16.00 o4 w somerville

22
A simple method for finding recurrence relations in physical theories: application to electromagnetic scattering Walter Somerville Eric Le Ru The MacDiarmid Institute for Advanced Materials and Nanotechnology School of Chemical and Physical Sciences Victoria University of Wellington Oct 17, 2011 Walter Somerville A simple method for finding recurrence relations

Upload: nzip

Post on 11-May-2015

132 views

Category:

Technology


2 download

DESCRIPTION

Research 3: W Sommerville

TRANSCRIPT

Page 1: 16.00 o4 w somerville

A simple method for finding recurrence relations inphysical theories: application to electromagnetic

scattering

Walter Somerville Eric Le Ru

The MacDiarmid Institute for Advanced Materials and NanotechnologySchool of Chemical and Physical Sciences

Victoria University of Wellington

Oct 17, 2011

Walter Somerville A simple method for finding recurrence relations

Page 2: 16.00 o4 w somerville

Electromagnetic scattering - overview

Interest in Raman scattering

Particularly in Surface Enhanced Raman Scattering (SERS)

Requires knowledge of electric field near to the surface ofmetallic nanoparticles

Walter Somerville A simple method for finding recurrence relations

Page 3: 16.00 o4 w somerville

Electromagnetic scattering - overview

500 600 700 8000.0

0.2

0.4

0.6

0.8

Ext

inct

ion

[cm

-1]

Wavelength [nm]

log10(F/5)

λL=633nmΔν=1620cm‐1

θ

Walter Somerville A simple method for finding recurrence relations

Page 4: 16.00 o4 w somerville

Electromagnetic scattering - different methods

Discrete Dipole Approximation

Finite Element methods

Mie Theory

T -matrix

Walter Somerville A simple method for finding recurrence relations

Page 5: 16.00 o4 w somerville

T -matrix - overview

Express fields as a sum of vector spherical harmonics:

EInc(r) = E0

∑n,m

anmM(1)nm(kM , r) + bnmN

(1)nm(kM , r).

Relate incident and scattered field with the T -matrix,(pq

)= T

(ab

)

Walter Somerville A simple method for finding recurrence relations

Page 6: 16.00 o4 w somerville

T -matrix - history

Introduced by Waterman in 19651

Can be applied to multiple scatterers

Can easily handle orientation averaging

Used in

Astrophysics

Aerosols

Acoustic scattering

Plasmonics

1Waterman, P. C. (1965) Proc. IEEE 53, 805–812Walter Somerville A simple method for finding recurrence relations

Page 7: 16.00 o4 w somerville

T-matrix - EBCM

Introduced with T -matrix by Waterman

T = −RgQQ−1

Expressions are much simpler when particle has a symmetry ofrevolution

Walter Somerville A simple method for finding recurrence relations

Page 8: 16.00 o4 w somerville

T -matrix - expressions

We use the expressions2

K 1nk =

∫ π

0dθ xθmdndkξnψ

′k

K 2nk =

∫ π

0dθ xθmdndkξ

′nψk

L1nk =

∫ π

0dθ sin θxθτndkξnψk

L2nk =

∫ π

0dθ sin θxθdnτkξnψk

ξ, ψ ∼ spherical-Bessel functions, dn, dk spherical harmonics.

2Somerville, W. R. C., Auguie, B., and Le Ru, E. C. Sep 2011 Opt. Lett.36(17), 3482–3484

Walter Somerville A simple method for finding recurrence relations

Page 9: 16.00 o4 w somerville

Suspect relations

Owing to the relations between Bessel functions, we suspect theremight be some between the integrals

ψn−1(z) + ψn+1(z) =2n + 1

zψn(z)

There are also relations between the angular functions

n cos θ dn(θ)− sin θ τn(θ) =√

n2 −m2dn−1(θ)

Walter Somerville A simple method for finding recurrence relations

Page 10: 16.00 o4 w somerville

Question

Do the integrals have relations, and if so, what are they?

Walter Somerville A simple method for finding recurrence relations

Page 11: 16.00 o4 w somerville

Rank

Rank of a matrix is the number of linearly independentrows/columns.

rank

1 2 34 5 65 7 9

= 2

A non-maximum rank indicates that there are some linear relations.

Walter Somerville A simple method for finding recurrence relations

Page 12: 16.00 o4 w somerville

Rank – example

fn(x)

x1 −→ 5

1 1 1 1 1 1

1 2 3 4 5n ↓ 2 3 4 5 6

3 5 7 9 115 5 8 11 14 17

f0(x) = 1

f1(x) = x

fn+2(x) = fn+1(x) + fn(x)

Walter Somerville A simple method for finding recurrence relations

Page 13: 16.00 o4 w somerville

Rank – example

fn(x)

x1 −→ 5

1 1 1 1 1 1

1 2 3 4 5n ↓ 2 3 4 5 6

3 5 7 9 115 5 8 11 14 17

f0(x) = 1

f1(x) = x

fn+2(x) = fn+1(x) + fn(x)

Walter Somerville A simple method for finding recurrence relations

Page 14: 16.00 o4 w somerville

Examining rank

72 entries of of K1, K2, L1, L2

Rank of 14

Some relations are easy

Walter Somerville A simple method for finding recurrence relations

Page 15: 16.00 o4 w somerville

Easy relations

L131 − 3L2

31 = −7.348L111 + 7.071K 2

21

L213 − 3L1

13 = −3√

6L111 + 5

√2K 1

12

Walter Somerville A simple method for finding recurrence relations

Page 16: 16.00 o4 w somerville

Easy relations

L131 − 3L2

31 = −3√

6L111 + 5

√2K 2

21

L213 − 3L1

13 = −3√

6L111 + 5

√2K 1

12

Walter Somerville A simple method for finding recurrence relations

Page 17: 16.00 o4 w somerville

Easy relations

L131 − 3L2

31 = −3√

6L111 + 5

√2K 2

21

L213 − 3L1

13 = −3√

6L111 + 5

√2K 1

12

Walter Somerville A simple method for finding recurrence relations

Page 18: 16.00 o4 w somerville

Dimensionality reduction

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·

· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

L1,L2 K1,K2

L151 −

85

29L2

51 = −s 45

29√

2

(L1

42 − L242

)+

7× 23

29√

10

(L1

31 +17

23L2

31

)For spheroid only

Walter Somerville A simple method for finding recurrence relations

Page 19: 16.00 o4 w somerville

Dimensionality reduction

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·

· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

L1,L2 K1,K2

(L1

42 − 2L242

)=

1

s√

5

[L1

31 − (4− 30s2)L231

]+√

15(2sK 1

32 + K 232

)−√

3

s

(2K 1

41 + K 241)

Walter Somerville A simple method for finding recurrence relations

Page 20: 16.00 o4 w somerville

Dimensionality reduction

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·

· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

+ · + · + · + ·· + · + · + · +

L1,L2 K1,K2

Walter Somerville A simple method for finding recurrence relations

Page 21: 16.00 o4 w somerville

Example relation

A relation between twelve elements:

α((k + 1) L1

n,k+1 − nL2n,k+1

)− β

(kL1

n,k−1 + nL2n,k−1

)=[

−n (1 + 2k){k4 + 2k3 +

((1− n2

)s2 − 1

)k2 +

((1− n2

)s2 − 2

)k+(

n2 − 1)s2}]

K 1n,k

+ [(1 + 2k) (n − 1) ks (n + 1) (k + 1)]K 2n,k

+ [ns (n + 1)α]K 1n−1,k+1 + [(n + 1) (k + 1)α]K 2

n−1,k+1

+ [ns (n + 1)β]K 1n−1,k−1 + [−k (n + 1)β]K 2

n−1,k−1

+ [−s (n + 1) (1 + 2k) k (k + 1)] L1n−1,k

+[−s (n + 1) (1 + 2k)

(k2 + k − n2s2 + s2

)n]L2n−1,k

where

α = k2(k2 + s2 − n2s2 − 1), β = (k + 1)2(k2 + s2 − n2s2 + 2k).

Walter Somerville A simple method for finding recurrence relations

Page 22: 16.00 o4 w somerville

Current state/Future work

We have found a relation between four types of integrals

It’s not obvious how to fill the matrices using this information

We aim to solve these problems, allowing much fastercalculations of the T -matrix

Walter Somerville A simple method for finding recurrence relations