairinterface(e)modulationtype(f)multipleaccess(g)andsomekindofcapacityestimatesuchasthroughputperMHz.

    2. ExaminetheShannoncapacityequationandcommentonwhathappensintochannelcapacity

  • inthefollowingdifferentsituations.a. YouoperateinafixedbandwidthW0,andincreasethepower(S)inthechannel.How

    doescapacitybehave?b. Youhavealimitedpowerradio(thereforeSisfixed)youincreasesystembandwidth,but

    asyoudothatsystemnoisetypicallyincreasesaswell:N=N0W(whereN0isafixednoisedensity).Howdoescapacitybehaveasbandwidthincreasesindefinitely?(calculatelimitofCasW).

    c. Younowfixyourpowerspectraldensity:S=S0W(S0isyourfixedtransmitpowerdensity).Howdoescapacityincreasewithbandwidth?

    3. Calculatethecapacity(invoicechannelpercellperMHz)ofthefollowingstandards(see2.2and2.4).Ineachcase,simplyassumeK=7asthereusefactor.

    a. VerifythatAMPSsystemcapacityinindependentoftheamountofspectrumavailable,andism=4.7ch./cell/MHz.

    b. CalculateGSMfullratesystemcapacity.(Answer:m=5.7)4. CDMAcapacityimprovement:

    a. WhatcapacitygaindoesaCDMAserviceproviderachievebychangingitshandsetfromQCELPvocoderstoEVRCvocoders?

    b. Inaddition,thebetterspeechcodingallowstypicalEbNttobereducedfrom7dBto6.5dB.Whatisthetotalcapacitygain?

    5. CDMAcapacity:a. Deriveindetailsthecapacityformula(2.5)forCDMAsystems.b. Computearadiosystemcapacity(mCDMA)forIS95halfrateEVRC(EbNt=6.5dB)

    6. Differentradiostandardssystemcapacity:a. CompareradiosystemcapacityforaboveIS95halfrateEVRC,GSMhalfratevoice

    frames,DECT,andPHS(searchonline,orreferforinstanceto[1]chapter11forthelast2).

    b. WhatarethechancesofPHSorDECTtoevolveintoa3Gstandard?7. Youinventedanewvoicecoderthatallowsyoutocodevoicein4.8kbpsratherthan9.6kbps

    withnosignificantvoicedegradation.a. Whatwillthelinkbudgetimprovementbe?b. Usingcapacityequations,quantifytheimpactonnetworkcapacity.

    8. Asanoperator,youarefacedwiththedifficultdecisionsofhavingtoregularlyupgradeyournetworktobetterstandardsandnewerequipment.AssumeyouareoperatingaGSMnetworkandyouconsiderupgradingittoUMTS.Consider(a)priceandavailabilityofequipment,(b)timelinetoupgrade,(c)impactofothercarrierstimeline,(d)fieldexperienceandproventechnology,(e)otherconsiderations.

    9. Similarlytotheaboveproblem,younowoperateaUMTSnetworkwithvoiceandhighspeedpacketdata.WriteaproposaltoupgradeittoafourthgenerationsystemusingLTE(withthesameaboveconsiderations).

    10. Youoperateawirelessserviceinasmalltown.YouinstalledaCDMAsystemthatcantypicallysupport50mobilecallspersector,butyouchosetoofferfixedserviceonly.Refertosection2.9.2,estimateallthegainyoucanrealizeandassumethattheyhaveadirectimpactonthesystemEb/No.Howwouldyouestimateyourfixedsystemcapacity.