17 - curling stresses in concrete slabs - civil engineering - curling stresses in concrete... ·...

43
Rigid Pavement Mechanics Curling Stresses

Upload: others

Post on 25-Sep-2019

27 views

Category:

Documents


0 download

TRANSCRIPT

Rigid Pavement Mechanics

Curling Stresses

Major Distress Conditions

• Cracking– Bottom-up transverse cracks– Top-down transverse cracks– Longitudinal cracks– Corner breaks– Punchouts (CRCP)

2

Major Distress Conditions

Cracks

Punchouts

Corner Break

3

Major Distress Conditions

• Cracking– Bottom-up transverse cracks– Top-down transverse cracks– Longitudinal cracks– Corner breaks– Punchouts (CRCP)

• Joint Faulting• Pumping

4

Major Distress Conditions

Faulting

Pumping

5

Sources of Stress

• Wheel Loads• Curing Shrinkage• Thermal Contraction/Expansion• Thermal Curling• Moisture Warping

6

Design Considerations

• Slab Thickness• Base Type and Thickness• Drainage• Joint Spacing• Temperature Steel• Dowel Bars• Tie Bars

7

Beam Bending

qo = q × b (applied load per unit length)

qo

ko

R R

8

Beam Bending

Shear and Moment Relationships

odV qdx

dM Vdx 2

2 od M qdx

9

Beam Bending

Moment-Curvature Relationships

MEI

2

2

1

d wR dx 2

2 d wM EIdx

10

Beam Bending

Governing Differential Equation for Beam Bending

2 2

2 2

od d wEI qdx dx

4

4 od wEI qdx

11

Beams on Elastic Foundations

qo = q × b (applied load per unit length)

qo

ko

R R

12

Beams on Elastic Foundations

qo

ko

qo = q × b (applied load per unit length)

p = ko w = k b w (resistance per unit length)Modulus of Subgrade Reaction

13

Beams on Elastic Foundations

Shear and Moment Relationships

ookdx

wV qd

dM Vdx 2

2 o od M kd

w qx

14

Beam Bending

Moment-Curvature Relationships

MEI

2

2

1

d wR dx 2

2 d wM EIdx

15

Beams on Elastic Foundations

Governing Differential Equation for Beam Bending

2 2

2 2

o od d wEI qdx

k wdx

4

4 o od wE q

xk

dwI

16

Beams on Elastic Foundations

Solution of the Homogeneous Differential Equation

1 2 3 4sin cos sin cos x xw e C x C x e C x C x

4

4 ok

EI

4

4 0 od wEI k wdx

(flexibility)

17

Slabs on Elastic Foundations

Moment-Curvature Relationships

2

2 d wM EIdx

Beams

2 2

2 2

xw wM Dx y

Slabs

18

Slabs on Elastic Foundations

Slab Stiffness

3

212 1EhD

19

Slabs on Elastic Foundations

Governing Differential Equation for Slab Bending

Modulus ofSubgrade Reaction

4

4 o okdEIx

ww qd

Beams

4 4 4

4 2 2 42w w wD kw qx x y y

Slabs

20

Slabs on Elastic Foundations

Solution of the Homogeneous Differential Equation

4

4 ok

EIBeam Flexibility

3

4 4 212 1

D Eh

k kSlab Stiffness

Radius ofRelativeStiffness

21

Stresses Due to Curling

Temperature Curling

DOWNWARD CURLINGWARM

COOL

UPWARD CURLING

WARM

COOL

23

Moisture Warping

DOWNWARD WARPINGWET

DRY

UPWARD WARPING

WET

DRY

24

Reference Axes

x

y

25

Infinite Slab Curling

Hooke’s Law for an Infinite Elastic Plate

y x

y E E

yx

x E E

26

Slab Bent About y-axis

x

y

27

Infinite Slab Curling

If slab is bent about the y axis, y = 0

y x

0

y xy E E

0 y x

28

Infinite Slab Curling

Slab bent about y axis

21x

xE

21 x x x

x E E E

29

Slab Bent About x-axis

x

y

31

Infinite Slab Curling

If slab is bent about the x axis, x = 0

x y

0

yxx E E

0 x y

32

Infinite Slab Curling

Slab bent about x axis

21

yy

E

21

y y yy E E E

33

Infinite Slab Curling

Strains due to temperature difference t through slab depth

2

x yt

Coefficient ofThermal Expansion

35

Coefficient of Thermal Expansion

AggregateType

Coefficient(10-6 in/in/oF)

Quartz 6.6Sandstone 6.5

Gravel 6.0Granite 5.3Basalt 4.8

Limestone 3.8Average 5.5

36

Infinite Slab Curling

Stresses due to curling about y axis due to temperature difference

2 2

2

1 2 1

2 1

xx

y x

E E t

E t

37

Infinite Slab Curling

Stresses due to curling about x axis due to temperature difference

2 2

2

1 2 1

2 1

yy

x y

E E t

E t

38

Infinite Slab Curling

Maximum curling stresses in an infinite slab

, 2 22 1 2 1x y

E t E t

39

Finite Slab Curling

Curling stresses in the Interior of a Finite Slab

, 1 22 22 1 2 1x y

E t E tC C

40

Finite Slab Curling

41

Finite Slab Curling

Curling stresses at the Edges of a Finite Slab

, 1 2x yE tC

0 0 y x

42

Temperature Gradients

43

SourceSlab

ThicknessTemperature

Gradient

AASHO Road Test 6.5" 3.2F/in 1.5F/in

Arlington Road Test 6" 3.7F/in

9" 3.4F/in

Typical Assumption 6“ – 9" 3.0F/in 1.5F/in

Example

Calculate the curling stresses in a concrete slab 25′12′8″ thick subject to a daytime temperature difference of 24°F (i.e., a temperature gradient of 3°F/in). Assume the slab is resting on a foundation with a 200-psi/in modulus of subgrade reaction.

44

Standard Assumptions

• Assume =0.15(useforallPCC)• Assume =5.510–6 in/in/°F(typical)• Assumefc =5000psi(typical)• Estimate psi

• Estimate psi

• Estimate psiNotneededforthisproblem

45