192783500 tranferencia de calor

128
CUADERNO DE FÓRMULAS, TABLAS, FIGURAS Y PROBLEMAS DE TRANSFERENCIA DE CALOR Juan Carlos Ramos González Doctor Ingeniero Industrial Raúl Antón Remírez Doctor Ingeniero Industrial Diciembre de 2009

Upload: asocarras1

Post on 09-Jul-2016

54 views

Category:

Documents


21 download

TRANSCRIPT

Page 1: 192783500 Tranferencia de Calor

CUADERNO DE FÓRMULAS, TABLAS, FIGURAS

Y PROBLEMAS DE TRANSFERENCIA DE CALOR

Juan Carlos Ramos González Doctor Ingeniero Industrial

Raúl Antón Remírez

Doctor Ingeniero Industrial

Diciembre de 2009

Page 2: 192783500 Tranferencia de Calor
Page 3: 192783500 Tranferencia de Calor

FÓRMULAS, TABLAS Y FIGURAS DE TRANSFERENCIA DE CALOR

Juan Carlos Ramos González Doctor Ingeniero Industrial

Raúl Antón Remírez

Doctor Ingeniero Industrial

Diciembre de 2009

Page 4: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

ii

Page 5: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

i

ÍNDICE

Fórmulas

Tema 1. Introducción a la transferencia de calor y a la conducción...................................... 1

Tema 2. Conducción unidimensional en régimen estacionario ............................................. 3

Tema 3. Conducción bidimensional en régimen estacionario ............................................... 6

Tema 4. Conducción en régimen transitorio.......................................................................... 6

Tema 5. Introducción a la convección ................................................................................... 9

Tema 6. Convección forzada en flujo externo..................................................................... 11

Tema 7. Convección forzada en flujo interno...................................................................... 14

Tema 8. Convección libre o natural..................................................................................... 17

Tema 9. Introducción a la radiación .................................................................................... 19

Tema 10. Intercambio radiativo entre superficies ............................................................... 22

Tablas y Figuras

Tema 2. Conducción unidimensional en régimen estacionario ........................................... 24

Tema 3. Conducción bidimensional en régimen estacionario ............................................. 27

Tema 4. Conducción en régimen transitorio........................................................................ 34

Tema 6. Convección forzada en flujo externo..................................................................... 37

Tema 7. Convección forzada en flujo interno...................................................................... 42

Tema 8. Convección libre o natural..................................................................................... 46

Tema 9. Introducción a la radiación .................................................................................... 48

Tema 10. Intercambio radiativo entre superficies ............................................................... 50

Tablas de propiedades termofísicas y de funciones matemáticas........................................ 55

Alfabeto griego .................................................................................................................... 62

Page 6: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

ii

Page 7: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

1

TEMA 1. INTRODUCCIÓN A LA TRANSFERENCIA DE CALOR Y A LA CONDUCCIÓN

• Calor o transferencia de calor o velocidad de transferencia de calor: q [J/s = W].

• Flujo calorífico o de calor: q ′′ [W/m2].

• Ley de Fourier: dxdTkqx −=′′ . Aqq xx ⋅′′= . En condiciones de régimen estacionario y con una

distribución lineal de temperaturas: LTk

LTT

kL

TTk

dxdTkqx

∆=

−=

−−=−=′′ 2112 .

• Conductividad térmica: k [W/m·K].

• Ley de enfriamiento de Newton: )( ∞−=′′ TThq sx .

• Coeficiente de transferencia de calor por convección: h [W/m2·K].

• Potencia emisiva superficial: E [W/m2].

• Ley de Stefan-Boltzmann para un cuerpo negro: 4sb TE σ= .

• Constante de Stefan-Boltzmann: σ = 5,67·10-8 W/m2·K4.

• El flujo de calor emitido por una superficie real a la misma temperatura que un cuerpo negro

siempre será menor y viene dado por: 4sTE εσ= , donde ε es la emisividad, que puede variar

entre 0 y 1.

• Se llama irradiación, G, a la velocidad con la que la radiación incide sobre un área unitaria.

La proporción de la irradiación total que es absorbida por la superficie viene dada por la

absortividad, α (0≤α≤1), según la siguiente expresión: GGabs α= . Irradiación de los

alrededores: 4alrTG σ= .

• Intercambio de radiación para una superficie gris y difusa (α = ε):

( )44)( alrssbrad TTGTEAqq −=−==′′ εσαε . También se puede expresar como:

)( alrsradrad TThq −=′′ , siendo hrad el coeficiente de transferencia de calor por radiación:

( )22)( alrsalrsrad TTTTh ++= εσ .

• Principio de conservación de la energía en un volumen de control formulado en un instante de

tiempo (t): almalm

salgenent Edt

dEEEE &&&& ==−+ .

Page 8: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

2

• Principio de conservación de la energía en un volumen de control formulado en un intervalo

de tiempo (∆t): almsalgenent EEEE ∆=−+ .

• Principio de conservación de la energía en una superficie de control: 0=− salent EE && .

• Ley de Fourier vectorial: zyx qkqjqizTk

yTj

xTikTkq ′′+′′+′′=

∂∂

+∂∂

+∂∂

−=∇−=′′rrrrrrr .

• Capacidad térmica volumétrica: ρ cp [J/m3·K]. Mide la capacidad de un material para

almacenar energía térmica.

• Difusividad térmica: pc

α = [m2/s]. Mide la capacidad de un material para conducir energía

térmica en relación con su capacidad para almacenarla.

• Ecuación de difusión de calor en coordenadas cartesianas:

∂∂

=+

∂∂

∂∂

+

∂∂

∂∂

+

∂∂

∂∂

3mW

tTcq

zTk

zyTk

yxTk

x pρ& .

• Ecuación de difusión de calor vectorial: tTcqTk p ∂∂

=+∇∇ ρ&)·( .

• En el caso de transmisión unidimensional en régimen estacionario y sin generación de

energía: 0=

dxdTk

dxd . Teniendo en cuenta la ley de Fourier ( dxdTkqx −=′′ ), esta ecuación

implica que el flujo de calor en la dirección de transmisión es una constante

( cte.0/ =′′⇒=′′ xx qdxqd ).

• Ecuación de difusión de calor en coordenadas cilíndricas (r radial, φ angular o longitud, z

axial, elemento diferencial de volumen: dr·rdφ·dz):

tTcq

zTk

zTk

rrTkr

rr p ∂∂

=+

∂∂

∂∂

+

∂∂

∂∂

+

∂∂

∂∂ ρ

φφ&2

11 .

• Ecuación de difusión de calor en coordenadas esféricas (r radial, θ polar, cenital o colatitud, φ

azimutal o longitud, elemento diferencial de volumen: dr·rsenθdφ·dθ):

tTcqTksen

senrTk

senrrTkr

rr p ∂∂

=+

∂∂

∂∂

+

∂∂

∂∂

+

∂∂

∂∂ ρ

θθ

θθφφθ&

22222

2

111 .

• Condición de contorno de primera clase o de Dirichlet: superficie mantenida a temperatura

constante, T(x = 0, t) = Ts.

Page 9: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

3

• Condición de contorno de segunda clase o de Neumann: flujo de calor fijo o constante en la

superficie, 0

)0(=∂

∂−==′′

xs x

Tkxq . Un caso especial es la superficie perfectamente aislada o

adiabática, 00

=∂∂

=xxT .

• Condición de contorno de tercera clase o de Fourier: corresponde a la transferencia de calor

por convección en la superficie, convsuperficiecond qq ′′=′′ , . Si el fluido está en contacto con la

superficie de la pared donde está el origen de coordenadas: [ ]),0(0

txTThxTk

x

=−=∂∂

− ∞=

. Si

el fluido está en contacto con la superficie de la pared opuesta al origen de coordenadas:

[ ]∞=

−==∂∂

− TtLxThxTk

Lx

),( .

TEMA 2. CONDUCCIÓN UNIDIMENSIONAL EN RÉGIMEN ESTACIONARIO

• Resistencia térmica de conducción para pared plana: kAL

qTT

Rx

sscondt =

−= 21

, .

• Resistencia térmica de convección: hAq

TTR sconvt

1, =

−= ∞ .

• Resistencia térmica de radiación. Ahq

TTRrrad

alrsradt

1, =

−= .

• Coeficiente global de transferencia de calor, U: TUAqx ∆= . UAq

TRR ttot1∑ =

∆== .

• Ley de Fourier expresada en forma integral para un sistema general en condiciones de

régimen estacionario sin generación de calor y con conducción unidimensional (en este caso,

la transferencia de calor, qx, es una constante independiente de x): ∫ ∫−=x

x

T

Tx dTTkxA

dxq0 0

)()(

.

• Resistencia térmica de conducción para una pared cilíndrica: Lk

rrq

TTRr

sscondt π2

)/ln()( 1221, =

−= .

• Resistencia térmica de convección para una pared cilíndrica: rLhAh

R convt π211

, == .

Page 10: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

4

• Resistencia térmica de conducción para una pared esférica:

−=

−=

21

21,

1141)(

rrkqTTR

r

sscondt π

.

• Resistencia térmica de convección para una pared esférica: hrAh

R convt 2, 411π

== .

• El coeficiente global de transferencia de calor en una pared cilíndrica o esférica depende del

área en función de la cual se exprese: ( ) 1332211 ... −∑===== tii RAUAUAUAU .

• Generación de energía térmica por unidad de volumen:

== 3m

WVolE

eq gengen

&&& .

• Ecuación de calor para una aleta: 0)(112

2

=−

+ ∞TT

dxdA

kh

AdxdT

dxdA

AdxTd s

c

c

c

.

• Distribución de temperaturas y transferencia de calor para aletas de área de sección

transversal uniforme:

• Caso A, con transferencia de calor por convección desde el extremo de la aleta

( [ ]Lx

cc dxdTkATLThA

=∞ −=−)( ):

mLmkhmLxLmmkhxLmx

b senh )/(cosh)(senh )/()(cosh)(

+−+−

=θθ

mLmkhmLmLmkhmLMq f senh )/(cosh

cosh)/(senh ++

=

siendo ∞−= TxTx )()(θ , ∞−= TTbbθ , ckA

hPm =2 , bchPkAM θ= , P el perímetro y Ac

el área transversal.

• Caso B, extremo adiabático ( 0==Lxdx

dθ ):

mLxLmx

b cosh)(cosh)( −

=θθ mLMq f tanh=

• Caso C, extremo con temperatura establecida (θ(x = L) = θL):

mLxLmmxx bL

b senh )(senh senh )/()( −+

=θθ

θθ ( )

mLmLMq bL

f senh /cosh θθ−

=

• Caso D, aleta muy larga (L → ∞ y θL → 0, aplicable si m·L > 2,65): mx

bex −= θθ )( bcf hPkAMq θ==

Page 11: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

5

• La efectividad de una aleta se define como la razón entre la transferencia de calor de la aleta y

la transferencia de calor que existiría sin la aleta: bbc

ff hA

ε,

= , siendo Ac,b el área de la

sección transversal de la base de la aleta. El uso de aletas sólo se justifica cuando εf ≥ 2.

• Resistencia térmica de una aleta: f

bft q

=, .

• Teniendo en cuenta la resistencia térmica de convección de la base de la aleta, Rt,b = 1/hAc,b,

se puede expresar la efectividad como: ft

btf R

R

,

,=ε .

• La eficiencia o rendimiento de una aleta se define como la razón entre el calor real transferido

por la aleta y el calor que transferiría si estuviera toda ella a la temperatura de la base:

bf

f

máx

ff hA

qqq

θη == , siendo Af la superficie total de la aleta.

• Teniendo en cuenta la ecuación que define la resistencia térmica de una aleta, se puede

expresar ésta en función de su eficiencia: ff

ft hAR

η1

, = .

• Para el caso de una aleta recta de sección transversal uniforme y con su extremo adiabático se

tiene: mL

mLhPL

mLM

bf

tanhtanh==

θη .

• Se puede emplear la expresión de la aleta con extremo adiabático para una aleta con extremo

activo, empleando una longitud de aleta corregida de la forma Lc = L+(t/2) para aleta

rectangular y Lc = L+(D/4) para aleta de aguja. Esta aproximación es válida cuando (ht/k) o

(hD/2k) < 0,0625.

• Aletas de sección transversal no uniforme. En las expresiones de la distribución de

temperaturas, la transferencia de calor y el rendimiento o eficiencia de este tipo de aletas

aparecen las funciones de Bessel modificadas de primera y segunda clase de orden 0 y orden

1 (I0, I1, K0 y K1) cuyos valores están tabulados en la Tabla H. En la Tabla 2.1 se muestran las

expresiones del rendimiento para distintos tipos de aletas de sección transversal no uniforme.

• Dispositivo de varias aletas. Eficiencia global de la superficie: bt

t

máx

to hA

qqq

θη == , siendo qt

la transferencia total de calor de la superficie total, At, que es la asociada a la superficie de las

Page 12: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

6

aletas, Af, más la parte expuesta de la base, Ab. Es decir, bft ANAA += , siendo N el número

total de aletas.

• Este rendimiento también se puede expresar en función del rendimiento de una sola aleta:

bbbffbft hAhANqNqq θθη +=+= ⇒ btot hAq θη= ⇒ )1(1 ft

fo A

NAηη −−= .

• Resistencia térmica efectiva del dispositivo de aletas: ott

bot hAq

θ 1, == .

TEMA 3. CONDUCCIÓN BIDIMENSIONAL EN RÉGIMEN ESTACIONARIO

• Factor de forma de conducción para sistemas bidimensionales, S: )( 21 TTSkq −= . Se obtiene

de la Tabla 3.1.

• Resistencia de conducción bidimensional: Sk

R condt1

)D2(, = .

• MDF: Para obtener la ecuación de diferencias finitas de un nodo aplicando el principio de

conservación de la energía a un volumen de control alrededor del nodo se supone que todo el

flujo de calor es hacia el nodo. Como estamos en régimen permanente la ecuación a emplear

es: 0=+ genent EE && . El término de energía entrante puede incluir calores de conducción o de

convección que se evalúan con la ley de Fourier (x

TTykq nmnm

nmnm ∆

−∆= −

→−,,1

),(),1( )1·( ) o la ley

de enfriamiento de Newton ( ( ) )(1· ,),()( nmnm TTxhq −∆= ∞→∞ .

TEMA 4. CONDUCCIÓN EN RÉGIMEN TRANSITORIO

• Definición general del número de Biot: ext

int

extt

t,int

TT

RR

Bi∆∆

==,

.

• Número de Biot para un sólido con convección: convt

condtc

RR

khL

Bi,

,== .

• Longitud característica: Lc = Vol/As. Para una pared plana de espesor 2L sometida a

convección simétrica en su superficie ⇒ Lc = L, y para un cilindro largo o una esfera de radio

ro ⇒ Lc = ro.

Page 13: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

7

• Número de Fourier: 2

·

cLtFo α

= .

• El método de la resistencia interna despreciable es aplicable cuando 1,0<=k

hLBi c .

• Distribución de temperaturas temporal en un sólido en el que se puede aplicar el método de la

resistencia interna despreciable:

−=

−=

−−

=∞

tp

s

iniini

ttVolchA

TTTtTt

τρθθ expexp)()( .

• Constante de tiempo térmica: ttps

t CRVolchA

··1== ρτ , siendo Rt la resistencia a la

transferencia de calor por convección y Ct la capacidad térmica del sólido.

• La transferencia total de energía que tiene lugar desde un sólido en el que se puede aplicar el

método de la resistencia interna despreciable durante un tiempo t será:

∫∫ ==t

s

tdtthAqdttQ

00)()( θ ⇒ ( )[ ] ( )[ ]tinitinip tUtVolctQ ττθρ −−=−−= exp1exp1)( .

• [ ])0()()0()( UtUtUtQ −−=→∆−= .

• Solución analítica aproximada con el primer término (aplicable cuando Fo > 0,2) de la

distribución de temperaturas en una pared plana de espesor 2L sometida a convección:

*)180cos(**)180cos()exp(),(

*)*,(* 112

11 xxFoCTT

TtxTtx o

ini

ζπ

θζπ

ζθ =−=−−

=∞

∞ , siendo

)exp(),0(

),0*(* 211 FoC

TTTtxT

txini

o ζθ −=−

−===

∞ la temperatura del plano medio (x* = x/L =

0). Los valores de C1 y ζ1 se obtienen de la Tabla 4.1.

• Transferencia total de energía en función del tiempo desde o hacia una pared plana de espesor

2L sometida a convección: ),0(*

180sen1)(

1

1

tU

tQo

o

θζ

ζπ

−= , siendo Uo = Uini = ρcpVol(Tini -

T∞) = Umáx la energía interna inicial de la pared referida a la temperatura del fluido o la

máxima cantidad de energía que se podría transferir al fluido o desde el fluido, según éste esté

a menor o mayor temperatura que la pared.

• Solución analítica aproximada con el primer término (aplicable cuando Fo > 0,2) de la

distribución de temperaturas en un cilindro largo de radio ro sometido a convección:

Page 14: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

8

*)(**)()exp(),(

*)*,(* 10102

11 rJrJFoCTT

TtrTtr o

ini

ζθζζθ =−=−−

=∞

∞ , siendo

)exp(),0*(* 211 FoC

TTTT

trini

oo ζθ −=

−−

==∞

∞ la temperatura del eje central (r* = r/ro = 0) y J0

la función de Bessel de primera clase de orden cero cuyos valores se encuentran en la Tabla

G.

• Transferencia total de energía en función del tiempo desde o hacia un cilindro largo de radio

ro sometido a convección: )(),0(*2

1)(11

1

ζζ

θJ

tU

tQ o

o

−= , siendo J1 la función de Bessel de

primera clase de orden uno cuyos valores se encuentran en la Tabla G y Uo = Uini =

ρcpVol(Tini - T∞) = Umáx la energía interna inicial del cilindro referida a la temperatura del

fluido o la máxima cantidad de energía que se podría transferir al fluido o desde el fluido,

según éste esté a menor o mayor temperatura que el cilindro.

• Solución analítica aproximada con el primer término (aplicable cuando Fo > 0,2) de la

distribución de temperaturas en una esfera de radio ro sometida a convección:

*)180(sen*

1**)180(sen*

1)exp(),(

*)*,(* 11

11

211 r

rr

rFoC

TTTtrT

tr oini

ζπζ

θζπζ

ζθ =−=−−

=∞

∞ ,

siendo )exp(),0*(* 211 FoC

TTTT

trini

oo ζθ −=

−−

==∞

∞ la temperatura del eje central (r* = r/ro =

0).

• Transferencia total de energía en función del tiempo desde o hacia una esfera de radio ro

sometida a convección:

−−= )180cos()180(

*31)(

11131

ζπ

ζζπζ

θsen

UtQ o

o

, siendo Uo = Uini =

ρcpVol(Tini - T∞) = Umáx la energía interna inicial de la esfera referida a la temperatura del

fluido o la máxima cantidad de energía que se podría transferir al fluido o desde el fluido,

según éste esté a menor o mayor temperatura que la esfera.

• Conducción multidimensional. Para las geometrías multidimensionales de la Tabla 4.2, la

solución multidimensional se expresa como un producto de soluciones unidimensionales que

corresponden a un sólido semiinfinito, una pared plana de espesor 2L o un cilindro infinito de

radio ro: tosemiinfini

Sólido

),(),(∞

−−

=TT

TtxTtxSini

; planaPared

),(),(∞

−−

=TT

TtxTtxPini

; infinitoCilindro

),(),(∞

−−

=TT

TtrTtrCini

.

Page 15: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

9

• En un sólido semiinfinito la condición de frontera interior es T(x→∞, t) = Tini y la condición

inicial es T(x, 0) = Tini. Las soluciones analíticas para tres condiciones de frontera exterior

son:

Condición de frontera Distribución de temperaturas

Temperatura superficial constante: T (0, t) = Ts

=

−−

tx

TTTtxT

sini

s

α2erf

),(

2/10 )(

)()(

tTTk

xTktq inis

xs πα

−=

∂∂

−=′′=

Condición de frontera Distribución de temperaturas Flujo de calor superficial

constante: os qq ′′=′′

′′−

′′=−

tx

kxq

tx

ktq

TtxT ooini αα

πα2

erfc4

exp)/(2

),(22/1

Convección superficial:

[ ]),0(0

tTThxTk

x

−=∂∂

− ∞=

+

+−

=

−−

kth

tx

kth

khx

tx

TTTtxT

ini

ini

αα

α

α

2 erfcexp

2 erfc

),(

2

2

donde la función gaussiana de error, erf (η), y la función complementaria de error, erfc (w) =

1 – erf (w), son funciones matemáticas estándar cuyos valores se encuentran en la Tabla E.

• MDF en régimen transitorio. Expresión en diferencias finitas de la velocidad de variación de

la energía almacenada: tTT

VcEp

nmp

nmpalm ∆

−=

+,

1,ρ& .

• Criterio de estabilidad en el MDF explícito: el coeficiente asociado con el nodo de interés en

el tiempo anterior (coeficiente de pnmT , ) debe ser mayor o igual que cero. Así se obtiene un

valor límite para 2)( xtFo

∆∆

=α , del que se obtiene el máximo valor permisible de ∆t.

TEMA 5. INTRODUCCIÓN A LA CONVECCIÓN

• Ley de enfriamiento de Newton: )( ∞−=′′ TThq s ; )( ∞−= TTAhq s .

• Coeficiente de transferencia de calor por convección local, h o promedio, h [W/m2·K].

Page 16: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

10

• Relación entre los coeficientes de convección local y promedio:

)()( ∞∞ −=−=′′= ∫∫ TTAhhdATTdAqq ssA ssA sss

⇒ ∫=sA s

s

hdAA

h 1 . Para flujo sobre una

placa plana: ∫=Lhdx

Lh

0

1 .

• Espesor de la capa límite de velocidad, δ(x): la y para la que u(y) = 0,99·u∞.

• Espesor de la capa límite térmica, δt(x): la y para la que (Ts - T(y))/(Ts - T∞) = 0,99.

• Relación del coeficiente de convección en la capa límite: ∞

=

∂∂−=

TT

yTkh

s

yf 0/

.

• Número de Reynolds: νµ

ρ xuxuRex

∞∞ == .

• Número de Reynolds crítico para el inicio de la turbulencia en flujo externo: Rex,c = 5·105.

• Expresión diferencial de la ecuación de conservación de la masa o de continuidad:

=

∂∂

+∂

∂+

∂∂

s·mkg 0)v()(

3yxu

tρρρ .

• Expresiones diferenciales de las ecuaciones de balance de la cantidad de movimiento o del

momento lineal:

=+

∂∂

+∂∂

∂∂

+

∂∂

+∂∂

−∂∂

∂∂

+∂∂

−=

∂∂

+∂∂

+∂∂

223 ·smkg

mN vv

322v X

xyu

yyxu

xu

xxp

tu

yu

xuu µµρ

Yxy

uxyx

uyyy

ptyx

u +

∂∂

+∂∂

∂∂

+

∂∂

+∂∂

−∂∂

∂∂

+∂∂

−=

∂∂

+∂∂

+∂∂ vv

32v2vvvv µµρ .

• Expresión diferencial de la ecuación de conservación de la energía:

++

∂∂

+

++

∂∂

+

++

∂∂

=∂

∂−

∂∂

−Φ+−−+

∂∂

∂∂

+

∂∂

∂∂

3

222

mW

22v

2

)v()(v

Vgyet

Vgyey

Vgyeux

yp

xpuYXuq

yTk

yxTk

x

ρρρ

µ&

, siendo V2 = u2 + v2.

• Expresión diferencial de la ecuación de conservación de la energía térmica para fluido

incompresible en flujo estacionario:

qyTk

yxTk

xyT

xTuc p &+Φ+

∂∂

∂∂

+

∂∂

∂∂

=

∂∂

+∂∂ µρ v .

Page 17: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

11

• Disipación viscosa:

∂∂

+

∂∂

+

∂∂

+∂∂

=Φ222

v2vyx

uxy

uµµ .

• Aproximaciones de capa límite: fluido incompresible (ρ constante), con propiedades

constantes (k, µ, etc.), fuerzas de cuerpo insignificantes (X=Y=0) y sin generación de energía

( 0=q& ).Además: u >> v y xyx

uyu

∂∂

∂∂

∂∂

>>∂∂ v,v, en la capa límite de velocidad y

xT

yT

∂∂

>>∂∂ en

la capa límite térmica.

• Ecuación de conservación de la masa o de continuidad en la capa límite: 0v=

∂∂

+∂∂

yxu .

• Ecuaciones de balance de la cantidad de movimiento o del momento lineal en la capa límite:

2

21vyu

xp

yu

xuu

∂∂

+∂∂

−=∂∂

+∂∂ ν

ρ y 0=

∂∂

yp .

• Ecuación de conservación de la energía en la capa límite: 2

2

2

v

∂∂

+∂∂

=∂∂

+∂∂

yu

cyT

yT

xTu

p

να .

• Número de Prandtl: αν

=Pr .

• Número de Nusselt: 0**

*

=∂∂

==yf y

TkhLNu .

• Las formas adimensionales de las soluciones de la capa límite adoptan la siguiente forma:

( )PrRexfNu L ,*,= y ( )PrRefk

LhNu Lf

,== .

• Relación entre los espesores de las capas límites hidrodinámica y térmica en régimen laminar:

3/1Prt

≈δδ .

TEMA 6. CONVECCIÓN FORZADA EN FLUJO EXTERNO

• Temperatura de película es la temperatura media entre la del fluido y la de la superficie:

2∞+

=TT

T sf .

Page 18: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

12

• Espesor de la capa límite laminar: x

lam Rex

xux 5

/5)( ==∞ ν

δ .

• Correlación de convección local para el flujo laminar sobre una placa plana con temperatura

superficial constante: 3/12/1332,0 PrRekxh

Nu xx

x == . Con propiedades a Tf y Pr ≥ 0,6.

• Relación entre los espesores de las capas límites de velocidad y térmica: 3/1

,

Prlamt

lam ≈δδ

.

• Correlación de convección promedio para el flujo laminar sobre una placa plana con

temperatura superficial constante: 3/12/1664,0 PrRekxh

Nu xx

x == . Con propiedades a Tf y Pr ≥

0,6.

• Espesor de la capa límite de velocidad turbulenta: 5/137,0 −= xturb xReδ .

• Espesor de la capa límite térmica turbulenta: turbturbt δδ ≈, .

• Correlación de convección local para el flujo turbulento sobre una placa plana con Ts = cte: 3/15/40296,0 PrReNu xx = . Con propiedades a Tf y 0,6 < Pr < 60.

• Para condiciones de capa límite mezclada (laminar y turbulenta) se trabaja con el coeficiente

de convección promedio:

+= ∫∫

L

x turb

x

lamLc

c dxhdxhL

h0

1 .

• Correlación de convección promedio para capa límite mezclada (laminar y turbulenta) sobre

una placa plana con Ts = cte: 3/15/4 )871037,0( PrReNu LL −= . Con propiedades a Tf y

=<<<<

5

85

10·51010·5

606,0

cx

L

ReRePr

.

• Correlación de convección promedio para capa límite mayoritariamente turbulenta, es decir,

la longitud de la capa límite laminar es despreciable (L >> xc y ReL >> Rex,c), sobre una placa

plana con Ts = cte: 3/15/4037,0 PrReNu LL = . Con propiedades a Tf y

=<<<<

5

85

10·51010·5

606,0

cx

L

ReRePr

.

• Correlación de convección local para flujo laminar sobre una placa plana que desprende un

flujo de calor superficial constante: 3/12/1453,0 PrReNu xx = , con Pr ≥ 0,6 y propiedades a Tf.

Page 19: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

13

• Correlación de convección local para flujo turbulento sobre una placa plana que desprende un

flujo de calor superficial constante: 3/15/40308,0 PrReNu xx = , con 0,6 ≤ Pr ≤ 60 y propiedades

a Tf.

• Flujo sobre una placa plana que desprende un flujo de calor superficial constante. La

variación de la temperatura superficial local se obtiene con: )(

)(xh

qTxT

x

ss

′′+= ∞ .

• Número de Reynolds para flujo cruzado sobre un cilindro: ReD = V·D/ν.

• Correlación de Hilpert para flujo cruzado sobre un cilindro: 3/1PrCReNu mDD = . Los valores

de las constantes C y m se dan en la Tabla 6.3 en función de ReD. La Tabla 6.4 da los valores

de las constantes para cilindros no circulares. Las propiedades se evalúan a Tf. Válida para

fluidos con Pr ≥ 0,7.

• Correlación de Zhukauskas para flujo cruzado sobre un cilindro: 4/1

=

s

nmDD

PrPrPrCReNu .

Con

>=≤=

10 si 36,010 si 37,0

PrnPrn

y

<<<<

61015007,0

DRePr

. Los valores de las constantes C y m se dan en

la Tabla 6.5 en función de ReD. Las propiedades se evalúan a T∞, excepto Prs a Ts.

• Correlación de Churchill y Bernstein para flujo cruzado sobre un cilindro:

[ ]5/48/5

4/13/2

3/12/1

000.2821

)/4,0(1

62,03,0

+

++= DD

DRe

Pr

PrReNu . Con propiedades a Tf y ReD·Pr > 0,2.

• Correlación de Zhukauskas para flujo a través de un banco de tubos:

4/136,0

,

=

s

mmáxDD

PrPrPrCReNu . Con

<<<<

5007,010·2000.1

206

,

PrRe

N

máxD

L

. Las constantes C y m se dan

en la Tabla 6.6. Las propiedades se evalúan a 2/)( salent TTT += , excepto Prs a Ts. Para NL <

20 se aplica un factor de corrección tal que 20220 ≥<

=LL N

DN

D NuCNu , donde C2 está dado en

la Tabla 6.7.

• ReD,máx se define en función de la velocidad máxima del fluido dentro del banco de tubos.

• ST es el espaciado transversal y SL el espaciado longitudinal (distancias entre centros de

tubos).

Page 20: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

14

• Para la configuración alineada la velocidad máxima se da en el plano transversal entre dos

tubos verticales y su valor es VDS

SVT

Tmáx −

= .

• Para la configuración escalonada se utiliza la misma expresión si la velocidad máxima se da

en el plano transversal. Pero si se da en el plano diagonal la expresión es VDS

SVD

Tmáx )(2 −

= .

La velocidad máxima ocurre en el plano diagonal si se cumple la siguiente condición (ver

Figura 6.2): 22

)()(22/12

2 DSSSSDSDS TTLDTD

+<

+=⇒−<− .

• Diferencia de temperaturas media logarítmica:

−−

−−−=∆

sals

ents

salsentsml

TTTT

TTTTT

ln

)()(.

• Cálculo de la temperatura de salida del flujo:

−=

−−

pTTents

sals

cSVNhDN

TTTT

ρπexp , donde N es el

número total de tubos y NT el número de tubos en el plano transversal.

• Cálculo de la transferencia de calor por unidad de longitud de tubo: mlTDNhq ∆=′ π .

TEMA 7. CONVECCIÓN FORZADA EN FLUJO INTERNO

• El número de Reynolds para flujo interno se define en función del diámetro del tubo y de la

velocidad media del fluido sobre la sección transversal del tubo: νµ

ρ DuDuRe mm

D == . Como

cm Aum ρ=& , para un tubo circular el número de Reynolds se puede expresar: µπD

mReD&4

= .

• Número de Reynolds crítico para el inicio de la turbulencia en flujo interno: ReD,c = 2.300.

• Longitud hidrodinámica de entrada para flujo laminar: Dlam

hcd ReD

x05,0, ≈

.

• Longitud hidrodinámica de entrada para flujo turbulento: 6010 , ≤

turb

hcd

Dx

.

Page 21: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

15

• Expresión de la velocidad media en función del flujo másico integrado en la sección

transversal: ∫∫

=== ocr

oc

A c

cm rdrxru

rA

dAxru

Amxu

02 ),(2),()(

ρ

ρ

ρ&

.

• Longitud de entrada térmica para flujo laminar: PrReD

xD

lam

tcd 05,0, ≈

.

• Longitud de entrada térmica para flujo turbulento: 10, =

turb

tcd

Dx

.

• Temperatura media definida en función de la energía térmica transportada por el fluido:

∫∫

∫ ==⇒=== oc

c

r

omv

A cv

mmvA cvt rdrxrTrurucm

TdAucxTxTcmdAxrTcruEU

02 ),()(2)()(),()(&

&&&ρ

ρ .

• Bajo condiciones térmicas completamente desarrolladas se cumple:

0)()(),()(

,

=

−−

∂∂

tcdms

s

xTxTxrTxT

x. Además: )(

,,,

rfdx

dTdxdT

xT

tcd

m

tcd

s

tcd

≠==∂∂ para sq ′′ = cte y

)(,,

rfdx

dTTTTT

xT

tcd

m

ms

s

tcd

=−−

=∂∂ para Ts = cte.

• Al aplicar un balance de energía al flujo interno en un tubo de un gas ideal o de un líquido

incompresible se obtiene que la transferencia de calor por convección al fluido es igual a la

rapidez a la que aumenta la energía térmica del fluido: )( ,, entmsalmpconv TTcmq −= & .

• Variación axial de la temperatura media para el caso de flujo de calor superficial constante:

xcmPq

TxTp

sentmm &

′′+= ,)( .

• Variación axial de la temperatura media para el caso de temperatura superficial constante:

−=

−−

hcm

PxTT

xTT

pentms

ms

&exp

)(

,

.

• La transferencia total de calor se expresa en función de la diferencia de temperaturas media

logarítmica: mlsconv TAhq ∆= ;

−−

−−−=

∆∆∆−∆

=∆

)()(ln

)()()/ln(

,

,

,,

entms

salms

entmssalms

entsal

entsalml

TTTT

TTTTTTTT

T .

Page 22: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

16

• Caso de un tubo rodeado de un fluido externo (convección interna y externa simultáneas):

−=

−=

−=

∆∆

totpp

s

entm

salm

ent

sal

RcmcmAU

TTTT

TT

&&

1expexp ,

, ; tot

mlmlsconv R

TTAUq

∆=∆= .

• Correlación de convección local para flujo laminar en la región completamente desarrollada

con flujo de calor superficial constante: 36,41148

===k

hDNu . Propiedades a Tm.

• Correlación de convección local para flujo laminar en la región completamente desarrollada

con temperatura superficial constante: 66,3==k

hDNu . Propiedades a Tm.

• Número de Graetz: PrRexDGz DD )/(= .

• Correlación de Hausen para flujo laminar con longitud de entrada térmica (perfil de

velocidades desarrollado) y con temperatura superficial constante:

[ ] 3/2)/(04,01)/(0668,066,3

PrReLDPrReLD

kDhNu

D

DD

++== . Propiedades a 2/)( ,, salmentmm TTT += .

• Correlación de Sieder y Tate para flujo laminar interno con longitud de entrada combinada y

con temperatura superficial constante: 14,03/1

/86,1

=

s

DD

DLPrRe

Nuµµ . Con propiedades a

2/)( ,, salmentmm TTT += , excepto µs a Ts y

<<

<<

75,90044,0

700.1648,0

s

Pr

µµ .

• Correlación de Dittus-Boelter para flujo turbulento interno completamente desarrollado,

válida tanto para flujo de calor como para temperatura superficial constante: n

DD PrReNu 5/4023,0= . Con n = 0,4 para calentamiento (Ts > Tm), n = 0,3 para enfriamiento

(Ts < Tm), las propiedades evaluadas a Tm y

≥≥

≤≤

10)/(000.101607,0

DxRe

Pr

D .

• Correlación de Sieder y Tate para flujo turbulento interno completamente desarrollado y con

grandes variaciones de las propiedades del fluido, válida tanto para flujo de calor como

Page 23: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

17

temperatura superficial constante: 14,0

3/15/4027,0

=

sDD PrReNu

µµ . Con propiedades a Tm,

excepto µs a Ts y

≥≥≤≤

10)/(000.10

700.167,0

DxRe

Pr

D .

• El número de Nusselt promedio en flujo turbulento para todo el tubo es igual al valor asociado

con la región completamente desarrollada, cdDD NuNu ,≈ , para valores de (L / D) > 60 y las

propiedades del fluido a 2/)( ,, salmentmm TTT += .

• Para tubos no circulares se trabaja con el diámetro hidráulico: mojado

ch P

AD

4= , donde Ac es el

área de la sección transversal y Pmojado el perímetro mojado. Las expresiones del número de

Reynolds para el diámetro hidráulico son: PmDuDu

Re hmhmDh µνµ

ρ &4=== .

• Número de Nusselt local para flujo laminar completamente desarrollado en tubos no

circulares: Tabla 7.2.

• Correlaciones de convección para flujo turbulento completamente desarrollado en tubos no

circulares: Las mismas que para tubos circulares trabajando con el diámetro hidráulico.

TEMA 8. CONVECCIÓN LIBRE O NATURAL

• Número de Grashof: 2

3)(ν

β xTTgGr s

x∞−

= .

• Relación entre la convección forzada y la convención libre: si 1/ 2 <<LL ReGr , la convección

libre se desprecia frente a la forzada; si 1/ 2 >>LL ReGr , la forzada se desprecia frente a la

libre.

• Soluciones de similitud para la convección libre laminar sobre una superficie vertical.

Número de Nusselt local: )(·4

4/1

PrfGr

khxNu x

x

== , siendo

Page 24: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

18

( ) 4/12/1

2/1

238,1221,1609,075,0)(

PrPrPrPrf

++= . Número de Nusselt promedio:

LL

L NuPrfGrkLhNu

34)(·

434 4/1

=

== .

• Número de Rayleigh: να

β 3)( xTTgPrGrRa s

xx∞−

== .

• Transición entre la capa límite laminar y la turbulenta en placas verticales: Grx,c ≈ 109 ⇒

Rax,c / Pr ≈ 109.

• Correlación de Churchill y Chu para la convección libre sobre una superficie vertical a

temperatura constante aplicable para todo RaL:

[ ]

2

27/816/9

6/1

)/492,0(1

387,0825,0

++==

Pr

RakLhNu L

L . Propiedades calculadas a Tf = (Ts + T∞)/2.

• Correlación para la convección libre sobre una superficie vertical a temperatura constante

aplicable al flujo laminar: [ ] 9/416/9

4/1

)/492,0(1

670,068,0Pr

RakLhNu L

L+

+== con RaL ≤ 109.

Propiedades calculadas a Tf = (Ts + T∞)/2.

• Si la condición de la superficie es un flujo de calor constante en vez de una temperatura

uniforme, la diferencia de temperaturas (Ts - T∞) aumentará con x. Las correlaciones

anteriores son aplicables en este caso si LNu y RaL se definen en términos de la diferencia de

temperaturas en el punto medio de la placa, ∞−=∆ TLTT sL )2/(2/ . Como 2// Ls Tqh ∆′′= es

necesario realizar un proceso iterativo para determinar Ts (L/2). Es posible obtener una

expresión para la temperatura en cualquier punto en función de la temperatura en el punto

medio: 2/

5/1

15,1)( Lsx TLxTxTT ∆

≈−=∆ ∞ .

• Los resultados anteriores también se pueden aplicar a cilindros verticales de altura L si el

espesor de la capa límite, δ, es mucho menor que el diámetro del cilindro, condición que viene

dada por: 4/1

35

LGrLD≥ .

Page 25: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

19

• Para placas inclinadas (superficie superior de placa fría o superficie inferior de placa caliente)

se pueden emplear las correlaciones para placas verticales sustituyendo g por g·cos (θ) para 0º

≤ θ ≤ 60º (θ se mide desde la vertical).

• Para placas horizontales se utiliza una longitud característica definida como el cociente entre

el área y el perímetro de la placa: Lc = As / P.

• Correlaciones de convección libre para la superficie superior de una placa horizontal caliente

o para la superficie inferior de una placa horizontal fría a temperatura constante: 4/154,0

cc LL RaNu = si 104 ≤ RaLc ≤ 107 y 3/115,0cc LL RaNu = si 107 ≤ RaLc ≤ 1011. Propiedades

calculadas a Tf.

• Correlaciones de convección libre para la superficie inferior de una placa horizontal caliente o

para la superficie superior de una placa horizontal fría a temperatura constante: 4/127,0

cc LL RaNu = con 105 ≤ RaLc ≤ 1010. Propiedades calculadas a Tf.

• Correlación de Churchill y Chu para la convección libre sobre un cilindro largo horizontal:

[ ]

2

27/816/9

6/1

)/559,0(1

387,060,0

++==

Pr

RakDhNu D

D con RaD ≤ 1012. Propiedades calculadas a Tf.

• Convección libre y forzada combinadas. Se produce cuando 12 ≈L

L

ReGr . Se utilizan las

correlaciones convenientes corregidas con la siguiente expresión: 333libreforzadacombinada NuNuNu ±= . El signo + se emplea cuando los dos flujos tienen el mismo

sentido o son perpendiculares y el signo - se emplea cuando los dos flujos tienen sentidos

opuestos.

TEMA 9. INTRODUCCIÓN A LA RADIACIÓN

• Ángulo sólido diferencial: dω = dAn / r2 = senθ·dθ·dφ. Unidad: estereorradián (sr). El ángulo

sólido subtendido por el hemisferio sobre un diferencial de área dA1 vale:

sr 2sen2

0

2/

0πφθθω

π π== ∫ ∫∫ ddd

h.

• Intensidad espectral emitida:

=

m·sr·mW

cos),,,( 2

1, µdddA

dqTI ee λωθ

φθλλ .

Page 26: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

20

• Potencia emisiva espectral:

=

===′′=

∫ ∫

∫ ∫

m·mW sencos),,,(

cos),,,(),(),(

2

2

0

2/

0 ,

2

0

2/

0 ,1

,

µddTI

dTIddA

dqTqTE

e

ee

e

π π

λ

π π

λλλ

φθθθφθλ

ωθφθλλ

λλ

.

• Potencia emisiva total: λλλ dTEqTE emitrad ∫∞

=′′=0, ),()( [W/m2].

• Emisor difuso: ),(),,,( ,, λφθλ λλ TITI ee = ⇒ ),(),( , λπλ λλ TITE e= ⇒ eIE π= .

• Irradiación espectral: ∫ ∫==′′=π π

λλλ φθθθφθλλ

λλ2

0

2/

0 ,1

, sencos),,(·

)()( ddIddA

dqqG i

ii

[W/m2·µm].

• Irradiación total: λλλ dGqG incrad ∫∞

=′′=0, )( [W/m2].

• Radiación incidente difusa: )(),,( ,, λφθλ λλ ii II = ⇒ )()( , λπλ λλ iIG = ⇒ iIG π= .

• Radiosidad espectral:

∫ ∫ ++

+ ==′′=π π

λλ φθθθφθλλ

λλ2

0

2/

0 ,1

, sencos),,,(·

)(),( ddTIddA

dqqTJ re

rerefljemitrad [W/m2·µm].

• Radiosidad total: λλλ dTJqTJ refemitrad ∫∞

+ =′′=0, ),()( [W/m2].

• Emisor y reflector difuso: ),(),,,( ,, TITI rere λφθλ λλ ++ = ⇒ ),(),( , TITJ re λπλ λλ += ⇒

)()( TITJ re+= π .

• Distribución de Planck: [ ]1)/exp(2

),( 5

2

, −=

kThchc

TIo

ob λλλλ , donde h = 6,6256·10-34 J·s es la

constante de Planck, co = 2,998·108 m/s es la velocidad de la luz en el vacío y k = 1,3805·10-23

J/K es la constante de Boltzmann. Como el cuerpo negro es un emisor difuso:

[ ]1)/exp(),(),(

25

1,, −

==TC

CTITE bb λλλπλ λλ , donde C1 y C2 son la primera y segunda

constantes de radiación.

• Ley de desplazamiento de Wien: m·K898.20),(

3, µλλλλ ==⇒= CT

dTdE

máxb .

• Ley de Stefan-Boltzmann: [ ]4

02

51

1)/exp(Td

TCCEb σλ

λλ=

−= ∫

∞, donde σ = 5,67·10-8

W/m2·K4 es la constante de Stefan-Boltzmann.

Page 27: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

21

• Emisión de banda: )()()0(0 5

,4

0 ,

0 ,

0 ,TfTd

TE

T

dE

dE

dEF bb

b

bλλ

σσ

λ

λ

λλ

λ λ

λ

λ

λ

λ

λ====→ ∫

∫∫∫∞ .

• Emisividad superficial, ε: Emisividad (hemisférica) espectral: ),(),(

),(, TE

TET

b λλ

λελ

λλ = .

Emisividad total (hemisférica): )(

),(),(

)()()( 0 ,

TE

dTET

TETET

b

b

b

∫∞

==λλλε

ελλ

. En un emisor difuso

la emisividad direccional es independiente de la dirección.

• Absortividad superficial, α: Absortividad (hemisférica) espectral: )(

)()( ,

λλ

λαλ

λλ G

G abs= .

Absortividad (hemisférica) total: ∫

∫∞

==

0

0

)(

)()(

λλ

λλλαα

λ

λλ

dG

dG

GGabs . )(.)sup,,,( Tαφθλαα ≠= .

• Para radiación solar (Tb = 5.800 K): ∫

∫∞

=

0 ,

0 ,

)K 800.5 ,(

)K 800.5 ,()(

λλ

λλλαα

λ

λλ

dE

dE

b

b

Sol .

• Reflectividad superficial, ρ: Reflectividad (hemisférica) espectral: )()(

)( ,

λλ

λρλ

λλ G

G ref= .

Reflectividad (hemisférica) total: ∫

∫∞

==

0

0

)(

)()(

λλ

λλλρρ

λ

λλ

dG

dG

GGref .

• 11 =++⇒=++ ταρταρ λλλ .

• Ley de Kirchhoff (para superficies en el interior de un recinto):

)(...)()(

2

2

1

1sb

ss TETETE

===αα

. Como α ≤ 1 ⇒ E(Ts) ≤ Eb(Ts). También se cumple:

1...2

2

1

1 ===αε

αε ⇒ ε = α.

• Superficie difusa (emisora y receptora difusa): ελ,θ y αλ,θ son independientes de la dirección

(θ, φ) ⇒ ελ = αλ.

• Superficie gris: ελ y αλ son independientes de λ.

Page 28: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

22

• Superficie gris difusa: ελ,θ y αλ,θ son independientes de λ (gris) y de la dirección (difusa) ⇒ ε

= α.

TEMA 10. INTERCAMBIO RADIATIVO ENTRE SUPERFICIES

• Factor de forma de radiación (también llamado de configuración, de apariencia, de visión o de

vista): ∫ ∫== →

i jA A jiji

iii

jiij dAdA

RAJAq

F 2

coscos1π

θθ. ∫ ∫== →

i jA A jiji

jjj

ijji dAdA

RAJAq

F 2

coscos1π

θθ.

Estas dos ecuaciones son válidas para superficies emisoras y reflectoras difusas y con

radiosidad uniforme.

• Relación de reciprocidad: jijiji FAFA = .

• Regla de la suma en un recinto de N superficies: 11

=∑=

N

jijF .

• Superficie plana o convexa: Fii = 0.

• Para una superficie que se puede descomponer en la suma de varias, ∑=

=n

kkj AA

1, se tiene que:

∑=

=n

kikji FF

1)( y

=

== n

kk

n

kkik

ij

A

FAF

1

1)( .

• Intercambio neto de radiación entre dos superficies negras:

)( 44jiijibjjijbiijiijjiij TTFAEFAEFAqqq −=−=−= →→ σ .

• Transferencia neta de radiación desde la superficie i en un recinto con N superficies negras:

∑=

−=N

jjiijii TTFAq

1

44 )(σ .

• Transferencia neta de radiación desde una superficie gris difusa en un recinto:

iii

ibiiiiiiiii A

JEAGEAGJq

εεα

/)1()()(

−−

=−=−= , siendo (1 - εi) /εiAi, la resistencia radiativa

superficial.

• Transferencia neta de radiación desde una superficie gris difusa en un recinto:

∑∑=

−=

−==

N

j iji

jiN

jiji FA

JJqq

11

1 )(, siendo (AiFij)-1 la resistencia radiativa geométrica.

Page 29: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

23

• Intercambio neto de radiación en un recinto de dos superficies:

22

2

12111

1

211221 111

AFAA

EEqqq bb

εε

εε −

++−

−==−= .

• Intercambio neto de radiación entre dos superficies separadas por una cubierta de radiación:

22,3

2,3

1,3

1,3

1

42

411

12 1111)(

εεε

εε

ε

σ

+−

+−

+

−=

TTAq . Para el caso de N cubiertas de radiación con ε iguales

(incluyendo las superficies extremas): 01212 )(1

1)( qN

q N += .

• Superficie rerradiante: superficie idealizada en la que la transferencia de calor neta por

radiación es cero: qi = 0 ⇒ Ji = Gi = Ebi.

Page 30: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

24

TEMA 2. CONDUCCIÓN UNIDIMENSIONAL EN RÉGIMEN ESTACIONARIO.

Tabla 2.1. Eficiencia de formas comunes de aletas.

Descripción Esquema Dimensiones Eficiencia

Aleta recta de perfil

rectangular

t

w

L

cf wLA 2= )2/(tLLc += 2/1)/2( kthm =

siendo w >> t c

cf mL

mLtanh=η

Aleta recta de perfil

triangular t w

L

[ ] 2/122 )2/(2 tLwAf += 2/1)/2( kthm =

siendo w >> t )2()2(1

0

1

mLImLI

mLf =η

Page 31: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

25

Tabla 2.1. Eficiencia de formas comunes de aletas (continuación).

Descripción Esquema Dimensiones Eficiencia

Aleta recta de perfil

parabólico tw

L

[ ])/ln()/( 122

1 CLttLLCwAf ++=

[ ] 2/121 )/(1 LtC +=

2/1)/2( kthm = [ ] 11)(4

22/12 ++

=mL

Aleta anular de

perfil rectangular L

r1

r2

t

)(2 21

22 rrA cf −= π

)2/(22 trr c += 2/1)/2( kthm =

)()()()()()()()(

21102110

211121112

cc

ccf mrImrKmrKmrI

mrKmrImrImrKC

+−

)()/2(

21

22

12 rr

mrCc −

=

Page 32: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

26

Tabla 2.1. Eficiencia de formas comunes de aletas (continuación).

Descripción Esquema Dimensiones Eficiencia

Aleta de aguja

cilíndrica D

L

cf DLA π= )4/(DLLc += 2/1)/4( kDhm = c

cf mL

mLtanh=η

Aleta de aguja cónica

D

L

[ ] 2/122 )2/(2

DLDAf +=π

2/1)/4( kDhm = )2()2(2

1

2

mLImLI

mLf =η

Aleta de aguja

parabólica D

L

y = (D/2)·(1 - x/L)2

[ ]

+−= 3443

3

)/2(ln28

CLDCDLCC

DLAfπ

23 )/(21 LDC +=

[ ] 2/124 )/(1 LDC +=

2/1)/4( kDhm =

[ ] 11)(9/42

2/12 ++=

mLfη

Page 33: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

27

TEMA 3. CONDUCCIÓN BIDIMENSIONAL EN RÉGIMEN ESTACIONARIO.

Tabla 3.1. Factores de forma de conducción para sistemas bidimensionales seleccionados [q

= Sk(T1 - T2)].

Descripción del sistema Esquema Restricciones Factor de forma

1.1. Esfera enterrada

en un medio

semiinfinito

z

D

T2

T1

2/Dz > )4/(12

zDDS

−=

π

1.2. Esfera enterrada

en un medio

semiinfinito con

superficie aislada

(Bejan pág. 115)

z

D

aislado

T1T2 T2

T2

2/Dz > )4/(1

2zD

DS+

1.3. Esfera enterrada

en un medio infinito

(Holman pág. 55)

D

T2

T1

T2

T2 T2

Ninguna DS π2=

1.4. Conducción

entre dos esferas en un medio infinito (Bejan y Holman)

w

D d

T2 T1

3/ >Dw wd

wdwD

Dd

dS−

−=

2

4

)2/(1)2/(1

Page 34: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

28

Tabla 3.1. Factores de forma de conducción para sistemas bidimensionales seleccionados [q

= Sk(T1 - T2)] (continuación).

Descripción del sistema Esquema Restricciones Factor de forma

1.5. Cavidad

hemisférica en medio

semiinfinito con

superficie aislada (Bejan)

T2 T2

T2

T1

D aisladoaislado

Ninguna DS π=

DL >> )/2cosh( arc2

DzLS π

= 2.1. Cilindro de longitud L enterrado

en un medio semiinfinito

z

D

T2

T1

L

DL >> 2/3Dz > )/4ln(

2Dz

LS π=

z ≈ D )/2cosh( arc2

DzS π=′

z > 2D ( ) ( )

−+

=′12/2ln

22DzDz

S π

2.2. Cilindro de

longitud infinita

enterrado en un medio semiinfinito (Rohsenow pág. 3-120)

z

D

T2

T1

∞ ∞

z >> D ( )DzS

/4ln2π

=′

2.3. Cilindro

vertical de longitud L enterrado

en un medio semiinfinito

L

D

T2

T1

DL >> )/4ln(2

DLLS π

=

2.4. Conducción

entre dos cilindros

paralelos de longitud L

en un medio infinito

w

D d

T2 T1

21 , DDL >> wL >>

−−=

DddDw

LS

24cosh arc

2222

π

Page 35: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

29

Tabla 3.1. Factores de forma de conducción para sistemas bidimensionales seleccionados [q

= Sk(T1 - T2)] (continuación).

Descripción del sistema Esquema Restricciones Factor de forma

2.5. Cilindro de longitud L en medio de

planos paralelos de

igual longitud y ancho infinito

z

D

T2

T1

Lz

T2

2/Dz >> zL >> )/8ln(

2Dz

LSπ

π=

2.6. Cilindro de longitud L centrado en un sólido de

sección cuadrada de

igual longitud

w

D

T2

T1

Dw > wL >> )/08,1ln(

2Dw

LS π=

2.7. Cilindro excéntrico de longitud L en el interior de un cilindro de igual longitud

d

D

T2

T1

z

dD > DL >>

−+=

DdzdD

LS

24cosh arc

2222

π

2.8. Fila infinita de

cilindros de longitud

infinita en un medio

semiinfinito (Rohsenow)

z > D [ ])/2(senh)·/2(ln2

LzDLS

πππ

=′

Page 36: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

30

Tabla 3.1. Factores de forma de conducción para sistemas bidimensionales seleccionados [q

= Sk(T1 - T2)] (continuación).

Descripción del sistema Esquema Restricciones Factor de forma

2.9. Fila infinita de

cilindros de longitud

infinita en el plano medio de una placa

infinita (Rohsenow)

z > D [ ])/(senh)·/2(ln2

LzDLS

πππ

=′

3.1. Cubo enterrado en

un medio infinito

(Holman)

L

Ninguna LS 24,8=

4.1. Paralelepípedo inmerso en un

medio semiinfinito (Holman)

Ninguna 078,0

59,0

1log685,1

+

=

cb

abL

S

4.2. Agujero de sección

rectangular muy largo en

un medio semiinfinito (Rohsenow)

a > b

+=′

75,025,0

5,3ln

7,52

baz

ba

S

Page 37: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

31

Tabla 3.1. Factores de forma de conducción para sistemas bidimensionales seleccionados [q

= Sk(T1 - T2)] (continuación).

Descripción del sistema Esquema Restricciones Factor de forma

5.1. Pared plana con superficies isotermas

(Bejan)

AT1

L

W

H

T2

5/LH > 5/LW > L

WHS =

5.2. Esquina de dos paredes contiguas

T2

T1

L

W

T2

5/LW > WS 54,0=

5.3. Esquina de tres paredes contiguas con diferencia de

temperaturas entre las superficies interior y

exterior (Bejan)

T2

T1

L

W

T2

T2

T2T2

Ninguna LS 15,0=

6.1. Disco delgado sobre medio semiinfinito

D

T2

T1

Ninguna DS 2=

6.2. Disco delgado horizontal enterrado en un medio semiinfinito (Kreith

pág. 112) D

T2

T1

z

Ninguna )67,5/(145,4

zDDS

−=

Page 38: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

32

Tabla 3.1. Factores de forma de conducción para sistemas bidimensionales seleccionados [q

= Sk(T1 - T2)] (continuación).

Descripción del sistema Esquema Restricciones Factor de forma

6.3. Disco delgado

horizontal enterrado en

un medio semiinfinito

(Bejan)

D

T2

T1

z

Dz > )4/tan( arc)2/(2

zDDS

−=

ππ

6.4. Disco delgado

horizontal enterrado en

un medio semiinfinito

con superficie

aislada (Bejan)

D

T2

aislado

z T1T1

Dz > )4/tan( arc)2/(2

zDDS

+=

ππ

6.5. Dos discos

paralelos coaxiales en

un medio infinito (Bejan)

L

D

T1 T2

2/ >DL )2/tan( arc)2/(

2LD

DS−

π

Lz >> WL > )/4ln(

2WL

LS π=

0=z WL > )/4ln( WL

LS π=

7.1. Placa horizontal delgada de anchura W (dimensión ⊥ al dibujo) enterrada en

un medio semiinfinito

(Bejan y Holman)

L

T2

T1

z

WL >> Wz 2> )/2ln(

2Wz

LSππ

=

Page 39: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

33

Tabla 3.1. Factores de forma de conducción para sistemas bidimensionales seleccionados [q

= Sk(T1 - T2)] (continuación).

Descripción del sistema Esquema Restricciones Factor de forma

7.2. Placa vertical delgada y larga según

la dimensión ⊥ al dibujo enterrada en un

medio semiinfinito (Rohsenow)

1221

<<Lz

24,0

·38,2

=′

zLS

7.3. Placa horizontal delgada y larga según

la dimensión ⊥ al dibujo enterrada en un

medio semiinfinito (Rohsenow) L

T2

T1

z12

21

<<Lz

32,0

·94,2

=′

zLS

Page 40: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

34

TEMA 4. CONDUCCIÓN EN RÉGIMEN TRANSITORIO.

Tabla 4.1. Coeficientes de la aproximación con un término de las soluciones de conducción

transitoria unidimensional.

Pared plana Cilindro infinito Esfera Bi ζ1 (rad) C1 ζ1 (rad) C1 ζ1 (rad) C1

0,01 0,0998 1,0017 0,1412 1,0025 0,1730 1,0030 0,02 0,1410 1,0033 0,1995 1,0050 0,2445 1,0060 0,03 0,1732 1,0049 0,2439 1,0075 0,2989 1,0090 0,04 0,1987 1,0066 0,2814 1,0099 0,3450 1,0120 0,05 0,2217 1,0082 0,3142 1,0124 0,3852 1,0149 0,06 0,2425 1,0098 0,3438 1,0148 0,4217 1,0179 0,07 0,2615 1,0114 0,3708 1,0173 0,4550 1,0209 0,08 0,2791 1,0130 0,3960 1,0197 0,4860 1,0239 0,09 0,2956 1,0145 0,4195 1,0222 0,5150 1,0268 0,10 0,3111 1,0160 0,4417 1,0246 0,5423 1,0298 0,15 0,3779 1,0237 0,5376 1,0365 0,6608 1,0445 0,20 0,4328 1,0311 0,6170 1,0483 0,7593 1,0592 0,25 0,4801 1,0382 0,6856 1,0598 0,8448 1,0737 0,30 0,5218 1,0450 0,7465 1,0712 0,9208 1,0880 0,40 0,5932 1,0580 0,8516 1,0932 1,0528 1,1064 0,50 0,6533 1,0701 0,9408 1,1143 1,1656 1,1441 0,60 0,7051 1,0814 1,0185 1,1346 1,2644 1,1713 0,70 0,7506 1,0919 1,0873 1,1539 1,3225 1,1978 0,80 0,7910 1,1016 1,1490 1,1725 1,4320 1,2236 0,90 0,8274 1,1107 1,2048 1,1902 1,5044 1,2488 1,0 0,8603 1,1191 1,2558 1,2071 1,5708 1,2732 2,0 1,0769 1,1795 1,5995 1,3384 2,0288 1,4793 3,0 1,1925 1,2102 1,7887 1,4191 2,2889 1,6227 4,0 1,2646 1,2287 1,9081 1,4698 2,4556 1,7201 5,0 1,3138 1,2402 1,9898 1,5029 2,5704 1,7870 6,0 1,3496 1,2479 2,0490 1,5253 2,6537 1,8338 7,0 1,3766 1,2532 2,0937 1,5411 2,7165 1,8674 8,0 1,3978 1,2570 2,1286 1,5526 2,7654 1,8921 9,0 1,4149 1,2598 2,1566 1,5611 2,8044 1,9106 10,0 1,4289 1,2620 2,1795 1,5677 2,8363 1,9249 20,0 1,4961 1,2699 2,2881 1,5919 2,9857 1,9781 30,0 1,5202 1,2717 2,3261 1,5973 3,0372 1,9898 40,0 1,5325 1,2723 2,3455 1,5993 3,0632 1,9942 50,0 1,5400 1,2727 2,3572 1,6002 3,0788 1,9962 100,0 1,5552 1,2731 2,3809 1,6015 3,1102 1,9990 ∞ 1,5707 1,2733 2,4050 1,6018 3,1415 2,0000

Bi = hL/k para la pared plana y Bi = hro/k para el cilindro infinito y la esfera.

Page 41: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

35

Tabla 4.2. Soluciones de conducción transitoria de sistemas multidimensionales expresadas

como producto de soluciones de sistemas unidimensionales.

Sistema Esquema Solución

Sólido semiinfinito x

S (x, t)

tosemiinfinisólido

),(),(∞

−−

=TT

TtxTtxSini

Pared plana x

P (x, t)

2L1

planapared

),(),(∞

−−

=TT

TtxTtxPini

Cilindro infinito r

C (r, t)

ro

infinitocilindro

),(),(∞

−−

=TT

TtrTtrCini

Placa semiinfinita x2

S (x1, t)·P (x2, t)

2L2

x1

),()·,( 21 txPtxS

Page 42: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

36

Tabla 4.2. Soluciones de conducción transitoria de sistemas multidimensionales expresadas

como producto de soluciones de sistemas unidimensionales (continuación).

Sistema Esquema Solución

Barra rectangular

infinita x2

P (x1, t)·P (x2, t)

2L2

x1

2L1∞

),()·,( 21 txPtxP

Cilindro semiinfinito r

C (r, t)·S (x, t)

ro

x

),()·,( txStrC

Barra rectangular semiinfinita

x2

P (x1, t)·P (x2, t)·S (x3, t)

2L2

x1 2L1

x3

),()·,()·,( 213 txPtxPtxS

Paralelepípedo rectangular x2

P (x1, t)·P (x2, t)·P (x3, t)

2L2

x1

2L1

x3 2L3

),()·,()·,( 321 txPtxPtxP

Cilindro corto r

C (r, t)·P (x, t)

ro

x2L1

),()·,( txPtrC

Page 43: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

37

TEMA 6. CONVECCIÓN FORZADA EN FLUJO EXTERNO

Tabla 6.1. Tabla resumen de correlaciones para flujo externo sobre placa plana.

Correlaciones Transferencia de calor Condiciones

1* 3/12/1332,0 PrRekxh

Nu xx

x == ( )∞−=′′ TThq sxx

( ) ssx dATThdq ∞−= Placa a temperatura Ts constante. Régimen laminar. Valor local en x. Pr > 0,6.

2** 3/12/1664,0 PrRekxh

Nu xx

x == ( )∞−=′′ TThq s ( )∞−= TTAhq ss

Placa a Ts constante. Régimen laminar. Valor promedio entre 0 y x (ó entre 0 y x = L). Pr > 0,6.

3* 3/15/40296,0 PrRekxh

Nu xx

x == ( )∞−=′′ TThq sxx

( ) ssx dATThdq ∞−= Placa a Ts constante. Régimen turbulento. Valor local en x. 0,6 < Pr < 60.

4** 3/15/4 )871037,0( PrRekLh

Nu LL

L −== ( )∞−=′′ TThq s ( )∞−= TTAhq ss

Placa a Ts constante. Régimen mixto (parte laminar y parte turbulento). Valor promedio entre 0 y x = L. Pr > 0,6. 5·105 < Rex,c < 108.

5** 3/15/4037,0 PrRekLh

Nu LL

L == ( )∞−=′′ TThq s ( )∞−= TTAhq ss

Placa a Ts constante. Régimen predominantemente turbulento (parte laminar despreciable ⇒ L >> xc y ReL >> Rex,c). Valor promedio entre 0 y x = L. Pr > 0,6. 5·105 < Rex,c < 108.

6* 3/12/1453,0 PrReNu xx = .cteqs =′′ /

)()(

xhq

TxTx

ss

′′+= ∞

Placa que desprende un flujo de calor uniforme. Régimen laminar. Valor local en x. Pr > 0,6.

7* 3/15/40308,0 PrReNu xx = .cteqs =′′ /

)()(

xhq

TxTx

ss

′′+= ∞

Placa que desprende un flujo de calor uniforme. Rég. turbulento. Valor local en x. 0,6 < Pr < 60.

*: νµ

ρ xuxuRex

∞∞ == **: νµ

ρ LuLuReL

∞∞ == Condición de rég. turbulento para placa plana: Rex,c > 5·105 Número de Prandtl: kc

kc

Pr pp µρρµ

αν

===

En todas las correlaciones las propiedades del fluido se calculan a la temperatura de película: ( ) 2/∞+= TTT sf ; Ts: Temperatura de la superficie [K]; T∞: Temp. del flujo libre [K]; As: Área de transferencia de calor [m2]; ν: viscosidad cinemática [m2/s]; µ: viscosidad dinámica [N/m2·s]; α: difusividad térmica [m2/s]; k: conductividad térmica del fluido [W/m·K].

Page 44: 192783500 Tranferencia de Calor

38

Tabla 6.2. Tabla resumen de correlaciones para flujo cruzado sobre cilindros.

Correlaciones para flujo cruzado sobre un cilindro Transferencia de calor Condiciones

1 3/1PrCRekDhNu m

DD == ( )∞−=′′ TThq s

( )∞−= TTAhq ss

Correlación de Hilpert. Los valores de las constantes C y m se dan en la Tabla 6.3 en función de ReD. La Tabla 6.4 da los valores de las constantes para cilindros no circulares. Las propiedades se evalúan a Tf. Válida para fluidos con Pr ≥ 0,7.

2 4/1

==

s

nmDD

PrPrPrCRe

kDhNu

( )∞−=′′ TThq s

( )∞−= TTAhq ss

Correlación de Zhukauskas. Con

>=≤=

10 si 36,010 si 37,0

PrnPrn

y

<<<<

61015007,0

DRePr

. Los valores de las constantes C y m se dan en la Tabla

6.5 en función de ReD. Las propiedades se evalúan a T∞, excepto Prs a Ts

3 [ ]

5/48/5

4/13/2

3/12/1

2820001

)/4,0(1

62,03,0

+

++== DD

DRe

Pr

PrRekDhNu

( )∞−=′′ TThq s

( )∞−= TTAhq ss Correlación de Churchill y Bernstein. Con propiedades a Tf y ReD·Pr > 0,2.

Correlaciones para flujo cruzado sobre un banco de N cilindros Transferencia de calor Condiciones

4 4/1

36,0,

==

s

mmáxDD

PrPrPrCRe

kDhNu

mlThq ∆=′′ mlTDhq ∆=′ π

mlTDLNhNLqq ∆=′= π

Correlación de Zhukauskas. Con

<<<<

5007,010·2000.1

206

,

PrRe

N

máxD

L

. Las

constantes C y m se dan en la Tabla 6.6. Las propiedades se evalúan a 2/)( salent TTT += , excepto Prs a Ts. Para NL < 20 se aplica un factor de

corrección tal que 20

220 ≥<=

LND

LND NuCNu , donde C2 está dado en la

Tabla 6.7

νµρ DuDu

ReD∞∞ ==

νµρ DVDV

ReDmaxmax

max, ==

Diferencia de temperaturas media logarítmica:

−−

−−−=∆

sals

ents

salsentsml

TTTT

TTTTT

ln

)()(

Config. alineada: VDS

SVT

Tmáx −

= ; Config. escalonada: VDS

SVT

Tmáx −

= si

)()(2 DSDS TD −>− ó VDS

SVD

Tmáx )(2 −

= si )()(2 DSDS TD −<− ;

Cálculo de la temperatura de salida del flujo:

−=

−−

pTTents

sals

cSVNhDN

TTTT

ρπexp

ST: espaciado transversal; SL: espaciado longitudinal; NT: número de tubos en direc. transversal; NL: número de tubos en direc. longitudinal; N = NT x NL: núm. total de tubos.

Page 45: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

39

Tabla 6.3. Coeficientes de la correlación de Hilpert para flujo cruzado sobre un cilindro

(Pr ≥ 0,7).

ReD C m 0,4 - 4 0,989 0,330 4 - 40 0,911 0,385

40 - 4.000 0,683 0,466 4.000 - 40.000 0,193 0,618

40.000 - 400.000 0,027 0,805

Tabla 6.4. Coeficientes de la correlación de Hilpert para flujo de aire cruzado sobre un

paralelepípedo.

Geometría Dibujo ReD C m

Cuadrado en diagonal

VD 5·103 - 105 0,246 0,588

Cuadrado recto V

D 5·103 - 105 0,102 0,675

5·103 - 1,95·104 0,160 0,638 Hexágono recto

VD

1,95·104 - 105 0,0385 0,782

Hexágono en diagonal

V D

5·103 - 105 0,153 0,638

Placa vertical D

4·103 - 1,5·104 0,228 0,731

Tabla 6.5. Coeficientes de la correlación de Zhukauskas para flujo de aire cruzado sobre

un cilindro.

ReD C m 1 - 40 0,75 0,4

40 - 1.000 0,51 0,5 103 - 2·105 0,26 0,6 2·105 - 106 0,076 0,7

Page 46: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

40

Figura 6.1. Nu local para flujo de aire cruzado sobre un cilindro. (Incropera)

Tabla 6.6. Coeficientes de la correlación de Zhukauskas para el flujo cruzado sobre un

banco de tubos.

Configuración ReD,máx C m Alineado 10 - 102 0,80 0,40

Escalonado 10 - 102 0,90 0,40 Alineado 102 - 103 Se aproxima como un cilindro único

Escalonado 102 - 103 Se aproxima como un cilindro único Alineado (ST / SL > 0,7) 103 - 2·105 0,27 0,63 Escalonado (ST / SL < 2) 103 - 2·105 0,35(ST / SL)1/5 0,60 Escalonado (ST / SL > 2) 103 - 2·105 0,40 0,60

Alineado 2·105 - 2·106 0,021 0,84 Escalonado 2·105 - 2·106 0,022 0,84

Para ST / SL < 0,7, la transferencia de calor es ineficiente y los tubos alineados no se deben usar.

Page 47: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

41

Tabla 6.7. Coeficiente de corrección C2 de la correlación de Zhukauskas para el flujo

cruzado sobre un banco de tubos para NL < 20 y ReD > 103.

NL 1 2 3 4 5 7 10 13 16 Alineado 0,70 0,80 0,86 0,90 0,92 0,95 0,97 0,98 0,99

Escalonado 0,64 0,76 0,84 0,89 0,92 0,95 0,97 0,98 0,99

Figura 6.2. Disposición de los tubos en configuración alineada (a) y escalonada (b) en un

banco de tubos. (Incropera)

Figura 6.3. Esquema de un banco de tubos en flujo cruzado. (Incropera)

NT

NL

Page 48: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

42

TEMA 7. CONVECCIÓN FORZADA EN FLUJO INTERNO

Figura 7.1. Número de Nusselt local en la región de entrada para flujo laminar en el

interior de un tubo circular con temperatura superficial uniforme. (Bejan)

Figura 7.2. Número de Nusselt local en la región de entrada para flujo laminar en el

interior de un tubo circular con flujo de calor superficial uniforme. (Bejan)

Page 49: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

43

Diagrama 7.1. Metodología para seleccionar las correlaciones de convención forzada en flujo interno.

- Región de entrada ⇒ (x < xcd,t ó Gz

-1 < 0,05) ⇒ Figuras 7.1. y 7.2. Siendo: xcd,t = 0.05·D·ReD·Pr. - Correlación local:

- cte=′′sq ⇒ NuD = 4,36. - Región c. d. ⇒ NuD = cte - Ts = cte ⇒ NuD = 3,66.

(x > xcd,t ó Gz-1 > 0,05): - Tubo no circular ⇒ Tabla 7.1.

ReD < 2.300 ⇒ Régimen Laminar: - Problema de longitud de entrada térmica (si xcd,t >> xcd,h; Pr >> 1): Correlación de Hausen. - Reg. de entrada + c. d.: - Problema de longitud de entrada combinada (si O(xcd,t)≈O(xcd,h); O(Pr)≈1): Correlación de Sieder y Tate. - Correlación promedio: - cte=′′sq ⇒ 4,36=DNu .

- Región c. d. ⇒ cte=DNu : - Ts = cte ⇒ 3,66=DNu . - Tubo no circular ⇒ Tabla 7.1. - Correlación de Dittus-Boelter. - Correlación local (en región c. d.: x/D > 10): - Correlación de Sieder y Tate:

(se usa con aceite siempre; con agua y con aire si hay grandes ∆T). ReD > 2.300 ⇒ Régimen Turbulento: - Correl. de Dittus-Boelter.

- Correlación promedio con prop. a 2

,, salmentmm

TTT

+= .

(condiciones c. d.: L/D > 60): - Correl. de Sieder y Tate.

* En el temario de este curso no se estudia la región de entrada en régimen turbulento.

Page 50: 192783500 Tranferencia de Calor

44

Tabla 7.1. Tabla resumen de las correlaciones de convención forzada en flujo interno.

Correlaciones para tubos circulares Transferencia de calor Condiciones

1 36,4==k

hDNu ( )msx TThq −=′′

( ) DdxTThdq ms π−= Tubo sometido a un flujo de calor superficial uniforme, cteqx =′′ . Régimen laminar, correlación local, región completamente desarrollada. Propiedades calculadas a Tm.

2 66,3==k

hDNu ( )msx TThq −=′′

( ) DdxTThdq ms π−= Tubo sometido a una temperatura superficial uniforme, cteTs = . Régimen laminar, correlación local, región completamente desarrollada. Propiedades calculadas a Tm.

3 [ ] 3/2)/(04,01)/(0668,066,3

PrReLDPrReLD

kDhNu

D

DD

++==

mlTPLhq ∆= Correlación de Hausen. Tubo sometido a cteTs = . Régimen laminar, correlación promedio, región de entrada + c. d., problema de longitud de entrada térmica (perfil de velocidades desarrollado, xcd,t >> xcd,h, Pr >> 1). Propiedades calculadas a 2/)( ,, salmentmm TTT += .

4 14,03/1

/86,1

==

s

DD

DLPrRe

kDhNu

µµ mlTPLhq ∆=

Correlación de Sieder y Tate. Tubo sometido a cteTs = . Régimen laminar, correlación promedio, región de entrada + c. d., problema de longitud de entrada combinada (O(xcd,t) ≈ O(xcd,h)). Propiedades calculadas a 2/)( ,, salmentmm TTT += , excepto µs a Ts. Rango de validez: 0,48 < Pr < 16.700 y 0,0044 < (µ / µs) < 9,75.

5 nDD PrRe

khDNu 5/4023,0==

( )msx TThq −=′′ ( ) DdxTThdq ms π−=

Correlación de Dittus-Boelter. Tubo sometido a .cteqx =′′ o .cteTs = Régimen turbulento, correlación local, región completamente desarrollada. Con n = 0,4 para calentamiento (Ts > Tm)

y n = 0,3 para enfriamiento (Ts < Tm). Propiedades a Tm. Rango de validez:

≥≥

≤≤

10)/(000.101607,0

DxRe

Pr

D .

6 14,0

3/15/4027,0

==

sDD PrRe

khDNu

µµ

( )msx TThq −=′′ ( ) DdxTThdq ms π−=

Correlación de Sieder y Tate. Tubo sometido a .cteqx =′′ o .cteTs = Régimen turbulento, correlación local, región completamente desarrollada. Grandes variaciones de las propiedades

del fluido. Popiedades calculadas a Tm, excepto µs a Ts. Rango de validez:

≥≥≤≤

10)/(000.10

700.167,0

DxRe

Pr

D .

7 nDD PrRe

kDhNu 5/4023,0== mlTPLhq ∆=

Lqq /=′ PLqq /=′′ Mismas condiciones que correlación 5, pero correlación promedio para flujo completamente desarrollado, (L / D) > 60. Propiedades calculadas a 2/)( ,, salmentmm TTT += .

8 14,0

3/15/4027,0

==

sDD PrRe

kDhNu

µµ mlTPLhq ∆=

Lqq /=′ PLqq /=′′ Mismas condiciones que correlación 6, pero correlación promedio para flujo completamente desarrollado, (L / D) > 60. Propiedades calculadas a 2/)( ,, salmentmm TTT += , excepto µs a Ts.

νµρ DuDu

Re mmD == Las correlaciones 1 y 2 son válidas como promedio si L >> xcd,t Diferencia de temperaturas media logarítmica:

−−

−−−=∆

salms

entms

salmsentmsml

TTTT

TTTTT

,

,

,,

ln

)()(

Tubos de sección no circular con régimen laminar, correlación local y región c. d.: Tabla 7.1. Tubos de sección no circular con régimen turbulento y región c. d.: Correlaciones 5, 6, 7 u 8, pero trabajando con el diámetro hidráulico, Dh = 4·Ac / P. Ac: área de la sección transversal. P: perímetro.

Page 51: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

45

Tabla 7.2. Números de Nusselt para flujo laminar completamente desarrollado en tubos de

diferente sección transversal.

k

hDNu h

D =

Sección transversal ab sq ′′ uniforme Ts uniforme

Circular - 4,36 3,66 Rectangular

(a = altura, b =base) 1,0 3,61 2,98

Rectangular (a = altura, b =base) 1,43 3,73 3,08

Rectangular (a = altura, b =base) 2,0 4,12 3,39

Rectangular (a = altura, b =base) 3,0 4,79 3,96

Rectangular (a = altura, b =base) 4,0 5,33 4,44

Rectangular (a = altura, b =base) 8,0 6,49 5,60

Rectangular (a = altura, b =base) ∞ 8,23 7,54

Triangular - 3,11 2,47

Page 52: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

46

TEMA 8. CONVECCIÓN LIBRE O NATURAL

Figura 8.1. Perfiles de velocidad y de temperatura para la capa límite laminar de

convección libre sobre una superficie vertical isoterma. (Incropera)

Figura 8.2. Vista lateral de los patrones de flujo de la convección libre sobre placas planas

inclinadas: Ts > T∞ a la izquierda y Ts < T∞ a la derecha.

Page 53: 192783500 Tranferencia de Calor

47

Tabla 8.1. Tabla resumen de correlaciones de convención libre.

Correlación Transferencia de calor

Representación gráfica Condiciones

1 ( ) 4/12/1

2/14/1

238,1221,1609,075,0·

4 PrPrPrGr

khxNu x

x++

== ( )msx TThq −=′′

( ) zms dATThdq −=

Placa vertical con temperatura superficial constante, Ts = cte. Régimen laminar, Grx < 109. Correlación local.

Correlación promedio: LL NukLhNu

34

==

2 [ ]2

27/816/9

6/1

)/492,0(1387,0825,0

++==

PrRa

kLhNu L

L ( )∞−=′′ TThq s

( )∞−= TTAhq ss Correlación de Churchill y Chu. Placa vertical con Ts = cte. Correlación promedio. Válida para todo RaL.

3 [ ] 9/416/9

4/1

)/492,0(1670,068,0

PrRa

kLhNu L

L

++==

( )∞−=′′ TThq s

( )∞−= TTAhq ss

Ts > T∞ Ts < T∞

Placa vertical con Ts = cte. RaL ≤ 109. Correlación promedio.

4 4/154,0

cLc

cL RakLhNu ==

con 104 ≤ RaLc ≤ 107

5 3/115,0

cLc

cL RakLh

Nu ==

con 107 ≤ RaLc ≤ 1011

( )∞−=′′ TThq s

( )∞−= TTAhq ss

Ts > T∞ Ts < T∞

Placa horizontal con Ts = cte. Superficie superior de placa caliente o inferior de placa fría. Correlación promedio. Longitud característica definida como el cociente entre el área y el perímetro de la placa: Lc = As / P.

6 4/127,0

cLc

cL RakLh

Nu ==

con 105 ≤ RaLc ≤ 1010

( )∞−=′′ TThq s

( )∞−= TTAhq ss

Ts > T∞ Ts < T∞

Placa horizontal con Ts = cte. Superficie inferior de placa caliente o superior de placa fría. Correlación promedio. Longitud característica definida como el cociente entre el área y el perímetro de la placa: Lc = As / P.

7 [ ]2

27/816/9

6/1

)/559,0(1387,060,0

++==

PrRa

kDhNu D

D

( )∞−=′′ TThq s

( )∞−= TTAhq ss

Correlación de Churchill y Chu (promedio) para la convección libre sobre un cilindro largo horizontal: con RaD ≤ 1012.

PrRaxTTg

Gr xsx =

−= ∞

2

3)(ν

β;

ναβ 3)( LTTg

PrGrRa sLL

∞−== ;

ναβ 3)( DTTg

Ra sD

∞−= ; Propiedades calculadas a Tf = (Ts + T∞)/2; Correlaciones 1 a 3: válidas para cteqx =′′ si

propiedades, LNu y RaL se definen en función de la temperatura en el punto medio de la placa: Tf = (Ts(L/2) + T∞)/2; ∞−=∆ TLTT sL )2/(2/ ⇒ 2// Ls Tqh ∆′′= ⇒

( ) 2/5/1/15,1)( Lsx TLxTxTT ∆≈−=∆ ∞ ; Correlaciones 1 a 3: válidas para cilindros verticales de altura L si el espesor de la capa límite, δ, es mucho menor que el diámetro del cilindro

⇒ ( ) ( )4/1/35/ LGrLD ≥ ; Para placas inclinadas (superficie superior de placa fría o superficie inferior de placa caliente) se pueden emplear las correlaciones 1 a 3 sustituyendo g por g·cos (θ) para 0º ≤ θ ≤ 60º (θ se mide desde la vertical).

Ts > T∞

Page 54: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

48

TEMA 9. INTRODUCCIÓN A LA RADIACIÓN Figura 9.1. Distribución de Planck. Potencia Emisiva espectral del cuerpo negro.

Potencia emisiva espectral, Eλb (W/m2·µm)

0.1 0.2 0.4 0.6 1 2 4 6 10 20 40 60 10010

-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

T = 5.800 K

T = 2.000 K

T = 1.000 K

T = 800 K

T = 300 K

T = 100 K

T = 50 K

longitud de onda, λ (µm) Tabla 9.1. Funciones de radiación de cuerpo negro.

λT (µm·K) )0( λ→F 5

, ),(T

TI b

σλλ

(µm·K·sr)-1 ),(),(

,

,

TITI

máxb

b

λλ

λ

λ

200 0,000000 0,3750·10-27 0,000000 400 0,000000 0,4903·10-13 0,000000 600 0,000000 0,1040·10-8 0,000014 800 0,000016 0,9911·10-7 0,001372

1.000 0,000321 0,1185·10-5 0,016406 1.200 0,002134 0,5239·10-5 0,072534 1.400 0,007790 0,1344·10-4 0,18608 1.600 0,019718 0,2491·10-4 0,3449 1.800 0,03934 0,3756·10-4 0,5199 2.000 0,06673 0,4934·10-4 0,6831 2.200 0,10089 0,5896·10-4 0,8163 2.400 0,14026 0,6589·10-4 0,9122 2.600 0,1831 0,7013·10-4 0,9709 2.800 0,2279 0,7202·10-4 0,9971 2.898 0,250108 0,7223·10-4 1,000000 3.000 0,2732 0,7203·10-4 0,9971 3.200 0,3181 0,7060·10-4 0,9774 3.400 0,3617 0,6815·10-4 0,9436

λmáx·T = 2.898 µm·K

Page 55: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

49

Tabla 9.1. Funciones de radiación de cuerpo negro (continuación).

λT (µm·K)

)0( λ→F 5

, ),(T

TI b

σλλ

(µm·K·sr)-1

),(),(

,

,

TITI

máxb

b

λλ

λ

λ

3.600 0,4036 0,6504·10-4 0,9004 3.800 0,4434 0,6152·10-4 0,8517 4.000 0,4809 0,5781·10-4 0,8003 4.200 0,5160 0,5404·10-4 0,7481 4.400 0,5488 0,5033·10-4 0,6967 4.600 0,5793 0,4673·10-4 0,6470 4.800 0,6076 0,4331·10-4 0,5996 5.000 0,6337 0,4008·10-4 0,5549 5.200 0,6590 0,3706·10-4 0,5130 5.400 0,6804 0,3424·10-4 0,4741 5.600 0,7010 0,3164·10-4 0,4380 5.800 0,7202 0,2923·10-4 0,4047 6.000 0,7378 0,2701·10-4 0,3740 6.200 0,7541 0,2497·10-4 0,3457 6.400 0,7692 0,2310·10-4 0,3198 6.600 0,7832 0,2138·10-4 0,2960 6.800 0,7961 0,1980·10-4 0,2741 7.000 0,8081 0,1835·10-4 0,2541 7.200 0,8192 0,1703·10-4 0,2357 7.400 0,8295 0,1581·10-4 0,2188 7.600 0,8391 0,1469·10-4 0,2034 7.800 0,8480 0,1366·10-4 0,1891 8.000 0,8563 0,1272·10-4 0,1761 8.500 0,8746 0,1068·10-4 0,1478 9.000 0,8900 0,9015·10-5 0,1248 9.500 0,9031 0,7653·10-5 0,1060

10.000 0,9142 0,6533·10-5 0,09044 10.500 0,9237 0,5605·10-5 0,077600 11.000 0,9319 0,4833·10-5 0,066913 11.500 0,9400 0,4187·10-5 0,057970 12.000 0,9451 0,3644·10-5 0,050448 13.000 0,9551 0,2795·10-5 0,038689 14.000 0,9629 0,2176·10-5 0,030131 15.000 0,9700 0,1719·10-5 0,023794 16.000 0,9738 0,1374·10-5 0,019026 18.000 0,9809 0,9082·10-6 0,012574 20.000 0,9856 0,6233·10-6 0,008629 25.000 0,9922 0,2765·10-6 0,003828 30.000 0,9953 0,1405·10-6 0,001945 40.000 0,9980 0,4739·10-7 0,000656 50.000 0,9990 0,2016·10-7 0,000279 75.000 0,9997 0,4186·10-8 0,000058

100.000 0,999905 0,1358·10-8 0,000019

Page 56: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

50

TEMA 10. INTERCAMBIO RADIATIVO ENTRE SUPERFICIES Tabla 10.1. Factores de forma radiativos para geometrías bidimensionales.

Geometría Esquema Factor de forma

Placas paralelas centradas

wi

L

j

i

wj

[ ]

[ ]i

ij

i

jiij

WWW

WWW

F

24)(

24)(

2/12

2/12

+−−

−++

=

LwW ii /= LwW jj /=

Placas paralelas inclinadas de igual

anchura y una arista en común

j

iw

w

α

−=

21 αsenFij

Placas perpendiculares con una arista en

común

j

iwi

wj

[ ]2

)/(1)/(1 2/12ijij

ij

wwwwF

+−+=

Recinto de tres lados

j

i

wi

wk wjk

i

kjiij w

wwwF

2−+

=

Cilindros paralelos de radios diferentes

s

j

iri

rj

[ ]

[ ]

++−

−−+

+−−−

−+−+

=

CCRR

CCRR

RC

RCFij

1cosº180

)1(

1cosº180

)1(

)1(

)1(21

1

1

2/122

2/122

π

π

ππ

ij rrR /= irsS /= SRC ++= 1

Cilindro y placa paralelos s1

j

i

L

r

s2

−= −−

Ls

Ls

ssrFij

2111

21

tantanº180

π

Plano infinito y fila de cilindros

s j

i

D

2/1

2

221

2/12

tanº180

11

+

+

−−=

DDs

sD

sDFij

π

Page 57: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

51

Figura 10.1. Factor de forma radiativo para dos rectángulos paralelos alineados.

j

iX

L

Y

0.1 0.2 0.3 0.5 1 2 3 5 10 20 400.01

0.02

0.03

0.05

0.080.1

0.2

0.3

0.5

0.81

X / L

Fij

Y / L = 0,05

Y / L = 0,4

Y / L = 0,1

Y / L = 0,6

Y / L = 0,2

Y / L = 4

Y / L = 2

Y / L = 1

Y / L = 10 Y / L = inf.

Page 58: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

52

Figura 10.2. Factor de forma radiativo para dos discos paralelos coaxiales.

j

i

L

ri

rj

0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L / ri

Fij

rj / L = 2

0,3

0,8

0,4

1,25

1

0,6

4 3

1,5

5 6 8

Page 59: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

53

Figura 10.3. Factor de forma radiativo para dos rectángulos perpendiculares con una

arista en común.

j

iZX

Y

0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Z / X

Fij

Y / X = 0,02

0,05 0,1

0,2

1

0,4

0,6

2

4

1,5

1020

Page 60: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

54

Tabla 10.2. Intercambio neto de radiación en recintos especiales de dos superficies grises y

difusas.

Geometría Esquema Condiciones Intercambio de radiación

Planos paralelos grandes

(infinitos) A2, T2, ε2 A1, T1, ε1

plano 1

plano 2

AAA == 21 112 =F 111

)(

21

42

41

12

−+

−=

εε

σ TTAq

Cilindros concéntricos

largos (infinitos)

r2r1

2

1

2

1

rr

AA

=

112 =F 2

1

2

2

1

42

411

12 11)(

rr

TTAq

εε

ε

σ−

+

−=

Esferas concéntricas r2

r1

22

21

2

1

rr

AA

=

112 =F

2

2

1

2

2

1

42

411

1211

)(

−+

−=

rr

TTAq

εε

ε

σ

Objeto convexo pequeño en una cavidad grande

A2, T2, ε2

A1, T1, ε1

02

1 ≈AA

112 =F )( 4

24

11112 TTAq −= σε

Page 61: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

55

TABLAS DE PROPIEDADES TERMOFÍSICAS Y DE FUNCIONES MATEMÁTICAS

Tabla A. Propiedades termofísicas del aire a presión atmosférica.

T (K)

ρ (kg/m3)

cp (J/kg·K)

µ·107 (N·s/m2)

ν·106

(m2/s)k·103

(W/m·K)α·106 (m2/s)

Pr

100 3,5562 1032 71,1 2,00 9,34 2,54 0,786 150 2,3364 1012 103,4 4,426 13,8 5,84 0,758 200 1,7548 1007 132,5 7,590 18,1 10,3 0,737 250 1,3947 1006 159,6 11,44 22,3 15,9 0,720 300 1,1614 1007 184,6 15,89 26,3 22,5 0,707 350 0,9950 1009 208,2 20,92 30,0 29,9 0,700 400 0,8711 1014 230,1 26,41 33,8 38,3 0,690 450 0,7740 1021 250,7 32,39 37,3 47,2 0,686 500 0,6964 1030 270,1 38,79 40,7 56,7 0,684 550 0,6329 1040 288,4 45,57 43,9 66,7 0,683 600 0,5804 1051 305,8 52,69 46,9 76,9 0,685 650 0,5356 1063 322,5 60,21 49,7 87,3 0,690 700 0,4975 1075 338,8 68,10 52,4 98,0 0,695 750 0,4643 1087 354,6 76,37 54,9 109 0,702 800 0,4354 1099 369,8 84,93 57,3 120 0,709 850 0,4097 1110 384,3 93,80 59,6 131 0,716 900 0,3868 1121 398,1 102,9 62,0 143 0,720 950 0,3666 1131 411,3 112,2 64,3 155 0,723 1000 0,3482 1141 424,4 121,9 66,7 168 0,726 1100 0,3166 1159 449,0 141,8 71,5 195 0,728 1200 0,2902 1175 473,0 162,9 76,3 224 0,728 1300 0,2679 1189 496,0 185,1 82 238 0,719 1400 0,2488 1207 530 213 91 303 0,703 1500 0,2322 1230 557 240 100 350 0,685

Page 62: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

56

Tabla B. Propiedades termofísicas del aceite de motor a presión atmosférica.

T (K)

ρ (kg/m3)

cp (J/kg·K)

µ·102 (N·s/m2)

ν·106

(m2/s)k·103

(W/m·K)α·107 (m2/s)

Pr β·103 (K-1)

273 899,1 1796 385 4280 147 0,910 47000 0,70 280 895,3 1827 217 2430 144 0,880 27500 0,70 290 890,0 1868 99,9 1120 145 0,872 12900 0,70 300 884,1 1909 48,6 550 145 0,859 6400 0,70 310 877,9 1951 25,3 288 145 0,847 3400 0,70 320 871,8 1993 14,1 161 143 0,823 1965 0,70 330 865,8 2035 8,36 96,6 141 0,800 1205 0,70 340 859,9 2076 5,31 61,7 139 0,779 793 0,70 350 853,9 2118 3,56 41,7 138 0,763 546 0,70 360 847,8 2161 2,52 29,7 138 0,753 395 0,70 370 841,8 2206 1,86 22,0 137 0,738 300 0,70 380 836,0 2250 1,41 16,9 136 0,723 233 0,70 390 830,6 2294 1,10 13,3 135 0,709 187 0,70 400 825,1 2337 0,874 10,6 134 0,695 152 0,70 410 818,9 2381 0,698 8,52 133 0,682 125 0,70 420 812,1 2427 0,564 6,94 133 0,675 103 0,70 430 806,5 2471 0,470 5,83 132 0,662 88 0,70

Page 63: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

57

Tabla C. Propiedades termofísicas del agua saturada.

T (K)

P (bar)

ρ (kg/m3)

ifg (kJ/kg)

cp (J/kg·K)

µ·106 (N·s/m2)

k·103 (W/m·K)

Pr β·106 (K-1)

273,15 0,00611 1000 2502 4217 1750 569 12,99 -68,05275 0,00697 1000 2497 4211 1652 574 12,22 -32,74280 0,00990 1000 2485 4198 1422 582 10,26 46,04 285 0,01387 1000 2473 4189 1225 590 8,81 114,1 290 0,01917 999,0 2461 4184 1080 598 7,56 174,0 295 0,02617 998,0 2449 4181 959 606 6,62 227,5 300 0,03531 997,0 2438 4179 855 613 5,83 276,1 305 0,04712 995,0 2426 4178 769 620 5,20 320,6 310 0,06221 993,0 2414 4178 695 628 4,62 361,9 315 0,08132 991,1 2402 4179 631 634 4,16 400,4 320 0,1053 989,1 2390 4180 577 640 3,77 436,7 325 0,1351 987,2 2378 4182 528 645 3,42 471,2 330 0,1719 984,3 2366 4184 489 650 3,15 504,0 335 0,2167 982,3 2354 4186 453 656 2,88 535,5 340 0,2713 979,4 2342 4188 420 660 2,66 566,0 345 0,3372 976, 2329 4191 389 668 2,45 595,4 350 0,4163 973,7 2317 4195 365 668 2,29 624,2 355 0,5100 970,9 2304 4199 343 671 2,14 652,3 360 0,6209 967,1 2291 4203 324 674 2,02 697,9 365 0,7514 963,4 2278 4209 306 677 1,91 707,1 370 0,9040 960,6 2265 4214 289 679 1,80 728,7

373,15 1,0133 957,9 2257 4217 279 680 1,76 750,1 375 1,0815 956,9 2252 4220 274 681 1,70 761 380 1,2869 953,3 2239 4226 260 683 1,61 788 385 1,5233 949,7 2225 4232 248 685 1,53 814 390 1,794 945,2 2212 4239 237 686 1,47 841 400 2,455 937,2 2183 4256 217 688 1,34 896 410 3,302 928,5 2153 4278 200 688 1,24 852 420 4,370 919,1 2123 4302 185 688 1,16 1010 430 5,699 909,9 2091 4331 173 685 1,09 440 7,333 900,9 2059 4360 162 682 1,04 450 9,319 890,5 2024 4400 152 678 0,99 460 11,71 879,5 1989 4440 143 673 0,95 470 14,55 868,1 1951 4480 136 667 0,92 480 17,90 856,9 1912 4530 129 660 0,89 490 21,83 844,6 1870 4590 124 651 0,87 500 26,40 831,3 1825 4660 118 642 0,86

ifg: entalpía específica del cambio de fase entre líquido y gas.

Page 64: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

58

Tabla D. Funciones hiperbólicas.

x senh x cosh x tanh x x senh x cosh x tanh x 0,00 0,0000 1,0000 0,00000 2,00 3,6269 3,7622 0,964030,10 0,1002 1,0050 0,09967 2,10 4,0219 4,1443 0,970450,20 0,2013 1,0201 0,19738 2,20 4,4571 4,5679 0,975740,30 0,3045 1,0453 0,29131 2,30 4,9370 5,0372 0,980100,40 0,4108 1,0811 0,37995 2,40 5,4662 5,5569 0,983670,50 0,5211 1,1276 0,46212 2,50 6,0502 6,1323 0,986610,60 0,6367 1,1855 0,53705 2,60 6,6947 6,7690 0,989030,70 0,7586 1,2552 0,60437 2,70 7,4063 7,4735 0,991010,80 0,8881 1,3374 0,66404 2,80 8,1919 8,2527 0,992630,90 1,0265 1,4331 0,71630 2,90 9,0596 9,1146 0,993961,00 1,1752 1,5431 0,76159 3,00 10,018 10,068 0,995051,10 1,3356 1,6685 0,80050 3,50 16,543 16,573 0,998181,20 1,5095 1,8107 0,83365 4,00 27,290 27,308 0,999331,30 1,6984 1,9709 0,86172 4,50 45,003 45,014 0,999751,40 1,9043 2,1509 0,88535 5,00 74,203 74,210 0,999911,50 2,1293 2,3524 0,90515 6,00 201,71 201,72 0,999991,60 2,3756 2,5775 0,92167 7,00 548,32 548,32 1,0000 1,70 2,6456 2,8283 0,93541 8,00 1490,5 1490,5 1,0000 1,80 2,9422 3,1075 0,94681 9,00 4051,5 4051,5 1,0000 1,90 3,2682 3,4177 0,95624 10,00 11013 11013 1,0000

Tabla E. Función gaussiana de error.

x erf (x) x erf (x) x erf (x) 0,00 0,00000 0,36 0,38933 1,04 0,85865 0,02 0,02256 0,38 0,40901 1,08 0,87333 0,04 0,04511 0,40 0,42839 1,12 0,88679 0,06 0,06762 0,44 0,46623 1,16 0,89910 0,08 0,09008 0,48 0,50275 1,20 0,91031 0,10 0,11246 0,52 0,53790 1,30 0,93401 0,12 0,13476 0,56 0,57162 1,40 0,95229 0,14 0,15695 0,60 0,60386 1,50 0,96611 0,16 0,17901 0,64 0,63459 1,60 0,97635 0,18 0,20094 0,68 0,66378 1,70 0,98379 0,20 0,22270 0,72 0,69143 1,80 0,98909 0,22 0,24430 0,76 0,71754 1,90 0,99279 0,24 0,26570 0,80 0,74210 2,00 0,99532 0,26 0,28690 0,84 0,76514 2,20 0,99814 0,28 0,30788 0,88 0,78669 2,40 0,99931 0,30 0,32863 0,92 0,80677 2,60 0,99976 0,32 0,34913 0,96 0,82542 2,80 0,99992 0,34 0,36936 1,00 0,84270 3,00 0,99998

∫ −=w u duew

0

22 erfπ

ww erf1 erfc −=

Page 65: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

59

Tabla F. Primeras cuatro raíces de la ecuación trascendental, ξn·tan(ξn) = Bi, para

conducción transitoria en una pared plana.

khLBi = ξ1 ξ2 ξ3 ξ4

0 0,0000 3,1416 6,2832 9,4248 0,001 0,0316 3,1419 6,2833 9,4249 0,002 0,0447 3,1422 6,2835 9,4250 0,004 0,0632 3,1429 6,2838 9,4252 0,006 0,0774 3,1435 6,2841 9,4254 0,008 0,0893 3,1441 6,2845 9,4256 0,01 0,0998 3,1448 6,2848 9,4258 0,02 0,1410 3,1479 6,2864 9,4269 0,04 0,1987 3,1543 6,2895 9,4290 0,06 0,2425 3,1606 6,2927 9,4311 0,08 0,2791 3,1668 6,2959 9,4333 0,1 0,3111 3,1731 6,2991 9,4354 0,2 0,4328 3,2039 6,3148 9,4459 0,3 0,5218 3,2341 6,3305 9,4565 0,4 0,5932 3,2636 6,3461 9,4670 0,5 0,6533 3,2923 6,3616 9,4775 0,6 0,7051 3,3204 6,3770 9,4879 0,7 0,7506 3,3477 6,3923 9,4983 0,8 0,7910 3,3744 6,4074 9,5087 0,9 0,8274 3,4003 6,4224 9,5190 1,0 0,8603 3,4256 6,4373 9,5293 1,5 0,9882 3,5422 6,5097 9,5801 2,0 1,0769 3,6436 6,5783 9,6296 3,0 1,1925 3,8088 6,7040 9,7240 4,0 1,2646 3,9352 6,8140 9,8119 5,0 1,3138 4,0336 6,9096 9,8928 6,0 1,3496 4,1116 6,9924 9,9667 7,0 1,3766 4,1746 7,0640 10,0339 8,0 1,3978 4,2264 7,1263 10,0949 9,0 1,4149 4,2694 7,1806 10,1502 10,0 1,4289 4,3058 7,2281 10,2003 15,0 1,4729 4,4255 7,3959 10,3898 20,0 1,4961 4,4915 7,4954 10,5117 30,0 1,5202 4,5615 7,6057 10,6543 40,0 1,5325 4,5979 7,6647 10,7334 50,0 1,5400 4,6202 7,7012 10,7832 60,0 1,5451 4,6353 7,7259 10,8172 80,0 1,5514 4,6543 7,7573 10,8606 100,0 1,5552 4,6658 7,7764 10,8871 ∞ 1,5708 4,7124 7,8540 10,9956

Page 66: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

60

Tabla G. Funciones de Bessel de primera clase.

x J0(x) J1(x) 0,0 1,0000 0,0000 0,1 0,9975 0,0499 0,2 0,9900 0,0995 0,3 0,9776 0,1483 0,4 0,9604 0,1960 0,5 0,9385 0,2423 0,6 0,9120 0,2867 0,7 0,8812 0,3290 0,8 0,8463 0,3688 0,9 0,8075 0,4059 1,0 0,7652 0,4401 1,1 0,7196 0,4709 1,2 0,6711 0,4983 1,3 0,6201 0,5220 1,4 0,5669 0,5419 1,5 0,5118 0,5579 1,6 0,4554 0,5699 1,7 0,3980 0,5778 1,8 0,3400 0,5815 1,9 0,2818 0,5812 2,0 0,2239 0,5767 2,1 0,1666 0,5683 2,2 0,1104 0,5560 2,3 0,0555 0,5399 2,4 0,0025 0,5202

Page 67: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

61

Tabla H. Funciones de Bessel modificadas de primera y segunda clase.

x e-x·I0(x) e-x·I1(x) ex·K0(x) ex·K1(x) 0,0 1,0000 0,0000 ∞ ∞ 0,2 0,8269 0,0823 2,1408 5,8334 0,4 0,6974 0,1368 1,6627 3,2587 0,6 0,5993 0,1722 1,4167 2,3739 0,8 0,5241 0,1945 1,2582 1,9179 1,0 0,4658 0,2079 1,1445 1,6362 1,2 0,4198 0,2153 1,0575 1,4429 1,4 0,3831 0,2185 0,9881 1,3011 1,6 0,3533 0,2190 0,9309 1,1919 1,8 0,3289 0,2177 0,8828 1,1048 2,0 0,3085 0,2153 0,8416 1,0335 2,2 0,2913 0,2121 0,8057 0,9738 2,4 0,2766 0,2085 0,7740 0,9229 2,6 0,2639 0,2047 0,7459 0,8790 2,8 0,2528 0,2007 0,7206 0,8405 3,0 0,2430 0,1968 0,6978 0,8066 3,2 0,2343 0,1930 0,6770 0,7763 3,4 0,2264 0,1892 0,6580 0,7491 3,6 0,2193 0,1856 0,6405 0,7245 3,8 0,2129 0,1821 0,6243 0,7021 4,0 0,2070 0,1788 0,6093 0,6816 4,2 0,2016 0,1755 0,5953 0,6627 4,4 0,1966 0,1725 0,5823 0,6454 4,6 0,1919 0,1695 0,5701 0,6292 4,8 0,1876 0,1667 0,5586 0,6143 5,0 0,1835 0,1640 0,5478 0,6003 5,2 0,1797 0,1614 0,5376 0,5872 5,4 0,1762 0,1589 0,5280 0,5749 5,6 0,1728 0,1565 0,5188 0,5634 5,8 0,1697 0,1542 0,5101 0,5525 6,0 0,1667 0,1521 0,5019 0,5422 6,4 0,1611 0,1479 0,4865 0,5232 6,8 0,1561 0,1441 0,4724 0,5060 7,2 0,1515 0,1405 0,4595 0,4905 7,6 0,1473 0,1372 0,4476 0,4762 8,0 0,1434 0,1341 0,4366 0,4631 8,4 0,1399 0,1312 0,4264 0,4511 8,8 0,1365 0,1285 0,4168 0,4399 9,2 0,1334 0,1260 0,4079 0,4295 9,4 0,1305 0,1235 0,3995 0,4198 9,6 0,1278 0,1213 0,3916 0,4108 10,0 1,0000 0,0000

)()/()()( xIxnxIxI nnn 211 −= −+

Page 68: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Fórmulas, Tablas y Figuras

62

ALFABETO GRIEGO

Mayúsculas Minúsculas Nombre

Α α alfa

Β β beta

Γ γ gamma

∆ δ delta

Ε ε épsilon

Ζ ζ seta o zeta

Η η eta

Θ θ zeta o theta

Ι ι iota

Κ κ kappa o cappa

Λ λ lambda

Μ µ my o mu

Ν ν ny o nu

Ξ ξ xi

Ο ο ómicron

Π π pi

Ρ ρ ro o rho

Σ σ, ς sigma

Τ τ tau

Υ υ ípsilon

Φ ϕ fi o phi

Χ χ ji

Ψ ψ psi

Ω ω omega

Page 69: 192783500 Tranferencia de Calor

PROBLEMAS DE

TRANSFERENCIA DE CALOR

Juan Carlos Ramos González Doctor Ingeniero Industrial

Raúl Antón Remírez

Doctor Ingeniero Industrial

Diciembre de 2009

Page 70: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

2

Page 71: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

i

ÍNDICE

Problemas Tema 1. Introducción a la transferencia de calor y a la conducción ............................. 1

Problemas Tema 2. Conducción unidimensional en régimen estacionario..................................... 7

Problemas Tema 3. Conducción bidimensional en régimen estacionario..................................... 15

Problemas Tema 4. Conducción en régimen transitorio ............................................................... 21

Problemas Tema 5. Introducción a la convección......................................................................... 29

Problemas Tema 6. Convección forzada en flujo externo ............................................................ 33

Problemas Tema 7. Convección forzada en flujo interno ............................................................. 37

Problemas Tema 8. Convección libre o natural ............................................................................ 41

Problemas Tema 9. Introducción a la radiación............................................................................ 45

Problemas Tema 10. Intercambio radiativo entre superficies ....................................................... 51

Page 72: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

2

Page 73: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

1

PROBLEMAS TEMA 1. INTRODUCCIÓN A LA TRANSFERENCIA DE CALOR Y A LA CONDUCCIÓN

1. (2.7 del Incropera; Ley de Fourier) En el sistema mostrado en la figura se produce una conducción de régimen estacionario unidimensional sin generación de calor. La conductividad térmica es 25 W/m·K y el espesor L es 0,5 m.

Determine las cantidades desconocidas para cada caso de la tabla siguiente y dibuje la distribución de temperatura indicando la dirección del flujo de calor.

Caso T1 T2 dT/dx (K/m)

xq ′′ (W/m2)

1 400 K 300 K 2 100 ºC -250 3 80 ºC 200 4 -5 ºC 4.000 5 30 ºC -3.000

Solución: 1) 200 K/m, -5.000 W/m2; 2) 498 K, 6.250 W/m2; 3) -20 ºC, -5.000 W/m2; 4) -85 ºC, -160 K/m; 5) -30 ºC, 120 K/m.

2. (1.13 del Incropera; Convección) Un chip cuadrado isotérmico de lado 5 mm está montado en un sustrato de manera que sus superficies laterales e inferior están bien aisladas, mientras que la superficie frontal se expone a la corriente de un fluido refrigerante a 15 ºC. La temperatura del chip no debe sobrepasar los 85 ºC. Si el fluido refrigerante es aire (h = 200 W/m2·K), ¿cuál es la potencia máxima admisible del chip? Si el fluido refrigerante es un líquido dieléctrico (h = 3.000 W/m2·K), ¿cuál es la potencia máxima admisible del chip?

Solución: 0,35 W y 5,25 W.

3. (Radiación y balance de energía) Un antiguo alumno de la Escuela que trabaja en la ESA (Agencia Espacial Europea) nos ha transmitido la siguiente cuestión: Una sonda de exploración espacial cuyas placas de energía fotovoltaica tienen una superficie Ap y una temperatura de fusión Tp = 2.000 K es enviada en dirección al Sol. Calcular el radio de la órbita solar mínima (Ro) a la que se podrá acercar la sonda al Sol. Datos: constante de

x

T2 T1

L

Page 74: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

2

Stefan-Boltzmann σ = 5,67·10-8 W/m2·K4; temperatura de la superficie solar Ts = 6.000 K; radio del Sol Rs = 7·108 m; suponer que tanto el Sol como las placas se comportan como cuerpos negros (ε = α = 1).

Solución: Ro = Rs (Ts/Tp)2.

4. (Convección y radiación) Una persona desvestida tiene una superficie de 1,5 m2 expuesta a un ambiente y a unos alrededores de 27 ºC. La temperatura de su piel es de 33 ºC y se puede considerar un emisor de radiación perfecto. Si el coeficiente de transferencia de calor por convección es de 9 W/m2·K, hállese:

a) Las pérdidas de calor por convección y por radiación.

b) El gasto energético en kcal/día.

Solución: a) qconv = convQ& = 81 W, qrad = radQ& = 56,8 W; b) 2.846 kcal/día.

5. (2.6 del Incropera; Ley de Fourier) Para determinar el efecto de la dependencia de la temperatura de la conductividad térmica sobre la distribución de temperatura en un sólido, considere un material para el que esta dependencia puede representarse como

k = ko + aT

donde ko es una constante positiva y a es un coeficiente que puede ser positivo o negativo. Dibuje la distribución de temperatura de régimen estacionario asociada con la transferencia de calor en una pared plana para tres casos que corresponden a a > 0, a = 0 y a < 0.

6. (2.11 del Incropera; Ley de Fourier) En el cuerpo bidimensional que se muestra en la figura se encuentra que el gradiente en la superficie A es ∂T/∂y = 30 K/m. ¿Cuánto valen ∂T/∂y y ∂T/∂x en la superficie B?

Solución: ∂T/∂y = 0; ∂T/∂x = 60 K/m.

7. (1.27 del Incropera; Balance de energía) Una placa de aluminio de 4 mm de espesor se monta en posición horizontal con su superficie inferior bien aislada. Se aplica a su superficie superior un recubrimiento que absorbe el 80% de cualquier radiación solar incidente y tiene una emisividad de 0,25. La densidad y el calor específico del aluminio son 2.700 kg/m3 y 900 J/kg·K, respectivamente.

a) Considere las condiciones para las que la placa está a una temperatura de 25 ºC y la superficie superior se expone súbitamente al aire ambiente a T∞ = 20 ºC y a radiación solar que proporciona un flujo incidente de 900 W/m2. El coeficiente de transferencia

Page 75: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

3

de calor por convección entre la superficie y el aire es h = 20 W/m2·K. ¿Cuál es la velocidad inicial de cambio de la temperatura de la placa? Suponga que no hay alrededores.

b) ¿Cuál será la temperatura de equilibrio de la placa cuando se alcancen las condiciones de régimen estacionario?

c) Represente mediante Excel® una gráfica de la temperatura de régimen estacionario como función de la emisividad para 0,05 ≤ ε ≤ 1, para tres valores de la absortividad de la placa de 0,5, 0,8 y 1 con el resto de condiciones constantes. Si la finalidad es maximizar la temperatura de la placa, ¿cuál es la combinación más deseable de emisividad y absortividad de la placa?

Solución: a) 0,052 K/s; b) Ts = 321 K.

8. (1.31 del Incropera; Balance de energía) En una etapa de un proceso de recocido, 1 hoja de acero inoxidable AISI 304 se lleva de 300 K a 1.250 K conforme pasa a través de un horno calentado eléctricamente a una velocidad de vs = 10 mm/s. El espesor y ancho de la hoja son ts = 8 mm y ws = 2 m, respectivamente, mientras que la altura, ancho y largo del horno son Ho = 2 m, Wo = 2,4 m y Lo = 25 m, respectivamente. La parte superior y cuatro lados del horno se exponen al aire ambiental y a alrededores a 300 K, y la temperatura de la superficie del horno, su emisividad y el coeficiente de convección respectivos son Ts = 350 K, εs = 0,8 y h = 10 W/m2·K. La superficie inferior del horno también está a 350 K y reposa en una placa de cemento de 0,5 m de espesor cuya base está a 300 K. Estimar la potencia eléctrica que se requiere suministrar al horno. Datos: kcemento (a 300 K) = 1,4 W/m·K. Propiedades termofísicas del acero inoxidable AISI 304: ρ = 7.900 kg/m3.

T (K) cp (J/kg·K)600 557 800 582

Solución: 841 kW.

9. (2.12 del Incropera; Ley de Fourier) Algunas secciones del oleoducto de Alaska están tendidas sobre tierra, sostenidas por columnas verticales de acero (k = 25 W/m·K) de 1 m de longitud y sección transversal de 0,005 m2. En condiciones normales de operación se sabe que la variación de temperatura de un extremo a otro de la longitud de una columna se rige por una expresión de la forma

Page 76: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

4

T = 100 – 150x + 10x2

donde T y x tienen unidades de ºC y metros, respectivamente. Las variaciones de temperatura son insignificantes sobre la sección transversal de la columna. Evalúe la temperatura y la rapidez de conducción de calor en la unión columna-ducto (x = 0) y en la interfaz columna-tierra (x = 1). Explique la diferencia en las transferencias de calor.

Solución: 18,75 W y 16,25 W.

10. (2.17 del Incropera; Ley de Fourier) Un aparato para medir la conductividad térmica emplea un calentador eléctrico intercalado entre dos muestras idénticas de 30 mm de diámetro y 60 mm de longitud, prensadas entre placas que se mantienen a una temperatura uniforme To = 77 ºC mediante la circulación de un fluido. Se pone grasa conductora entre todas las superficies para asegurar un buen contacto térmico. Se empotran termopares diferenciales en las muestras con un espaciado de 15 mm. Las caras laterales de las muestras se aíslan para que la transferencia de calor sea unidimensional.

a) Con dos muestras de acero inoxidable AISI 316 en el aparato, el calentador toma 0,353

A a 100 V y los termopares diferenciales indican ∆T1 = ∆T2 = 25,0 ºC. ¿Cuál es la conductividad térmica del material de la muestra de acero inoxidable y cuál la temperatura promedio de las muestras? Compare los resultados con los valores de la Tabla A.1 del Incropera.

b) Calcular la conductividad térmica y la temperatura promedio de una muestra de hierro Armco puesta en lugar de la muestra inferior del acero AISI 316. En este caso el calentador toma 0,601 A a 100 V y los termopares diferenciales indican ∆T1 = ∆T2 = 15,0 ºC.

c) ¿Cuál es la ventaja de construir el aparato con el calentador intercalado entre dos muestras en lugar de construirlo con una sola combinación muestra-calentador? ¿Cuándo resulta significativo el escape de calor por la superficie lateral de las muestras? ¿Bajo que condiciones esperaría que ∆T1 ≠ ∆T2?

Datos: Propiedades termofísicas del acero inoxidable AISI 316:

T (K) k (W/m·K)300 13,4 400 15,2

Page 77: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

5

Propiedades termofísicas del Armco:

T (K) k (W/m·K)300 72,7 400 65,7

Solución: a) k = 15 W/m·K y T = 400 K; b) k = 70 W/m·K y T = 380 K.

11. (2.21 del Incropera; Ecuación de calor) En una varilla cilíndrica de 50 mm de diámetro de combustible de un reactor nuclear ocurre generación interna de calor a 7

1 10·5=q& W/m3, y en condiciones de régimen estacionario la distribución de temperatura es T(r) = a+br2, donde T está en grados Celsius y r en metros, mientras a = 800 ºC y b = -4,167·105 ºC/m2. Las propiedades de la varilla de combustible son k = 30 W/m·K, ρ = 1.100 kg/m3 y cp = 800 J/kg·K.

a) ¿Cuál es la velocidad de transferencia de calor por unidad de longitud de la varilla en r = 0 (línea central) y en r = 25 mm (superficie)?

b) Si el nivel de potencia del reactor aumenta súbitamente a 82 10=q& W/m3, ¿cuál es la

velocidad de cambio de temperatura en el tiempo inicial en r = 0 y en r = 25?

Solución: a) W/m108,9)25(y 0)0( 4×==′==′ rqrq rr ; b) 56,8 K/s.

12. (2.24 del Incropera; Ley de Fourier, ecuación de calor y balance de energía) Un estanque solar poco profundo con gradiente salino consiste en tres capas fluidas distintas y se utiliza para absorber energía solar. Las capas superior e inferior están bien mezcladas y sirven para mantener las superficies superior e inferior de la capa central a temperaturas uniformes T1 y T2, donde T2 > T1. Considere condiciones para las que la absorción de la radiación solar en la capa central proporciona una generación no uniforme de calor de la forma axAexq −=)(& , y la distribución de temperatura en la capa central es:

CBxekaAxT ax ++−= −

2)(

Las cantidades A (W/m3), a (1/m), B (K/m) y C (K) son constante conocidas, y k es la conductividad térmica que también es constante.

a) Obtenga expresiones para la rapidez a la que se transfiere calor por unidad de área de la

capa inferior a la capa central y de ésta a la capa superior.

Page 78: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

6

b) Determine si las condiciones son estacionarias o transitorias.

c) Obtenga una expresión para la rapidez a la que se genera energía térmica en la capa central, por unidad de área superficial.

Solución: a) BkaAxqBke

aALxq x

aLx −−==′′−−==′′ − )0( ;)( ; b) Régimen estacionario; c)

( )aLgen e

aAE −−=′′ 1& .

Page 79: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

7

PROBLEMAS TEMA 2. CONDUCCIÓN UNIDIMENSIONAL EN RÉGIMEN ESTACIONARIO

Pared plana

1. (3.2 del Incropera) La ventana posterior de un automóvil se desempaña mediante el paso de aire caliente sobre su superficie interna.

a) Calcular las temperaturas de las superficies interna y externa de una ventana de vidrio de 4 mm de espesor, siendo la temperatura del aire caliente T∞,int = 40 ºC y su coeficiente de convección hint = 30 W/m2·K y la temperatura del aire exterior T∞,ext = -10 ºC y su coeficiente de convección hext = 65 W/m2·K.

b) Evalúe cualitativamente la influencia de T∞,ext y hext sobre las temperaturas.

Datos: kvidrio (a 300 K) = 1,4 W/m·K.

Solución: a) Tint = 7,7 ºC y Text = 4,9 ºC; b) Ambas disminuyen al aumentar hext y aumentan al aumentar T∞,ext.

2. (3.3 del Incropera) En la ventana posterior del automóvil del problema anterior se instala como sistema para desempañar su superficie interior un elemento de calentamiento consistente en una película transparente delgada con resistencias eléctricas. Al calentarse eléctricamente este dispositivo se establece un flujo de calor uniforme en la superficie interna.

a) Calcular la potencia eléctrica por unidad de área de ventana necesaria para mantener la temperatura de la superficie interna a 15 ºC cuando la temperatura del aire interior es T∞,int = 25 ºC y su coeficiente de convección hint = 10 W/m2·K. El aire exterior está en las mismas condiciones que en el problema anterior.

b) Calcular la temperatura de la superficie externa de la ventana.

c) Evalúe cualitativamente la influencia de T∞,ext y hext sobre la potencia eléctrica.

Solución: a) elecP ′′ = 1,27 kW/m2; b) Text = 11,1 ºC; c) elecP ′′ aumenta al aumentar hext y disminuye al aumentar T∞,ext.

3. (3.15 del Incropera) Una casa tiene una pared compuesta de madera, aislante de fibra y tablero de yeso, como se indica en el esquema. En un día frío de invierno los coeficientes de transferencia de calor por convección son hext = 60 W/m2·K y hint = 30 W/m2·K. El área total de la superficie es de 350 m2.

Datos: Tablero de yeso: k (a 300 K) = 0,17 W/m·K.

Propiedades termofísicas de la fibra de vidrio:

T (K) ρ (kg/m3) k (W/m·K)300 16 0,046 300 28 0,038 300 40 0,035

Page 80: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

8

Tablero de madera contraplacada: k (a 300 K) = 0,12 W/m·K.

a) Determine una expresión simbólica para la resistencia térmica total de la pared

incluyendo los efectos de convección.

b) Determine la pérdida de calor total de la pared.

c) Si el viento soplara de manera violenta elevando hext a 300 W/m2·K, ¿cuál sería el porcentaje de aumento relativo de la pérdida de calor?

d) ¿Qué resistencia térmica influye en mayor medida sobre la pérdida de calor a través de la pared?

Solución: b) 4.214 W; c) 0,45 %; d) La de la fibra de vidrio, que es el aislante y tiene la k menor.

Resistencia de contacto

4. (3.25 del Incropera) Un circuito integrado (chip) disipa 30.000 W/m2 de calor eléctrico. El chip, que es muy delgado, se expone a un líquido dieléctrico en su superficie superior con hext = 1.000 W/m2·K y T∞,ext = 20 ºC. En la superficie inferior se une a una tarjeta de circuitos de espesor Lb = 5 mm y conductividad kb = 1 W/m·K. La resistencia térmica de contacto entre el chip y la tarjeta es ctR ,′′ = 10-4 m2·K/W. La superficie inferior de la tarjeta se expone al aire ambiente para el que hint = 40 W/m2·K y T∞,int = 20 ºC.

a) Dibuje el circuito térmico equivalente señalando las resistencias térmicas, las temperaturas y los flujos de calor.

b) ¿Cuál es la temperatura del chip para las condiciones de disipación de cq ′′ = 30.000 W/m2?

c) ¿Qué influencia tendría en la temperatura del chip el aumentar en un orden de magnitud la conductividad de la tarjeta de circuitos y en disminuir en un orden de magnitud la resistencia térmica de contacto entre el chip y la tarjeta?

Solución: b) Tc = 49 ºC; c) Prácticamente ninguna.

Page 81: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

9

Pared cilíndrica

5. (3.37 del Incropera) Un calentador eléctrico delgado se inserta entre una varilla circular larga y un tubo concéntrico con radios interior y exterior de 20 y 40 mm. La varilla A tiene una conductividad térmica kA = 0,15 W/m·K y el tubo B kB = 1,5 W/m·K. La superficie externa está en contacto con un fluido a temperatura T∞ = -15 ºC y un coeficiente de convección de 50 W/m2·K.

a) Determine la potencia eléctrica por unidad de longitud de los cilindros que se requieren para mantener la superficie externa del tubo B a 5 ºC.

b) ¿Cuál es la temperatura en el centro de la varilla A?

Solución: a) 251 W/m; b) 23,4 ºC.

6. (3.44 del Incropera) Una corriente eléctrica de 700 A fluye a través de un cable de acero inoxidable que tiene un diámetro de 5 mm y una resistencia eléctrica de 6·10-4 Ω/m. El cable esté en un medio que tiene una temperatura de 30 ºC y el coeficiente total asociado con la convección y la radiación entre el cable y el medio es aproximadamente 25 W/m2·K.

a) Si el cable está expuesto, ¿cuál es la temperatura de la superficie?

b) Si se aplica un recubrimiento muy delgado de aislante eléctrico al cable, con una resistencia de contacto de 0,02 m2·K/W, ¿cuáles son las temperaturas superficiales del aislante y del cable?

c) Si se usa un aislante de conductividad térmica 0,5 W/m·K, ¿cuál será el espesor de este aislante que dará el valor más bajo de la temperatura del cable? ¿Cuál es el valor de esa temperatura?

Solución: a) Ts,cable = 778,7 ºC; b) Ts,cable = 1.153 ºC y Ts,aislante = 778,7 ºC; c) e = 17,5 mm y Ts,cable = 318,2 ºC.

7. (3.45 del Incropera) Un tubo de acero de pared delgada de 0,20 m de diámetro y emisividad 0,8 se utiliza para transportar vapor saturado a una presión de 20 bar (Tsat = 485 K) en un cuarto para el que la temperatura del aire y de las paredes es 25 ºC y el coeficiente de transferencia de calor por convección en la superficie externa del tubo es 20 W/m2·K.

a) ¿Cuál es la pérdida de calor por unidad de longitud del tubo expuesto (sin aislante)?

b) Calcule la pérdida de calor por unidad de longitud del tubo si se añade una capa aislante de 50 mm de óxido de magnesio que también tiene una emisividad de 0,8. Calcular también la temperatura superficial exterior del aislante.

c) El coste asociado con la generación del vapor saturado es de 4 €/109 J y el del aislante y su instalación de 100 €/m. Si la línea de vapor opera 7.500 horas al año, ¿cuánto tiempo se necesita para amortizar la instalación del aislante?

Datos: Propiedades termofísicas del óxido de magnesio:

T (K) k (W/m·K)310 0,051 365 0,055 420 0,061

Solución: a) 3.702 W/m; b) q′ ≈ 162 W/m y Ts,ail,ext ≈ 30 ºC; c) ≈ 3 meses.

Page 82: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

10

Pared esférica

8. (3.56 del Incropera) Una sonda esférica crioquirúrgica se incrusta en tejido enfermo con el propósito de congelarlo y destruirlo. La sonda tiene un diámetro de 3 mm y su superficie se mantiene a -30 ºC cuando se incrusta en tejido que está a 37 ºC. Se forma una capa esférica de tejido congelado alrededor de la sonda con una temperatura de 0 ºC en su superficie de contacto con el tejido normal. Si la conductividad térmica del tejido congelado es 1,5 W/m·K y el coeficiente de transferencia de calor por convección entre el tejido congelado y el normal es 50 W/m2·K, ¿cuál es el espesor de la capa del tejido congelado?

Resolución:

En primer lugar se expone una manera de obtener una expresión de la resistencia térmica para una esfera.

En un elemento diferencial de esfera la aplicación de la conservación de la energía implica que qr = qr+dr, es decir que la transferencia de calor es independiente del radio, para condiciones unidimensionales de régimen estacionario y sin generación interna de calor. La ecuación de Fourier para una esfera hueca cuyas superficies están en contacto con fluidos a temperaturas distintas y en condiciones de régimen estacionario sin generación de calor adopta la forma:

drdTrk

drdTkAqr )4( 2π−=−=

donde A = 4πr2 es el área normal a la dirección de la transferencia de calor. Al integrar la ecuación anterior:

∫∫ −= 2

1

2

1

)(4 2

s

s

T

T

r

rr dTTk

rdrq

π

Suponiendo k constante y al resolver para las condiciones de contorno de temperaturas conocidas en las superficies se obtiene:

)/1()/1()(4

21

21

rrTTkq ss

r −−

La resistencia térmica para conducción adopta, por la tanto, la forma:

−=

−=

21

21,

1141)(

rrkqTTR

r

sscondt π

Y la de convección: hr

R convt 2, 41π

=

Una vez visto esto se puede representar el circuito térmico equivalente al enunciado del problema:

+−

errk11

41π

her 2)(4

1+π

q qT ∞T s1 Ts2

Page 83: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

11

La velocidad de transferencia de calor se puede expresar:

+−

−=

+

−= ∞

errk

TT

erh

TTq sss

1141

)(41

12

2

2

ππ

Al resolver se obtiene la siguiente ecuación en e2: 02

122 =−−

−+∞

rTTTT

hkree

s

ss

Al resolver se obtiene: e = 5,34 mm. Generación interna de calor

9. (3.73 del Incropera) El aire dentro de una cámara a T∞,int = 50 ºC se calienta convectivamente con hint = 20 W/m2·K mediante una pared de 200 mm de espesor que tiene una conductividad térmica de 4 W/m·K y una generación de calor uniforme de 1.000 W/m3. Para prevenir que algo del calor generado se pierda hacia el exterior de la cámara, a T∞,ext = 25 ºC con hext = 5 W/m2·K, se coloca un calentador de listón muy delgado sobre la pared exterior para proporcionar un flujo de calor uniforme, oq ′′ .

a) Dibuje la distribución de temperaturas en la pared (T-x) para la condición de que no se

pierde nada del calor generado dentro de la pared hacia el exterior de la cámara (es decir, quitando el calentador y aislando la superficie externa de la pared).

b) ¿Cuáles son las temperaturas en las superficies externa e interna de la pared para esa condición?

c) Determine el valor de oq ′′ que debe suministrar el calentador de listón de modo que todo el calor generado dentro de la pared se transfiera al interior de la cámara.

d) Si la generación de calor en la pared se cortara mientras el flujo de calor del calentador de listón permanece constante, ¿cuál sería la temperatura de la pared exterior en régimen permanente?

Solución: b) T(0) = 65 ºC y T(L) = 60 ºC; c) 200 W/m2; d) 55 ºC.

10. (3.83 del Incropera) Un elemento de combustible de reactor nuclear consiste en un núcleo cilíndrico sólido de radio r1 y conductividad térmica kf. El núcleo de combustible está en buen contacto con un material de encamisado de radio externo r2 y conductividad térmica kc. Considere condiciones de régimen estacionario para las que ocurre una generación de calor uniforme dentro del combustible a una razón volumétrica q& = gene& y la superficie

Page 84: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

12

externa del encamisado se expone a un fluido refrigerante que se caracteriza por una temperatura T∞ y un coeficiente de convección h.

a) Obtenga expresiones para las distribuciones de temperatura en el combustible y en el encamisado, Tf(r) y Tc(r).

b) Considere un núcleo de combustible de óxido de uranio para el que Kf = 2 W/m·K y r1 = 6 mm y un encamisado para el que Kc = 25 W/m·K y r2 = 9 mm. Si q& = gene& = 2·108 W/m3, h = 2.000 W/m2·K y T∞ = 300 K, ¿cuál es la temperatura máxima en el elemento de combustible?

c) Evalúe cualitativamente la influencia de h sobre las temperaturas. ¿Es posible mantener la temperatura de la línea central del combustible por debajo de 1.000 K ajustando el flujo de refrigerante y, por tanto, el valor de h?

Solución: b) Tf(r = 0) = 1.458 K; c) Si h aumenta Tf y Tc disminuyen. No es posible.

Superficies extendidas y aletas

11. (3.109 del Incropera) Varillas de cobre circulares de diámetro D = 1 mm y longitud L = 25 mm se usan para reforzar la transferencia de calor de una superficie que se mantiene a Ts1 = 100 ºC. Un extremo de la varilla se une a esta superficie (en x = 0) y el otro (x = 25) se une a una segunda superficie que se mantiene Ts2 = 0 ºC. El aire que fluye entre las superficies también está a una temperatura T∞ = 0 ºC y tiene un coeficiente de convección h = 100 W/m2·K.

a) ¿Cuál es la transferencia de calor de una sola varilla de cobre?

b) ¿Cuál es la transferencia total de calor de una sección de 1 m x 1 m de la superficie a 100 ºC, si se instala una disposición de varillas separadas entre centros 4 mm?

Datos: kcobre (a 300 K) = 401 W/m·K.

Solución: a) qf = 1,51 W; b) qt = 103,8 kW.

12. (3.114 del Incropera) A menudo se forman pasajes de aletas entre placas paralelas para reforzar la transferencia de calor por convección en núcleos compactos de intercambiadores de calor. Considere una pila de aletas de 200 mm de ancho y 100 mm de profundidad con 50 aletas de 12 mm de longitud. La pila completa está fabricada de aluminio (k = 240 W/m·K) de 1 mm de espesor. Las temperaturas máximas permisibles asociadas a las placas opuestas son To = 400 K y TL = 350 K. El aire que fluye entre las placas tiene una h = 150 W/m2·K y una T∞ = 300 K. ¿Cuáles son las disipaciones de calor de una aleta y del sistema de aletas en cada una de las placas?

Page 85: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

13

Solución: qfo = 114,95 W; qfL = -88,08 W; qto = 5.972,5 W; qtL = -4.291,5 W.

13. (3.131 del Incropera modificado, examen septiembre 2005) Se quiere disipar el calor generado en el interior de un transformador situando en una de sus paredes un dispositivo de aletas rectas. La pared del transformador tiene una conductividad térmica de 5 W/m·K y un espesor de 6 mm. Sobre ella se coloca un dispositivo de aletas de sección rectangular de aluminio (kal = 240 W/m·K). El soporte del dispositivo de aletas tiene un espesor de 4 mm. Entre la pared del transformador y el soporte de las aletas hay una resistencia de contacto de valor ·K/Wm10 24

,−=′′ ctR . Las aletas tienen una longitud de 25 mm, un espesor de 2

mm y la distancia entre ellas es de 2 mm. El calor generado en el transformador se puede asimilar a un flujo de calor uniforme sobre la pared de valor 25 W/m10=′′iq . El aire exterior está a 320 K y proporciona un coeficiente de convección de 100 W/m2·K.

q"i

Pared deltransformador Soporte de

las aletasR"t,c

t = 2 mm

δ = 2 mm

T∞ = 320 K6 mm 25 mm4 mm

h = 100 W/m2·K

Tint

Tal Tb

ktra = 5 W/m·K kal = 240 W/m·K

Page 86: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

14

a) Dibuje el circuito térmico equivalente entre el interior del transformador y el aire exterior para la parte de pared que le corresponde a una aleta teniendo en cuenta que la dimensión perpendicular al dibujo es muy larga.

b) Calcule los valores de las resistencias térmicas que aparecen en el circuito térmico anterior.

c) Calcule la temperatura de la superficie interna del transformador, Tint.

d) Calcule la temperatura de la superficie interna del soporte de aluminio (en contacto con la resistencia de contacto), Tal.

e) Calcule la temperatura de la base de las aletas, Tb.

Solución: c) Tint = 532,3 K; d) Tal = 402,3 K; e) Tb = 400,6 K.

Page 87: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

15

PROBLEMAS TEMA 3. CONDUCCIÓN BIDIMENSIONAL EN RÉGIMEN ESTACIONARIO

Factores de forma

1. (4.16 del Incropera) Con las relaciones de resistencia térmica desarrolladas en el tema 3 determine expresiones del factor de forma para las siguientes geometrías:

a) Pared plana, capa cilíndrica y coraza esférica.

b) Esfera hueca de superficie isotérmica de diámetro D en el interior de un medio infinito.

Solución: a) A/L, 2πL/ln(r2/r1), 4πr1r2/(r2-r1); b) 2πD.

2. (4.20 del Incropera) Un cable largo de transmisión de energía se entierra a una profundidad (distancia de la tierra a la línea central del cable) de 2 m. El cable está enfundado en un tubo de pared delgada de 0,1 m de diámetro y para hacer al cable superconductor (esencialmente cero disipación de energía), el espacio entre el cable y el tubo está lleno de nitrógeno líquido a 77 K. Si el tubo se cubre con un superaislante (ki = 0,005 W/m·K) de 0,05 m de espesor y la superficie de la tierra (kg = 1,2 W/m·K) está a 300 K, ¿cuál es la carga de enfriamiento por unidad de longitud de tubo [W/m] que debe suministrar un refrigerador criogénico para mantener el nitrógeno a 77 K?

Solución: 9,89 W/m.

3. (4.25 del Incropera) Por un tubo de cobre de pared delgada de 30 mm de diámetro fluye agua caliente a 85 ºC. El tubo está forrado de una capa cilíndrica excéntrica que se mantiene a 35 ºC y mide 120 mm de diámetro. La excentricidad, definida como la distancia entre los centros del tubo y la capa, es 20 mm. El espacio entre el tubo y la capa está lleno de un material aislante que tiene una conductividad térmica de 0,05 W/m·K. Calcule la pérdida de calor por unidad de longitud de tubo y compare el resultado con la pérdida de calor para una disposición concéntrica.

Solución: 12,5 W/m y 11,33 W/m.

Factores de forma con circuitos térmicos

4. (4.28 del Incropera) Un fluido caliente pasa por tubos circulares de una plancha de hierro colado de espesor LA = 60 mm que está en contacto con unas placas de cubierta de espesor LB = 5 mm. Los canales tienen un diámetro D = 15 mm con un espaciado de línea central de Lo = 60 mm. Las conductividades térmicas de los materiales son kA = 20 W/m·K y kB = 75 W/m·K, y la resistencia de contacto entre los dos materiales es 4

, 10·2 −=′′ ctR m2·K/W. El fluido caliente está a Ti = 150 ºC y el coeficiente de convección es 1.000 W/m2·K. Las placas de cubierta se exponen al aire ambiental que está a 25 ºC y tiene un coeficiente de convección de 200 W/m2·K.

Page 88: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

16

a) Determine la transferencia de calor de un solo tubo por unidad de longitud de la

plancha en dirección normal a la página, iq′ .

b) Determine la temperatura de la superficie externa de la placa de cubierta, Ts.

c) Comente los efectos sobre iq′ y Ts de un cambio en el espaciado de los canales. ¿Cómo afectaría a iq′ y Ts aislar la superficie inferior?

Solución: a) iq′ = 1.578,6 W/m; b) Ts = 90,8 ºC; c) Si Lo aumenta, iq′ aumenta y Ts disminuye. Si la superficie inferior está aislada, iq′ disminuye y Ts permanece constante.

5. (4.31 del Incropera) En el Tema 3 se supuso que cuando se une una aleta a un material base, la temperatura de la base no cambia. Lo que en verdad ocurre es que, si la temperatura del material de la base excede la temperatura del fluido, al colocar una aleta disminuye la temperatura de la unión, Tj, por debajo de la de la base y el flujo de calor del material de la base a la aleta es bidimensional. Considere condiciones en las que una aleta larga circular de aluminio de diámetro D = 5 mm se une al material de la base cuya temperatura lejos de la unión se mantiene a Tb = 100 ºC. Las condiciones de convección en la superficie de la aleta son T∞ = 25 ºC y h = 50 W/m2·K.

Page 89: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

17

a) Calcule la temperatura de la unión y la transferencia de calor cuando el material de la base es (i) aluminio (k = 240 W/m·K) y (ii) acero inoxidable (k = 15 W/m·K).

b) Repita los cálculos anteriores para el caso del aluminio si entre la unión de la aleta y el material de la base hay una resistencia térmica 5" 10·3 −=tcR m2·K/W

c) ¿Cómo influye el coeficiente de convección en la transferencia de calor?

Solución: a) (i) Tj = 98 ºC, qf = fQ& = 4,8 W; (ii) Tj = 78,4 ºC, qf = fQ& = 3,24 W; b) Tj = 92

ºC, qf = fQ& = 4,08 W; c) Si h aumenta qf aumenta.

6. (4.32 del Incropera) Se construye un iglú en forma de hemisferio con un radio interno de 1,8 m y paredes de nieve compactada de 0,5 m de espesor. En el interior del iglú el coeficiente de transferencia de calor por convección es 6 W/m2·K; en el exterior, en condiciones normales de viento, es 15 W/m2·K. La conductividad térmica de la nieve compactada es 0,15 W/m·K. La temperatura de la capa de hielo sobre la que se asienta el iglú es de -20 ºC y tiene la misma conductividad térmica que la nieve compactada.

a) Suponiendo que el calor corporal de los ocupantes proporciona una fuente continua de

320 W dentro del iglú, calcule la temperatura del aire interior cuando la del aire exterior es -40 ºC. Considere las pérdidas de calor a través del suelo.

b) ¿Cómo afecta a la temperatura interior el que el coeficiente de convección exterior se triplique debido al viento? ¿Y cómo afecta el doblar el espesor de las paredes?

Solución: a) Ti = 1,2 ºC; b) Ti = 0,8 ºC; Ti = 20,8 ºC.

7. (4.34 del Incropera) Un dispositivo electrónico en forma de disco de 20 mm de diámetro disipa 100 W cuando se monta sobre un bloque grande de aleación de aluminio (2024-T6) cuya temperatura se mantiene a 27 ºC. En la interfaz entre el dispositivo y el bloque hay una resistencia de contacto 5" 10·5 −=tcR m2·K/W.

Page 90: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

18

a) Calcule la temperatura que alcanzará el dispositivo suponiendo que toda la potencia

que genera debe transferirse por conducción al bloque.

b) Para aumentar la potencia del dispositivo se instala un sistema de aletas en la parte superior del dispositivo. Las aletas rectas de sección circular (aletas de aguja) están hechas de cobre (k = 400 W/m·K) y están expuestas a un flujo de aire a 27 ºC para el que el coeficiente de convección es 1.000 W/m2·K. Para la temperatura del dispositivo que se calculó en el apartado a), ¿cuál es la potencia de operación permisible?

Datos: Propiedades termofísicas de la aleación de aluminio 2024-T6:

T (K) k (W/m·K)200 163 300 177 400 186

Solución: a) Td = 57 ºC; b) Peléct. = 138,65 W.

Método de las diferencias finitas

8. (4.41 del Incropera) Las superficies superior e inferior de una barra de conducción se enfrían convectivamente por acción de aire a T∞, pero con hsup ≠ hinf. Los lados se enfrían manteniendo contacto con sumideros de calor a To, a través de una resistencia térmica de contacto ctR ,′′ . La barra tiene conductividad térmica k y el ancho es el doble del espesor L. Considere condiciones de estado estacionario para las que se genera calor de manera uniforme a una tasa volumétrica q& debido al paso de una corriente eléctrica. Obtenga las ecuaciones en diferencias finitas para los nodos 1 y 13.

Page 91: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

19

9. (4.48 del Incropera) Las temperaturas de estado estacionario (en K) en tres puntos nodales

de una varilla rectangular son como se muestra en la figura. La varilla experimenta una rapidez de generación de calor volumétrica uniforme de 5·107 W/m3 y tiene una conductividad térmica de 20 W/m·K. Dos de sus lados se mantienen a una temperatura constante de 300 K, mientras que los otros dos están aislados.

a) Determine las temperaturas en los nodos 1, 2 y 3 resolviendo el sistema de 3 ecuaciones con 3 incógnitas que forman las ecuaciones nodales.

b) Calcule la transferencia de calor por unidad de longitud de la varilla (W/m) a partir de las temperaturas nodales. Compare este resultado con la transferencia de calor calculada a partir del conocimiento de la generación volumétrica de calor y las dimensiones de la varilla.

Solución: a) T1 = 362,4 K; T2 = 390,2 K; T3 = 369 K; b) q’ = 7.502,5 W/m; q’ = 7.500 W/m.

Page 92: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

20

10. (4.52 del Incropera) Una barra larga de sección transversal rectangular tiene 60 mm de ancho, 90 mm de largo, y una conductividad térmica de 1 W/m·K. Uno de sus anchos está sometido a un proceso de convección con aire a 100 ºC y un coeficiente de convección de 100 W/m2·K. El resto de los lados se mantiene a 50 ºC.

a) Con un espaciado de malla de 30 mm y mediante el método iterativo de Gauss-Seidel,

determine las temperaturas nodales y la transferencia de calor (por unidad de longitud normal a la página) desde el aire a la barra.

b) Utilizando Matlab® para resolver el sistema de ecuaciones (método de inversión de matrices), repita los cálculos con un espaciado de malla de 15 mm.

Solución: a) Empezando desde el lado sometido a convección las temperaturas nodales son: 81,7 ºC, 58,5 ºC y 52,1 ºC; q’ = 205 W/m; b) Temperaturas de los nodos a lo largo del ancho sometido a convección: 50 ºC, 80,33 ºC, 85,16 ºC, 80,33 ºC y 50 ºC; q’ = 156,27 W/m.

11. (Basado en Ejemplo 5.1 del Chapman, 5ª edición) Se dispone de una varilla de hierro (k = 50 W/m·K) de 1 cm de diámetro y 20 cm de longitud. La varilla se une en un extremo a una superficie calentada a 120 ºC y en el extremo libre se encuentra aislada. Su superficie lateral está en contacto con un fluido a 20 ºC para el que el coeficiente de transferencia de calor por convección es 10 W/m2·K.

a) Determine la distribución de temperaturas en la varilla resolviendo las ecuaciones nodales mediante el método iterativo de Gauss-Seidel y con un ∆x = 5 cm. El número de iteraciones viene dado por un criterio de convergencia en la temperatura del extremo de un 1 %. Es decir, la diferencia relativa de la temperatura en el extremo en dos iteraciones sucesivas ha de ser inferior al 1 %.

% 1100(%)1

≤−

=−

iextremo

iextremo

iextremo

r TTT

E

b) Determine una aproximación a la pérdida de calor de la varilla a partir de la distribución discreta de temperaturas calculada en el apartado anterior.

c) Compare la solución anterior con el calor perdido por la aleta calculado de manera exacta.

Solución: a) Comenzando desde la base la distribución de temperaturas es: 120 ºC, 84,8 ºC, 63,6 ºC, 52,8 ºC, 49,9 ºC; b) qfaprox. = 3,24 W; c) qf = 3,32 W.

Page 93: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

21

PROBLEMAS TEMA 4. CONDUCCIÓN EN RÉGIMEN TRANSITORIO

Método de la resistencia interna despreciable

1. (5.8 del Incropera) Una bala esférica de plomo de 6 mm de diámetro se mueve aproximadamente a Mach 3. La onda de choque resultante calienta el aire alrededor de la bala a 700 K, y el coeficiente de convección promedio para la transferencia de calor entre el aire y la bala es 500 W/m2·K. Si la bala sale de la escopeta a 300 K y el tiempo de vuelo es 0,4 s, ¿cuál es la temperatura en la superficie en el momento del impacto?

Datos: Propiedades termofísicas del plomo a 300 K: k = 35,3 W/m·K; ρ = 11.340 kg/m3; cp

= 129 J/kg·K.

Solución: T = 351 K.

2. (5.10 del Incropera) Una unidad de almacenamiento de energía térmica consiste en un canal rectangular largo, que está bien aislado en la superficie externa y encierra capas alternadas del material de almacenamiento y rejillas para el flujo.

Cada capa del material de almacenamiento es una plancha de aluminio de ancho W = 0,05 m que está a una temperatura inicial de 25 ºC. Considere condiciones en las que la unidad de almacenamiento se carga con el paso de un gas caliente a través de las rejillas, suponiendo que la temperatura del gas y el coeficiente de convección tienen valores constantes de T∞ = 600 ºC y h = 100 W/m2·K a lo largo del canal. ¿Cuánto tiempo se tardará en alcanzar el 75 % del almacenamiento máximo posible de energía? ¿Cuál es la temperatura del aluminio en ese momento?

Datos: Propiedades termofísicas del aluminio: ρ = 2.702 kg/m3.

T (K) k (W/m·K) cp (J/kg·K)300 237 903 400 240 949 600 231 1.033

Solución: t = 933,5 s ≈ 15,55 min y T = 456 ºC.

3. (5.14 del Incropera) La pared plana de un horno se fabrica de acero al carbono simple (k = 60 W/m·K; ρ = 7.850 kg/m3; cp = 430 J/kg·K) y tiene un espesor de L = 10 mm. Para protegerla de los efectos corrosivos de los gases de combustión del horno, una superficie

Page 94: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

22

de la pared se cubre con una película delgada de cerámica que, para un área superficial unitaria, tiene una resistencia térmica de tfR ′′ = 0,01 m2·K/W. La superficie opuesta está bien aislada de los alrededores.

Al poner en funcionamiento el horno, la pared está a una temperatura inicial de Ti = 300 K y los gases de combustión entran en el horno a T∞ = 1.300 K, con lo que proporcionan un coeficiente de convección de 25 W/m2·K en la película cerámica. Suponiendo que la película tiene una resistencia térmica interna insignificante, ¿cuánto tiempo tardará la superficie interior del acero en alcanzar una temperatura de Tsi = 1.200 K? ¿Cuál es la temperatura Tso de la superficie expuesta de la película cerámica en ese momento?

Resolución:

Se dibuja el circuito térmico equivalente del sistema:

hA1

ARtf′′

Como entre la pared y el fluido existe una película que aporta una resistencia térmica de contacto, para poder calcular el número de Biot y estudiar si se puede aplicar el método de la resistencia interna despreciable hay que trabajar con el coeficiente global de transferencia de calor, U:

·K W/m2001,025/1

11

11 2=+

=′′+

=⇒=∑ tft Rh

UR

UA

El número de Biot correspondiente será:

0033,060

01,0·20===

kUL

Bi c

Al ser menor que 0,1 se puede aplicar el método de la resistencia interna despreciable:

−=

−−

τt

TTTT

i

si exp

q T∞ Tsi Tso

Page 95: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

23

s 75,687.120

430·01,0·850.7====

s

pct UA

VcCR

ρτ

min 65 s 886.3300.1300300.1200.1·ln75,687.1ln ≈=

−−

=−−

−=∞

TTTT

ti

siτ

A partir del circuito térmico equivalente, la temperatura de la superficie de la película vendrá dada por:

K 220.1/1

//)()( =

′′+

′′+=⇒′′−=− ∞

∞tf

tfsisotfsisoso Rh

RThTTRTTTTh

Efectos espaciales: análisis de semejanza

4. (5.28 del Incropera) Considere la pared unidimensional que se muestra en el dibujo que inicialmente se encuentra a temperatura uniforme Ti y se somete de pronto a la condición de frontera de convección con un fluido a T∞.

Para una pared en particular, caso 1, la temperatura en x = L1 después de t1 = 100 s es T1(L1,t1) = 315 ºC. Otra pared, caso 2, tiene diferentes condiciones de espesor y térmicas como se muestra en la siguiente tabla.

Caso L (m) α (m2/s) k (W/m·K) Ti (ºC) T∞ (ºC) h (W/m2·K) 1 0,10 15·10-6 50 300 400 200 2 0,40 25·10-6 100 30 20 100

¿Cuánto tiempo tardará la segunda pared en alcanzar 28,5 ºC en la posición x = L2?

Solución: t = 960 s = 16 min.

Conducción unidimensional: pared plana

5. (5.32 del Incropera) Considere la unidad de almacenamiento de energía del problema 2, pero con un material de mampostería de k = 0,70 W/m·K; ρ = 1.900 kg/m3; cp = 800 J/kg·K empleado en lugar del aluminio. ¿Cuánto tiempo se tardará en alcanzar el 75 % del almacenamiento máximo posible de energía? ¿Cuáles son las temperaturas máxima y mínima de la mampostería en ese momento?

Solución: t = 1.174 s ≈ 19,6 min; Tmín (x = 0) = 412 ºC; Tmáx (x = W/2) = 538 ºC.

Page 96: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

24

Conducción unidimensional: cilindro

6. (5.45 del Incropera) Una varilla larga de 40 mm de diámetro fabricada de zafiro (óxido de aluminio) e inicialmente a una temperatura uniforme de 800 K, se enfría de súbito con un fluido a 300 K que tiene un coeficiente de transferencia de calor de 1.600 W/m2·K. Después de 35 segundos la varilla se envuelve en un aislante y no experimenta pérdidas de calor. ¿Cuál será la temperatura de la varilla después de un largo tiempo?

Datos: Propiedades termofísicas del óxido de aluminio (zafiro) a T = 600 K: k = 18,9

W/m·K; ρ = 3.970 kg/m3; cp = 1.110 J/kg·K.

Solución: Tinf = 510 K.

Conducción unidimensional: esfera

7. (5.48 del Incropera) En el tratamiento térmico para endurecer bolas de acero de rodamientos (k = 50 W/m·K; ρ = 7.800 kg/m3; cp = 500 J/kg·K) se desea aumentar la temperatura de la superficie por un tiempo corto sin calentar de manera significativa el interior de la bola. Este tipo de calentamiento se lleva a cabo mediante la inmersión súbita de la bola en un baño de sal derretida con T∞ = 1.300 K y h = 5.000 W/m2·K. Suponga que cualquier posición dentro de la bola cuya temperatura exceda 1.000 K se endurecerá. Estime el tiempo que se necesita para endurecer el milímetro externo de una bola de 20 mm de diámetro si su temperatura inicial es de 300 K.

Solución: t = 3,4 s.

Sólido semiinfinito

8. (5.61 del Incropera) Una grúa para levantar losas adheridas al suelo emplea un bloque de hierro que se mantiene a temperatura constante de 150 ºC mediante un calentador eléctrico empotrado. El bloque de hierro se pone en contacto con la losa para suavizar el adhesivo, lo que permite levantarla posteriormente. El adhesivo entre la losa y el suelo se suavizará lo suficiente si se calienta por encima de 50 ºC durante al menos 2 minutos, pero su temperatura no debe superar 120 ºC para evitar su deterioro. Suponga que la losa y el suelo tienen una temperatura inicial de 25 ºC y propiedades termofísicas equivalentes de k = 0,15 W/m·K; ρ·cp = 1,5·106 J/m3·K.

a) ¿Cuánto tiempo se tardará en despegar una losa de espesor 4 mm empleando el bloque de hierro? ¿La temperatura del adhesivo excederá 120 ºC?

b) Si el bloque de hierro tiene un área superficial cuadrada de 254 mm de lado, ¿cuánta energía se eliminará de él durante el tiempo que se tarda en despegar la losa?

Solución: a) t = 168,7 s; la temperatura es menor que 120 ºC; b) Q = 56.063,6 J.

Conducción multidimensional

9. (5.75 del Incropera) Una punta cilíndrica de cobre de 100 mm de longitud y 50 mm de diámetro está inicialmente a una temperatura uniforme de 20 ºC. Las caras de los extremos se someten de pronto a una intensa rapidez de calentamiento que las eleva a una temperatura de 500 ºC. Al mismo tiempo, la superficie cilíndrica se somete a calentamiento por un flujo de gas con una temperatura de 500 ºC y un coeficiente de transferencia de calor de 100 W/m2·K. Determine la temperatura en el punto central del cilindro 8 segundos después de la aplicación súbita del calor.

Page 97: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

25

Resolución:

En el problema en cuestión la longitud y el diámetro del cilindro son comparables por lo que se tiene una transmisión de calor bidimensional. La expresión de la ecuación de calor para este caso será:

tT

xT

rTr

rr ∂∂

=∂∂

+

∂∂

∂∂

α11

2

2

Se puede demostrar que la solución ha esta ecuación se puede obtener por el método de separación de variables, llegando a la siguiente expresión:

infinitoCilindro

planaPared

),(·),(),,(

−−

−−

=−

−TT

TtrTTT

TtxTTT

TtrxT

iii

Es decir, la solución bidimensional se expresa como producto de las soluciones unidimensionales correspondientes a una pared plana y a un cilindro infinito. Para las soluciones unidimensionales se emplearán el método de la resistencia interna despreciable (si Bi < 0,1), la solución exacta o la aproximada con el primer término (si Fo > 0,2) según corresponda.

En la Tabla 4.2 del Cuaderno de Fórmulas, Tablas y Figuras se presenta un resumen de soluciones para distintos sistemas multidimensionales como productos de las soluciones unidimensionales.

Visto esto se resuelve este problema en concreto. Como se pide la temperatura central en t = 8 s, a partir de la ecuación vista antes se tiene que:

infinitoCilindro

planaPared

)8,0(·)8,0()8,0,0(

−−

−−

=−

−TT

TTTT

TTTT

TT

iii

A continuación se resuelve cada sistema unidimensional por separado.

Se calcula el número de Biot para la conducción a través de una pared plana:

∞==k

hLBi c

pp

Page 98: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

26

Como para este caso la temperatura superficial está fijada esto es equivalente a tener una h infinita. Como el número de Biot es mayor que 0,1 no se puede emplear el método de la resistencia interna despreciable. Empleamos la solución aproximada con el primer término. A partir de la Tabla 4.1 del Cuaderno de Fórmulas, Tablas y Figuras se obtienen los coeficientes de la aproximación de un término: ξ1 = 1,5707 y C1 = 1,2733.

Se buscan las propiedades del cobre para una temperatura media de:

K 533Cº 260250020

==+

=T ⇒ ρ = 8.933 kg/m3; k = 384 W/m·K; cp = 410 J/kg·K.

Se calcula el número de Fourier: 304,005,0·410·933.8

8·384222 ====

cpc Lckt

LtFo

ρα . Como Fo

> 0,2 la aproximación con el primer término es correcta.

601,0)304,0·5707,1·exp(2733,1)exp()8,0( 2211

planaPared

=−=−=−−

∞ FoCTT

TT

i

ξ

A continuación se resuelve la conducción a través de un cilindro infinito. Se calcula el número de Biot:

3. 10·51,6

384025,0·100 −===

khr

Bi ocil

Por ser menor que 0,1 se puede aplicar el método de la resistencia interna despreciable:

−=

−−

τt

TTTT

i

exp)8,0(

infinitoCilindro

s 8,4572·100

410·025,0·933.8====

s

pct hA

VcCR

ρτ

9827,08,457

8exp)8,0(

infinitoCilindro

=

−=−−

TTTT

i

5906,09827,0·601,0)8,0(·)8,0(50020

500)8,0,0()8,0,0(

infinitoCilindro

planaPared

==−−

−−

=−

−=

−−

TTTT

TTTTT

TTTT

iii

T (0,0,8) = 216,5 ºC

Lo correcto sería volver a calcular las propiedades del cobre para esta temperatura y repetir el problema.

Método de las diferencias finitas

10. (5.82 del Incropera) Un cilindro de material plástico (α = 6·10-7 m2/s) está inicialmente a una temperatura uniforme de 20 ºC y está bien aislado a lo largo de su superficie lateral y en un extremo. En el tiempo t = 0 se le aplica calor en el extremo izquierdo de manera que T0 aumenta linealmente con el tiempo a una razón de 1 ºC/s.

Page 99: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

27

a) Con el método explícito obtenga las ecuaciones en diferencias finitas para los nodos 1,

2, 3 y 4.

b) Con Fo = ½ construya una tabla que tenga como encabezados p, t y las temperaturas nodales de T0 a T4. Determine la temperatura de la superficie, T0, cuando T4 = 35 ºC.

c) Resuelva el problema mediante el método implícito y el método de la inversión de matrices

Solución: b) ∆t = 30 s; T0 (t = 210 s) = 230 ºC.

Resolución del apartado c):

De las ecuaciones nodales explícitas se pueden deducir las ecuaciones nodales implícitas fácilmente:

Nodo 1:

( ) ppppppppp TFoTFoTTFoTTFo

TTT 11

01

21

111

11

11

21

0 )21(12 −−=++−⇒−=−+ +++++++

Nodo 2: pppp TFoTTFoFoT 21

31

21

1 )21( −=++− +++

Nodo 3: pppp TFoTTFoFoT 31

41

31

2 )21( −=++− +++

Nodo 4: ppp TTFoFoT 41

41

3 )21(2 −=+− ++

Expresadas en forma matricial:

−−−

−−

=

+−+−

+−+− +

+

+

+

+

p

p

p

pp

p

p

p

p

TTT

TFoT

TTTT

FoFoFoFoFo

FoFoFoFoFo

4

3

2

11

0

14

13

12

11

)21(200)21(0

0)21(00)21(

[ ][ ] [ ] [ ] [ ] [ ]CATCTA ·· 1−=⇒=

Se inicia un proceso iterativo en que para cada tiempo p hay que evaluar el vector [C] antes de resolver las temperaturas en el tiempo siguiente p+1.

Los resultados se pueden expresar en forma de tabla. Con Fo = 0,5 ⇒ ∆t = 30 s.

Page 100: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

28

p t T0 T1 T2 T3 T4

0 0 20 20 20 20 20

1 30 50

2 60 80

3 90 110

11. (5.100 del Incropera) Se sueldan dos barras muy largas en la dirección normal a la página, las cuales tienen las distribuciones de temperaturas iniciales que se muestran en la tabla inferior. En el tiempo t = 0, la cara m = 3 de la barra de cobre hace contacto con la cara m = 4 de la barra de acero AISI 1010. La soldadura actúa como una capa interfacial de espesor insignificante y resistencia efectiva de contacto ctR ,′′ = 2·10-5 m2·K/W.

a) Obtenga la ecuación en diferencias finitas explícita en términos de Fo y ct

c RkxBi

,· ′′∆

= ,

para T4,2 y determine el criterio de estabilidad correspondiente.

b) Si Fo = 0,01, determine T4,2 un intervalo de tiempo después de que se hace contacto. ¿Cuál es el ∆t? ¿Se satisface el criterio de estabilidad?

Datos: Propiedades termofísicas del acero AISI 1010 a 1.000 K: k = 31,3 W/m·K; ρ =

7.832 kg/m3; cp = 1.168 J/kg·K.

Solución: a) Criterio de estabilidad: Fo ≤ 1/(4 + 2Bic); b) ∆t = 1,17 s; T4,2 (t = 1,17 s) = 806,3 K; sí se satisface el criterio de estabilidad.

Page 101: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

29

PROBLEMAS TEMA 5. INTRODUCCIÓN A LA CONVECCIÓN

Coeficientes de transferencia de calor

1. (6.2 del Incropera) Para la convección laminar libre de una superficie vertical caliente, el coeficiente de convección local se expresa como hx = Cx-1/4, donde hx es el coeficiente a la distancia x desde el inicio de la superficie y la cantidad C, que depende de las propiedades del fluido, es independiente de x. Obtenga una expresión para la razón xh / hx, donde xh es el coeficiente promedio entre el inicio (x = 0) y la posición x. Dibuje la variación de hx y

xh con x.

Solución: xh / hx = 4/3.

2. (6.5 del Incropera) Aire a una temperatura de flujo libre T∞ = 20 ºC está en un flujo paralelo sobre una placa plana de longitud L = 5 m y temperatura Ts = 90 ºC. Sin embargo, los obstáculos colocados en el flujo intensifican la mezcla al aumentar la distancia x desde el inicio, y la variación espacial de las temperaturas medidas en la capa límite están correlacionadas por una expresión de la forma T (x, y) [ºC] = 20 + 70 exp(-600xy), donde x e y están en metros. Determine y elabore una gráfica de la forma en que varía el coeficiente de convección local h con x. Evalúe el coeficiente de convección promedio h para la placa.

Solución: hx = 600·k·x [W/m2·K] = 15,44·x[W/m2·K]; h = 38,6 W/m2·K.

Perfiles de la capa límite

3. (6.10 del Incropera) Agua a una temperatura T∞ = 25 ºC fluye sobre una de las superficies de una pared de acero (AISI 1010) cuya temperatura es Ts1 = 40 ºC. La pared es de 0,35 m de espesor y la temperatura de la otra superficie es Ts2 = 100 ºC. Para condiciones de estado estacionario, ¿cuál es el coeficiente de convección asociado con el flujo de agua? ¿Cuál es el gradiente de temperatura en la pared y en el agua que está en contacto con la pared? Dibuje la distribución de temperaturas en la pared y en el agua contigua.

Datos: Propiedades termofísicas del acero AISI 1010: ρ = 7.832 kg/m3.

T (K)

cp (J/kg·K)

k (W/m·K)

300 434 63,9 400 487 58,7

Solución: h = 700 W/m2·K; y

Tpared

∂= -171,4 K/m;

0=∂

y

agua

yT

= -17.222,22 K/m.

Transición de la capa límite

4. (6.12 del Incropera) Considere un flujo de aire sobre una placa plana de longitud L = 1 m en condiciones para las que ocurre la transición en xc = 0,5 m con base en el número de

Page 102: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

30

Reynolds crítico Rex,c = 5·105. En las regiones laminar y turbulenta los coeficientes de convección local son, respectivamente:

5,0)( −= xCxh lamlam y 2,0)( −= xCxh turbturb

donde Clam = 8,845 W/m3/2·K, Cturb = 49,75 W/m1,8·K y x tiene unidades de m.

a) Mediante la evaluación de las propiedades termofísicas del aire a 350 K determine la velocidad del flujo de aire.

b) Desarrolle una expresión para el coeficiente de convección promedio )(xhlam , como función de la distancia desde el inicio de la placa, x, para la región laminar, 0 ≤ x ≤ xc.

c) Desarrolle una expresión para el coeficiente de convección promedio de toda la placa )(xh , como función de la distancia desde el inicio de la placa, x, para la región

turbulenta, xc≤ x ≤ L.

d) Dibuje una gráfica de )(xhlam , )(xhlam , )(xhturb y )(xh para 0 ≤ x ≤ L.

Solución: a) V = u∞ = 20,92 m/s; b) 5,02)( −= xCxh lamlam ; c)

[ ]8,08,05,0 25,125,121)( cturbturbclam xCxCxCx

xh −+= .

Ecuaciones de conservación y soluciones: flujo de Couette

5. (6.18 del Incropera 5ª edición en inglés) Considere un cojinete hidráulico ligeramente cargado que usa aceite con propiedades constantes ρ = 800 kg/m3, ν = 10-5 m2/s y k = 0,13 W/m·K. El diámetro del eje es de 75 mm, el espacio hasta su apoyo es de 0,25 mm y trabaja a 3.600 rpm.

a) Determine la distribución de temperaturas en la película de aceite suponiendo que no hay transferencia de calor hacia el interior del eje y que la superficie del apoyo del cojinete se mantiene a 75 ºC.

b) ¿Cuál es la transferencia de calor del cojinete?

Solución: a)

∂∂

−= Lyyyu

KTyT

2)(

22

0ρν ; b) q’(y = 0) = -1.508 W/m.

6. (6.21 del Incropera) Considere el flujo de Couette con transferencia de calor para el cual la placa inferior (placa móvil) se mueve con una velocidad de U = 5 m/s y está perfectamente aislada. La placa superior (placa estacionaria) está construida con un material de conductividad térmica kpe = 1,5 W/m·K y espesor Lpe = 3 mm. La superficie externa se mantiene a Tpe = 40 ºC. Las placas están separadas por una distancia Lo = 5 mm, que se llena con un aceite de motor de viscosidad µo = 0,799 N·s/m2 y conductividad térmica ko = 0,145 W/m·K.

Page 103: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

31

a) Determine la distribución de temperaturas en la película de aceite, To(y).

b) Determine la temperaturas en los extremos de la película de aceite en contacto con las dos placas, To(y = 0) y To(y = Lo).

c) Dibuje la distribución de temperaturas en la película de aceite y en la placa estacionaria.

Solución: a) T(y) = -2,755·106·y2 + 390 [K]; b) To(y = 0) = 390 K y To(y = Lo) = 321 K.

7. (6.22 del Incropera) Un eje con un diámetro de 100 mm gira a 9.000 rpm en un cojinete hidráulico de 700 mm de longitud. Las propiedades del aceite lubricante son µ = 0,03 N·s/m2 y k = 0,15 W/m·K, mientras que el material del cojinete tiene una conductividad térmica de kc = 45 W/m·K.

a) Determine la disipación viscosa µΦ [W/m3] en el lubricante.

b) Determine la transferencia de calor [W] del lubricante suponiendo que no se pierde calor a través del eje.

c) Si la cubierta del cojinete se enfría con agua, de modo que la superficie externa del cojinete se mantiene a 30 ºC, determine las temperaturas del cojinete y del eje, Tc y Te.

Solución: a) µΦ = 6,66·107·W/m3; b) q = 14.646 W; c) Tc = 81,3 ºC y Te = 303,3 ºC.

Similitud y parámetros adimensionales

8. (6.27 del Incropera, examen septiembre 2002) Un objeto de forma irregular tiene una longitud característica L1 = 1 m y se mantiene a una temperatura superficial uniforme Ts,1 = 400 K. Cuando se coloca en aire atmosférico a una temperatura T∞ = 300 K y se mueve con una velocidad V1 = 100 m/s, el flujo promedio de calor desde la superficie al aire es 20.000 W/m2. Si un segundo objeto de la misma forma, pero con una longitud característica, L2 = 5 m, se mantiene a la misma temperatura superficial y se coloca en aire atmosférico a T∞ =

Page 104: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

32

300 K, ¿cuál será el valor del coeficiente promedio de convección si la velocidad del aire es V2 = 20 m/s?

9. (6.31 y 6.34 del Incropera) Considere las condiciones para las que un fluido con una velocidad de flujo libre V = 1 m/s fluye sobre una superficie con una longitud característica L = 1 m, lo que proporciona un coeficiente promedio de transferencia de calor por convección h = 100 W/m2·K.

a) Calcule los parámetros adimensionales LNu , ReL y Pr para los siguientes fluidos: aire, aceite de motor, mercurio y agua. Suponga que los fluidos están a una temperatura de 300 K.

b) Dibuje la variación relativa entre el espesor de la capa límite hidrodinámica y la capa límite térmica para el flujo laminar sobre una placa plana para los cuatro fluidos anteriores. Suponga un coeficiente del número de Prandtl n = 0,35.

Datos: Propiedades termofísicas del mercurio:

T (K)

ρ (kg/m3)

cp (kJ/kg·K)

µ·102 (N·s/m2)

ν·106

(m2/s) k·103

(W/m·K)α·107 (m2/s)

Pr

300 13.529 0,1393 0,1523 0,1125 8.540 45,30 0,0248 Solución: a) aire: NuL = 3.802; ReL = 62.932; Pr = 0,706; aceite de motor: NuL = 690; ReL = 1.818; Pr = 6.403; mercurio: NuL = 11,7; ReL = 8.888.889; Pr = 0,0248; agua: NuL = 163;

ReL = 1.166.092; Pr = 5,83; b) 885,0=airetδ

δ ; 5,21=aceitetδ

δ ; 27,0=mercuriotδ

δ ;

85,1=aguatδ

δ .

10. (6.35 del Incropera) Se utiliza aire forzado a T∞ = 27 ºC y V = 10 m/s para enfriar elementos electrónicos sobre una tarjeta de circuitos. Uno de tales elementos es un chip, de 4 mm por 4 mm, que se localiza a 120 mm desde el inicio de la tarjeta. Los experimentos revelan que el flujo sobre ésta es perturbado por los elementos y que la transferencia de calor por convección está correlacionada mediante una expresión de la forma:

3/185,004,0 PrReNu xx =

Estime la temperatura superficial del chip si éste disipa 30 mW.

Nota: Las propiedades del fluido se deben calcular a la temperatura media entre el fluido y la superficie.

Solución: T = 317 K = 44 ºC.

Page 105: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

33

PROBLEMAS TEMA 6. CONVECCIÓN FORZADA EN FLUJO EXTERNO

Placa plana en flujo paralelo

1. (7.3 del Incropera) Sobre ambas superficies de una placa plana de 1 m de longitud que se mantiene a 20 ºC fluye aceite de motor a 100 ºC y a una velocidad de 0,1 m/s. Determine:

a) Los espesores de las capas límite de velocidad y térmica al final de la placa.

b) El flujo local de calor al final de la placa.

c) La transferencia de calor por unidad de ancho de la placa.

Solución: a) δL = 146,7 mm; δt,L = 14,3 mm; b) Lq ′′ = 1.304 W/m2; c) totalq′ = 5.216 W/m.

2. (7.11 del Incropera) Una placa plana de 1 m de ancho se mantiene a una temperatura superficial uniforme Ts = 150 ºC mediante el uso de módulos rectangulares generadores de calor, controlados de manera independiente, de espesor a = 10 mm y longitud b = 50 mm. Cada módulo está aislado de sus alrededores, así como de su parte posterior. Aire atmosférico a 25 ºC fluye sobre la placa a una velocidad de 30 m/s. Las propiedades termofísicas del módulo son k = 5,2 W/m·K, cp = 320 J/kg·K y ρ = 2.300 kg/m3.

a) Encuentre la generación de potencia que se requiere, q& [W/m3], en el módulo situado a

700 mm del inicio.

b) Encuentre la temperatura máxima en ese módulo generador de calor.

Solución: a) q& = 873.448 W/m3; b) Tmáx = 158,4 ºC.

3. (7.32 del Incropera) Un conjunto de componentes electrónicos disipadores de calor se monta sobre el lado inferior de una placa horizontal de aluminio de 1,2 x 1,2 m, mientras que el lado superior se enfría con un flujo de aire para el que u∞ = 15 m/s y T∞ = 300 K. La placa se une a un recinto bien aislado de manera que todo el calor se debe transferir al aire. Además la placa de aluminio es lo suficientemente delgada para asegurar una temperatura casi uniforme en ella.

Page 106: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

34

a) Si la temperatura del aluminio no debe exceder de 350 K, ¿cuál es la disipación de

calor máxima permisible?

b) Determine la disipación de calor máxima permisible si sobre la placa de aluminio se coloca un sistema de aletas longitudinales cuya longitud, espesor y espaciado (entre planos centrales de las aletas) son 25 mm, 5 mm y 10 mm, respectivamente.

Datos: Propiedades termofísicas del aluminio:

T (K)

ρ (kg/m3)

cp (J/kg·K)

k (W/m·K)

300 2.702 903 237 Solución: a) q = 2,14 kW; b) q = 12,71 kW.

Flujo alrededor de un cilindro

4. (7.42 del Incropera) Un tubo circular de 25 mm de diámetro exterior se coloca en un flujo de aire a 25 ºC y presión de 1 atm. El aire se mueve en flujo cruzado sobre el tubo a 15 m/s, mientras que la superficie externa del tubo se mantiene a 100 ºC. ¿Cuál es la transferencia de calor del tubo por unidad de longitud?

Solución: q′ = 527 W/m.

5. (7.49 del Incropera) Aire a 27 ºC y a velocidad de 5 m/s pasa sobre la pequeña región As (20 x 20 mm) en una superficie grande que se mantiene a Ts = 127 ºC. Para estas condiciones se eliminan 0,5 W de la superficie As. Con el fin de aumentar la velocidad de eliminación de calor, se sujeta una aleta de alfiler de acero inoxidable AISI 304 de diámetro 5 mm a As, que se supone permanece a Ts = 127ºC.

Datos: Propiedades termofísicas del acero inoxidable AISI 304:

T (K)

ρ (kg/m3)

cp (J/kg·K)

k (W/m·K)

300 7.900 477 14,9 400 7.900 515 16,6

Page 107: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

35

a) Determine la velocidad máxima posible de eliminación de calor a través de la aleta.

b) ¿Qué longitud de aleta proporciona esa velocidad máxima de eliminación de calor?

c) Determine la efectividad de la aleta, εf.

d) ¿Cuál es el porcentaje de aumento en la transferencia de calor de As debido a la instalación de la aleta?

Solución: a) qfmáx = 2,3 W; b) L = 37,4 mm; c) εf = 93,7; d) 455 %.

6. (7.62 del Incropera) En un proceso de fabricación, una varilla larga recubierta de plástico (ρ = 2.200 kg/m3, cp = 800 J/kg·K, k = 1 W/m·K) de diámetro D = 10 mm está inicialmente a una temperatura uniforme de 25 ºC y súbitamente se expone a un flujo cruzado de aire a u∞ = 50 m/s y T∞ = 350 ºC. ¿Cuánto tiempo le costará a la superficie de la varilla alcanzar 175 ºC, temperatura por arriba de la cual se curará el recubrimiento especial?

Solución: t = 8,27 s (Calculado con Tf = ((25+175)/2 +350) /2 y correlación de Hilpert ⇒ 240=h W/m2·K); Fo = 0,1879.

Flujo a través de bancos de tubos

7. (7.76 del Incropera) Considere un banco de tubos escalonado para el que el diámetro exterior del tubo es 16,4 mm y los espaciados longitudinal y transversal son SL = ST = 20,5 mm. Hay siete líneas de tubos en la dirección del flujo de aire y ocho tubos por línea (NL = 7 y NT = 8). La temperatura superficial de los tubos es de 70 ºC y la temperatura y velocidad del flujo de aire son 15 ºC y 6 m/s, respectivamente. Determine el coeficiente de convección y la transferencia de calor para el banco de tubos. Comience evaluando las propiedades del aire a T∞ = 15 ºC.

Solución: h = 235 W/m2·K; q’ = 28,5 kW/m.

8. (7.80 del Incropera) Los componentes eléctricos montados en cada una de dos placas isotérmicas se enfrían al hacer pasar aire atmosférico entre ellas, y se usa un dispositivo en línea de aletas de alfiler de aluminio para aumentar la transferencia de calor al aire. Las aletas son de diámetro D = 2 mm, longitud L = 100 mm y conductividad térmica k = 240 W/m·K. Los espaciados longitudinales y transversales son SL = ST = 4 mm con un dispositivo cuadrado de 625 aletas (NL = NT = 25) montadas en placas cuadradas de ancho W = 100 mm. El aire entra a una velocidad de 10 m/s y a una temperatura de 300 K.

Page 108: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

36

a) Evaluando las propiedades del aire a 300 K, estime el coeficiente promedio de

convección para el dispositivo de aletas.

b) Suponiendo el coeficiente de convección anterior uniforme sobre las aletas y las placas determine la temperatura de salida del aire y la transferencia total de calor cuando las placas se mantienen a 350 K. Sugerencia: La temperatura de salida del aire está gobernada por una relación exponencial de la forma [(Tplaca – Tsal) / (Tplaca – Tent)] = exp[-( h Atηo) / ( m& cp)], donde m& = ρVLNTST es el flujo de masa del aire que pasa a través de las aletas, At es el área superficial total de transferencia de calor (placas más aletas) y ηo es la eficiencia superficial global del conjunto placas más aletas.

Solución: a) h = 435 W/m2·K; b) Tsal = 321 K; qtotal = 2.467,3 W.

Page 109: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

37

PROBLEMAS TEMA 7. CONVECCIÓN FORZADA EN FLUJO INTERNO

Consideraciones térmicas y balance de energía

1. (8.12 del Incropera) Considere una varilla cilíndrica de combustible nuclear de longitud L y diámetro D que está encerrada en un tubo concéntrico. Por la región anular entre la varilla y el tubo fluye agua presurizada a un flujo másico m& y la superficie exterior del tubo está bien aislada. Hay generación de calor dentro de la varilla de combustible y se sabe que la rapidez de generación volumétrica varía senoidalmente con la distancia a lo largo de la varilla: )/()( Lxsenqxq o π&& = , siendo oq& [W/m3] una constante. Se puede suponer que existe un coeficiente de convección uniforme entre la superficie de la varilla y el agua.

a) Obtenga expresiones para el flujo de calor local )(xq ′′ y para la transferencia total de

calor q de la varilla de combustible al agua.

b) Obtenga una expresión para la variación de la temperatura media del agua a lo largo del tubo, Tm(x).

c) Obtenga una expresión para la variación de la temperatura superficial de la varilla a lo largo del tubo, Ts(x). Desarrolle una expresión para la posición x para la que se maximiza.

Solución: a) 2

;4

)(2

oo qLDq

Lxsen

qDxq

&&=

=′′ π ; b)

−+=

Lx

cmqLD

TxTp

oentmm

πcos14

)(2

, &

&;

c)

−=

′′+=

DLhcmLx

hxqxTxT p

máxms

&arctan ;)()()(

π.

2. (8.15 del Incropera) Aire atmosférico entra en la sección caliente de un tubo circular con un flujo de 0,005 kg/s y una temperatura de 20 ºC. El tubo es de diámetro D = 50 mm y existen condiciones completamente desarrolladas con h = 25 W/m2·K sobre toda la longitud L = 3 m.

a) Para el caso de un flujo de calor superficial uniforme, sq ′′ = 1.000 W/m2, determine la transferencia total de calor, q, y la temperatura media del aire que sale del tubo, Tm,sal.

Page 110: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

38

¿Cuál son los valores de las temperaturas superficiales del tubo en la entrada y en la salida, Ts,ent y Ts,sal? Dibuje la variación con x de Tm y Ts.

b) Si el flujo de calor superficial varía linealmente con x, )(xqs′′ = 500x [W/m2], ¿cuáles son los valores de q, Tm,sal, Ts,ent y Ts,sal? Dibuje la variación con x de Tm y Ts.

c) Para cada tipo de proceso de calentamiento anterior, ¿qué flujos de calor se requieren para alcanzar en la salida una temperatura del aire de Tm,sal = 125 ºC?

Solución: a) q = 471,24 W; Tm,sal = 113,6 ºC; Ts,sal = 153,6 ºC; Ts,ent = 60 ºC; b) q = 353,4 W; Tm,sal = 90,2 ºC; Ts,sal = 150,2 ºC; Ts,ent = 20 ºC; c) sq ′′ = 1.122 W/m2; )(xqs′′ = 748x [W/m2].

Correlaciones de transferencia en tubos circulares

3. (8.19 del Incropera) Aceite de motor a razón de 0,02 kg/s fluye por un tubo de 3 mm de diámetro y de 30 m de longitud. El aceite tiene una temperatura de entrada de 60 ºC, mientras que la temperatura de la pared del tubo se mantiene a 100 ºC por condensación de vapor sobre su superficie externa.

a) Estime el coeficiente promedio de transferencia de calor para el flujo interno del aceite.

b) Determine la temperatura de salida del aceite.

c) Calcule la transferencia total de calor al aceite.

Solución: a) h = 201 W/m2·K; b) Tm,sal = 89,6 ºC; c) q = 1.249 W.

4. (8.24 del Incropera) En las etapas finales de producción se esteriliza un fármaco calentándolo de 25 a 75 ºC a medida que se mueve a 0,2 m/s por un tubo recto de acero inoxidable de pared delgada de 12,7 mm de diámetro. Un flujo de calor uniforme se mantiene mediante un calentador de resistencia eléctrica enrollado alrededor de la superficie externa del tubo. Si el tubo es de 10 m de longitud, ¿cuál es el flujo de calor que se requiere? Si entra fluido al tubo con un perfil de velocidad completamente desarrollado y un perfil uniforme de temperatura, ¿cuál es la temperatura superficial en la salida del tubo y a una distancia de 0,5 m desde la entrada? Las propiedades del fluido se pueden aproximar a: ρ = 1.000 kg/m3; cp = 4.000 J/kg·K; µ = 2·10-3 kg/s·m; k = 0,48 W/m·K; Pr = 10.

Solución: sq ′′ =12.700 W/m2; Ts,sal = 152 ºC; Ts (x = 0,5) = 65,7 ºC.

5. (8.39 del Incropera) El núcleo de un reactor nuclear de alta temperatura enfriado por gas tiene tubos de fluido refrigerante de 20 mm de diámetro y 1.500 mm de longitud. Entra helio a 600 K y sale a 1.000 K cuando el flujo es de 8·10-3 kg/s por tubo.

a) Determine la temperatura superficial uniforme de la pared del tubo para estas condiciones.

b) Si el gas refrigerante es aire en vez de helio, determine el flujo másico y la temperatura de salida del aire si la rapidez de eliminación de calor y la temperatura superficial del tubo permanecen iguales.

Page 111: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

39

Datos: Propiedades termofísicas del helio:

T (K)

ρ (kg/m3)

cp (J/kg·K)

µ·107 (N·s/m2)

ν·106

(m2/s)k·103

(W/m·K)α·106

(m2/s) Pr

800 0,05924 5193 382 - 304 - 0,654 Solución: a) Ts = 1.142,8 K; b) Tm,sal ≈ 919 K; airem& ≈ 0,0474 kg/s.

6. (8.50 del Incropera) Considere un tubo de pared delgada de 10 mm de diámetro y 2 m de longitud. Entra agua al tubo desde un recipiente grande a m& = 0,2 kg/s y Tm,ent = 47 ºC.

a) Si la superficie del tubo se mantiene a una temperatura uniforme de 27 ºC, ¿cuál es la temperatura de salida del agua, Tm,sal?

b) ¿Cuál es la temperatura de salida del agua si se calienta mediante el paso de aire a T∞ = 100 ºC y V = 10 m/s en flujo cruzado sobre el tubo? Las propiedades del aire se pueden evaluar a una temperatura de película supuesta de 350 K.

Solución: a) Tm,sal ≈ 35-36 ºC; b) Tm,sal ≈ 47 ºC.

7. (8.53 del Incropera) Una tubería de acero (k = 60 W/m·K) que conduce agua caliente se enfría externamente mediante aire en flujo cruzado a una velocidad de 20 m/s y una temperatura de 25 ºC. Los diámetros interno y externo de la tubería son Dint = 20 mm y Dext = 25 mm, respectivamente. En cierta posición a lo largo de la tubería, la temperatura media del agua es 80 ºC. Suponga que el flujo dentro del tubo está completamente desarrollado con un número de Reynolds de 20.000. Encuentre la transferencia de calor al flujo de aire por unidad de longitud de tubería.

Solución: q′ = 490 W/m.

Correlaciones en conductos no circulares

8. (8.72 del Incropera) Aire a 3·10-4 kg/s y 27 ºC entra en un conducto de sección rectangular de 1 m de longitud y con una sección de 4 por 16 mm. Se impone un flujo de calor uniforme de 600 W/m2 sobre la superficie del conducto. ¿Cuáles son las temperaturas del aire y la de la superficie del conducto en la salida?

Solución: Tm,sal = 106,2 ºC; Ts,sal ≈ 128,5 ºC.

9. (8.80 del Incropera) Una placa fría es un dispositivo de enfriamiento activo que se une a un sistema generador de calor con el fin de disipar el calor mientras se mantiene el sistema a una temperatura aceptable. Normalmente se fabrica de un material de alta conductividad térmica, kpf, dentro del que se hacen canales por los que pasa el fluido refrigerante. Considere la placa fría de las dimensiones de la figura en la que las paredes laterales se pueden suponer aisladas y las paredes superior e inferior se mantienen en contacto con el dispositivo generador de calor a una temperatura constante Ts. La velocidad y la temperatura media del refrigerante son um y Tm,ent, respectivamente.

Page 112: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

40

a) Suponiendo flujo turbulento completamente desarrollado a través de cada canal plantee

todas las ecuaciones necesarias para calcular la temperatura de salida del refrigerante, Tm,sal, y la transferencia total de calor a la placa fría, q.

b) Resuelva el sistema con los siguientes datos: W = 100 mm, H = 10 mm, 10 canales cuadrados de w = h = 6 mm, δ = 4 mm. Ts = 360 K y kpf = 400 W/m·K. El refrigerante es agua a um = 2 m/s y Tm,ent = 300 K. Propiedades promedio del agua: ρ = 984 kg/m3, cp = 4.184 J/kg·K, µ = 489·10-6 N·s/m2, k = 0,65 W/m·K, Pr = 3,15.

Solución: Tm,sal = 305,3 K; q = 15.818 W.

Page 113: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

41

PROBLEMAS TEMA 8. CONVECCIÓN LIBRE

Placas verticales

1. (9.12 del Incropera) La puerta de un horno de 0,5 m de altura y 0,7 m de ancho alcanza una temperatura superficial promedio de 32 ºC durante el funcionamiento del horno. Estime la pérdida de calor al cuarto con aire ambiente a 22 ºC. Si la puerta tiene una emisividad de ε = 1 y los alrededores también están a 22 ºC, comente la pérdida de calor por convección libre con relación a la de radiación.

Solución: qconv = 9,9 W; qrad = 21,4 W; qconv / qrad = 46 %.

2. (9.17 del Incropera) El vidrio delgado de una ventana cuadrada de 1 m de lado separa aire quieto de una habitación a T∞int = 20 ºC del aire ambiental exterior a T∞ext = -20 ºC. Las paredes de la habitación y el medio externo están a la misma temperatura (Talr, int = 20 ºC, T

alr, ext = -20 ºC). Si el vidrio tiene una emisividad de ε = 1, ¿cuál es su temperatura T? ¿Cuál es la pérdida de calor a través del vidrio?

Solución: T ≈ 1 ºC; q = 174 W.

3. (9.20 del Incropera) Un contenedor de paredes delgadas con agua caliente a 50 ºC se coloca en un baño de agua fría en reposo a 10 ºC. La transferencia de calor en las superficies interna y externa del contenedor se pueden aproximar por la convección libre en una placa vertical.

Page 114: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

42

Determine el coeficiente global promedio de transferencia de calor, U , entre el agua caliente del contenedor y el agua fría del baño.

Solución: U ≈ 350 W/m2·K.

Placas inclinadas

4. (9.42 del Incropera) Una placa cuadrada de 1 m de lado inclinada un ángulo de 45º se expone a un flujo neto de calor por radiación de 300 W/m2 en su superficie inferior. Si la superficie superior de la placa está bien aislada, estime la temperatura que alcanza la placa cuando el aire ambiente está en reposo y a 0 ºC.

Solución: T = 61 ºC.

Placas horizontales

5. (9.34 del Incropera) Una parrilla circular de 0,25 m de diámetro y emisividad de 0,9 se mantiene a una temperatura superficial constante de 130 ºC. ¿Qué potencia eléctrica se requiere cuando el aire ambiente y los alrededores están a 24 ºC? Suponga que la parte inferior de la parrilla está aislada.

Solución: q = 91 W.

6. (9.29 del Incropera) Se tiene un transformador de potencia eléctrica de forma cilíndrica de diámetro 300 mm y altura 500 mm. Se desea mantener su temperatura superficial a 47 ºC mediante refrigeración por convección libre y radiación. La superficie tiene una emisividad de ε = 0,80.

a) Determine cuanta potencia se puede eliminar de sus superficies lateral y horizontal superior (la inferior se supone aislada) cuando la temperatura ambiente y los alrededores están a 27 ºC.

b) Se añaden 30 aletas verticales de 5 mm de espesor y 75 mm de longitud a lo largo de toda la superficie lateral. ¿Cuál es ahora la rapidez de eliminación de calor si las aletas tienen la misma emisividad de 0,80 y una conductividad térmica de 240 W/m·K?

Solución: a) q = 104,5 W; b) q = 531 W.

Cilindros horizontales

7. (9.60 del Incropera) En un tubo de pared delgada de 20 mm de diámetro circula un fluido caliente a una temperatura media de 45 ºC. El tubo se monta horizontalmente en aire en reposo a 15 ºC. Se enrolla una cinta delgada de calentamiento eléctrico sobre la superficie externa del tubo para evitar pérdidas de calor del fluido caliente al aire ambiente y mantener su temperatura constante.

Page 115: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

43

a) Ignorando las pérdidas de calor por radiación, calcule el flujo de calor eq ′′ que se debe

suministrar mediante la cinta eléctrica.

b) Calcule el flujo de calor teniendo en cuenta la radiación. La emisividad de la cinta es 0,95 y los alrededores también están a 15 ºC.

c) Calcule el flujo de calor si se añade una capa de aislante (k = 0,050 W/m·K) de espesor 20 mm y emisividad 0,60. ¿Cuál será la temperatura superficial del aislante?

Solución: a) eq ′′ = 208 W/m2; b) eq ′′ = 388 W/m2; c) eq ′′ = 113,65 W/m2; Taisl = 20 ºC.

8. (9.51 del Incropera) Vapor saturado a 4 bar de presión con una velocidad media de 3 m/s fluye a través de una tubería horizontal de acero inoxidable AISI 302 cuyos diámetros interior y exterior son 55 y 65 mm, respectivamente. Se sabe que el coeficiente de transferencia de calor por convección para el flujo de vapor es 11.000 W/m2·K.

a) Si la tubería se cubre con una capa de 25 mm de espesor de aislante (k = 0,051 W/m·K) y se expone a aire atmosférico a 25 ºC, determine la transferencia de calor por convección libre al cuarto por unidad de longitud de tubería. ¿Cuál es la temperatura de la superficie exterior del aislante?

b) La radiación neta a los alrededores también contribuye a la pérdida de calor de la tubería. Si el aislante tiene una emisividad ε = 0,80 y los alrededores están a 25 ºC, ¿cuál será ahora la pérdida de calor de la tubería por unidad de longitud? Calcule la temperatura de la superficie exterior del aislante en estas condiciones.

Datos: Acero inoxidable AISI 302: k (a 300 K) = 15,1 W/m·K.

Solución: a) q′ ≈ 50 W/m; Taisl ≈ 52 ºC.

Page 116: 192783500 Tranferencia de Calor
Page 117: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

45

PROBLEMAS TEMA 9. INTRODUCCIÓN A LA RADIACIÓN

Intensidad, potencia emisiva e irradiación

1. (12.11 del Incropera) Con el fin de iniciar la operación de un proceso se emplea un sensor de movimiento infrarrojo (detector de radiación) para determinar la aproximación de una pieza caliente sobre un sistema transportador. La señal de salida del sensor es proporcional a la rapidez a la que la radiación incide sobre el sensor.

Para Ld = 1 m, ¿en qué posición x1 la señal S1 del sensor es el 75 % de la señal correspondiente a la posición directamente debajo del sensor, So (x = 0)?

Solución: x1 = 0,39 m.

Radiación de cuerpo negro

2. (12.17 del Incropera) Suponiendo que la superficie de la Tierra es negra, estime su temperatura si el Sol tiene una temperatura equivalente de cuerpo negro de 5.800 K. Los diámetros del Sol y de la Tierra son 1,39·109 y 1,29·107 m, respectivamente, y la distancia entre ellos es 1,5·1011 m.

Solución: TT = 279 K = 6 ºC.

3. (12.24 del Incropera) Un elemento de calentamiento radiante eléctrico en forma de anillo se comporta como un cuerpo negro y se mantiene a una temperatura de Th = 3.000 K y se usa en un proceso de producción para calentar una pequeña pieza que tiene un área superficial Ap = 0,007 m2. La superficie del elemento de calentamiento se puede suponer negra. Para θ1 = 30º, θ2 = 60º, L = 3 m y W = 30 mm, ¿cuál es la rapidez a la que la energía radiante emitida por el calentador incide sobre la pieza?

Page 118: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

46

Solución: q = 278,4 W.

Emisividad, absortividad, reflectividad y transmisividad

4. (12.25 del Incropera) La emisividad hemisférica espectral del tungsteno se puede aproximar mediante la distribución que se describe más adelante. Considere un filamento cilíndrico de tungsteno de diámetro D = 0,8 mm y longitud L = 20 mm. El filamento se encierra en un bulbo al vacío y se calienta mediante una corriente eléctrica a una temperatura de estado estable de 2.900 K.

a) ¿Cuál es la emisividad hemisférica total cuando la temperatura del filamento es 2.900

K?

b) Suponga que los alrededores están a 300 K. ¿Cuál es la rapidez inicial de enfriamiento del filamento cuando se desconecta la corriente? Suponga que el tungsteno se comporta como una superficie difusa.

Propiedades termofísicas del tungsteno: ρ = 19.300 kg/m3; cp (T = 2.000 K) = 167 J/kg·K; cp (T = 2.500 K) = 176 J/kg·K.

Solución: a) ε = 0,352; b) dT / dt = -1.996 K/s.

Page 119: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

47

5. (12.39 del Incropera) Un pequeño objeto difuso y opaco a Ts = 400 K se suspende en un horno grande cuyas paredes interiores están a Tf = 2.000 K. Las paredes son difusas y grises y tienen una emisividad de 0,20. La emisividad hemisférica espectral para la superficie del objeto se da a continuación.

a) Determine la emisividad y la absortividad total de la superficie del objeto.

b) Evalúe el flujo radiante reflejado y el flujo neto radiativo hacia la superficie.

c) ¿Cuál es la potencia emisiva espectral a λ = 2 µm?

d) ¿Cuál es la longitud de onda λ1/2 para la que la mitad de la radiación total emitida por la superficie está en la región espectral λ > λ1/2?

Solución: a) εs = 0,5; αs = 0,6; b) refq ′′ = 362.880 W/m2; netoradq ,′′ = 543.594 W/m2; c) Eλ (λ = 2 µm) = 0,1265 W/m2·µm; d) λ1/2 = 10,26 µm.

6. (12.55 del Incropera) Considere una superficie difusa opaca cuya reflectividad espectral varía con la longitud de onda como se muestra. La superficie está a 750 K, y la irradiación sobre un lado varía con la longitud de onda como se muestra. El otro lado de la superficie está aislado. ¿Cuáles son la absortividad total y la emisividad de la superficie? ¿Cuál es el flujo neto de calor radiativo hacia la superficie?

Solución: α = 0,72; ε = 0,756; netoradq ,′′ = -11.757 W/m2.

Aplicaciones

7. (12.74 del Incropera) Un procedimiento para medir la conductividad térmica de sólidos a temperaturas elevadas implica la colocación de una muestra en la parte inferior de un horno. La muestra tiene espesor L y se coloca en un contenedor cuadrado de lado W cuyos lados están bien aislados. Las paredes de la cavidad se mantienen a Tw, mientras que la superficie inferior de la muestra se mantiene a una temperatura mucho más baja Tc al hacer circular un refrigerante a través del contenedor de la muestra. La superficie superior de la

Page 120: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

48

muestra es difusa y gris con una emisividad εs. Su temperatura Ts se mide de manera óptica.

a) Ignorando los efectos de la convección, obtenga una expresión de la cual se pueda

evaluar la conductividad térmica de la muestra en términos de las cantidades medidas y conocidas (Tw, Ts, Tc, εs y L). Las mediciones se realizan bajo condiciones de estado estacionario. Si Tw = 1.400 K, Ts = 1.000 K, Tc = 300 K, εs = 0,85 y L = 0,015 m, ¿cuál es la conductividad térmica de la muestra?

b) Si W = 0,1 m y el refrigerante es agua con un flujo másico de cm& = 0,1 kg/s, ¿es razonable suponer una temperatura uniforme Tc de la superficie inferior?

Solución: a) k = 2,93 W/m·K; b) ∆Tagua = 3,3 K ⇒ Sí es razonable suponer Tc uniforme.

8. (12.78 del Incropera) Un termógrafo es un dispositivo que responde a la potencia radiativa que incide sobre su detector en la región espectral 9-12 µm. El termógrafo proporciona una imagen, por ejemplo del lado de un horno, de la que se puede determinar la temperatura superficial.

a) Para una superficie negra a 60 ºC determine la potencia emisiva para la región espectral

9-12 µm.

b) Calcule la potencia radiante (en W) recibida por el termógrafo en el mismo rango (9-12 µm) cuando ve, en una dirección normal, una pequeña área de una pared negra, 200

Page 121: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

49

mm2, a Ts = 60 ºC. El ángulo sólido ω subtendido por la abertura del termógrafo cuando se ve desde el área objetivo es 0,001 sr.

c) Determine la potencia radiante (en W) que recibe el termógrafo para la misma área de pared y ángulo sólido anterior cuando la pared es un material gris, opaco y difuso a Ts = 60 ºC, con emisividad 0,70 y los alrededores son negros a Talr = 23 ºC.

Solución: a) Eb (9-12) = 144,77 W/m2; b) qrad = 9,216·10-6 W; c) qrad = 8,08·10-6 W.

Page 122: 192783500 Tranferencia de Calor
Page 123: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

51

PROBLEMAS TEMA 10. INTERCAMBIO DE RADIACIÓN ENTRE SUPERFICIES

Factores de forma

1. (13.1 del Incropera) Determine F12 y F21 para las siguientes configuraciones con el uso de las relaciones básicas de los factores de forma. No use tablas ni gráficas.

Solución: a) F12 = 1 y F21 = 4/3π; b) F12 = 0,5 y F21 = 0,25; c) F12 = 1 y F21 = 2/π; d) F12 = 0,5 y F21 = 1/ 2 ; e) F12 = 0,5 y F21 = 0; f) F12 = 1 y F21 = 1/8; g) F12 = 0,5 y F21 = 2/π.

2. (13.4 del Incropera) Una capa metálica hemisférica delgada de diámetro D = 0,8 m se suspende dentro de un recinto cúbico de 1,5 metros de lado. Determine los factores de forma F11, F22 y F33.

Page 124: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

52

Solución: F11 = 0,5; F22 = 0; F33 = 0,888.

3. (13.7 del Incropera) Determine el factor de forma F12 de los rectángulos perpendiculares que se muestran en la figura.

Solución: F12 = 0,075.

Intercambio de radiación de cuerpo negro

4. (13.15 del Incropera) Un calentador tubular con una superficie interior negra de temperatura uniforme Ts = 1.000 K irradia un disco coaxial. Determine la potencia radiante del calentador que incide sobre el disco, qs→1, y la irradiación sobre el disco, G1.

Solución: qs→1 = 15,6 W; G1 =7.938 W/m2.

Page 125: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

53

5. (13.32 del Incropera) El agua que fluye a través de un número grande de tubos largos circulares de pared delgada se calienta por medio de placas paralelas por encima y por debajo del dispositivo de tubos. El espacio entre las placas está al vacío y las superficies de las placas y tubos se pueden aproximar como cuerpos negros. Ignorando las variaciones axiales, determine la temperatura superficial de los tubos, Ts, si el agua fluye a través de cada tubo con un caudal másico m& = 0,2 kg/s y a una temperatura media Tm = 300 K.

Solución: Ts ≈ 308 K.

Intercambio de radiación entre superficies grises difusas

6. (13.39 del Incropera) Considere dos placas paralelas muy largas con superficies grises difusas. Determine la irradiación y la radiosidad para la placa superior. ¿Cuál es el intercambio neto de radiación entre las placas por unidad de área?

Solución: G1 = 14.175 W/m2; J1 = 56.700 W/m2; 12q ′′ = 42.525 W/m2.

7. (13.51 del Incropera) Considere el recinto de tres superficies que se muestra en la figura. La placa inferior (A1) es un disco negro de 200 mm de diámetro y se le suministra calor a razón de 10.000 W. La placa superior (A2), un disco coaxial a A1, es una superficie gris difusa con ε2 = 0,8 y T2 = 473 K. Los lados, grises y difusos, entre las placas están perfectamente aislados. Suponga que la transferencia de calor por convección es insignificante. Determine la temperatura de operación de la placa inferior, T1, y la temperatura de los lados aislados, T3.

Page 126: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

54

Solución: T1 = 1.823 K; T3 = 1.581 K.

8. (13.57 del Incropera) El extremo de un tanque propulsor cilíndrico de líquido criogénico en el espacio se va a proteger de la radiación externa solar mediante la colocación de un escudo metálico delgado en la parte frontal del tanque. Suponga que el factor de forma Fts entre el tanque y el escudo es la unidad. Todas las superficies son difusas y grises y los alrededores están a 0 K. Encuentre la temperatura del escudo, Ts, y el flujo de calor al extremo del tanque.

Solución: Ts = 338 K; stq ′′ = 25,4 W/m2.

9. (13.67 del Incropera) Un elemento cilíndrico largo de calentamiento de diámetro D1 = 10 mm, temperatura T1 = 1.500 K y emisividad ε1 = 1 se usa en un horno. El área de la parte inferior (A2) es una superficie gris difusa con ε2 = 0,6 y se mantiene a T2 = 500 K. Las paredes lateral y superior están construidas con ladrillo refractario aislante que es difuso y gris con ε3 = 0,9. La longitud del horno en dirección normal a la página es muy larga en comparación con el ancho w y el alto h. Ignorando la convección y tratando las paredes del horno como isotérmicas, determine la potencia por unidad de longitud que se debe proporcionar al elemento calentador para mantener condiciones de estado estacionario. Calcule la temperatura de la pared del horno.

Page 127: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

55

Solución: 1q′ = 8.542 W/m; T3 = 733 K.

Transferencia de calor multimodal

10. (13.87 del Incropera) Una placa cuadrada, gris, difusa y opaca de 200 mm de lado y con una emisividad de 0,8 se coloca en la abertura de un horno y se sabe que está a 400 K en cierto instante. La parte inferior del horno, que tiene las mismas dimensiones que la placa, es negra y opera a 1.000 K. Las paredes laterales del horno están bien aisladas. La parte superior de la placa se expone al aire ambiente con un coeficiente de convección de 25 W/m2·K. El aire y los alrededores están a 300 K. Suponga que la convección en la superficie inferior de la placa es insignificante.

a) Evalúe la transferencia neta de calor radiativa para la superficie inferior de la placa.

b) Si la placa tiene una masa de 2 kg y una calor específico de 900 J/kg·K, ¿cuál será el cambio en la temperatura de la placa con el tiempo, dT / dt?

Solución: a) q2, rad = 1.153 W (entrante); b) dT / dt = 0,57 K/s.

11. (13.93 del Incropera) La absortividad espectral de una superficie difusa grande es αλ = 0,9 para λ < 1 µm y αλ = 0,3 para λ > 1 µm. La parte inferior de la superficie está bien aislada, mientras que la superior se puede exponer a dos condiciones diferentes.

Page 128: 192783500 Tranferencia de Calor

Transferencia de Calor / Curso 2009-10

Problemas

56

a) En el caso (a) la superficie se expone al Sol, que proporciona una irradiación de Gs =

1.200 W/m2, y a un flujo de aire para el que T∞ = 300 K. Si la temperatura superficial es Ts = 320 K, ¿cuál es el coeficiente de convección asociado al flujo de aire?

b) En el caso (b) la superficie está protegida del Sol por una placa grande y se mantiene un flujo de aire entre la placa y la superficie. La placa es difusa y gris con una emisividad εp = 0,8. Si T∞ = 300 K y el coeficiente de convección es el mismo que el del caso (a), ¿cuál es la temperatura de la placa, Tp, necesaria para mantener la superficie a Ts = 320 K? Hay que tener en cuenta que sobre la placa incide la radiación del Sol.

Solución: a) h = 35 W/m2·K; b) Tp = 484 K.