1,5-h shift

25
1,5-H shift 文文文文 文文文 2010-11-06

Upload: kato

Post on 18-Mar-2016

70 views

Category:

Documents


5 download

DESCRIPTION

文献汇报. 1,5-H shift. 何玉萍 2010-11-06. R=CH3, X=- 45h yield 91% R=CH3, X=CH2 90h yield 95% R= OCH3 , X=- 20h yield 77% R= OCH3 , X=CH2 20h yield 90%. 其中类似 CF3 的强吸电子基团是必不可少的. 均不能发生类似的反应. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 1,5-H shift

1,5-H shift

文献汇报

何玉萍2010-11-06

Page 2: 1,5-H shift

R=CH3, X=- 45h yield 91%R=CH3, X=CH2 90h yield 95%R=OCH3, X=- 20h yield 77%R=OCH3, X=CH2 20h yield 90%

T.L., D. N. Reinhoudt, 24, 3923,1983.

N

RO

CF3

n-BuOH

refulx O

NX

H CF3

X

N

RO

CF3O

NX

H CF3

XN+

RO-

CF3

XN+

R O-

XH

H

CF3H

1,5-H shift

O

N

O

OR

N

其中类似 CF3 的强吸电子基团是必不可少的

均不能发生类似的反应

Page 3: 1,5-H shift

N

CF3

N Ph CH3 118℃5d

H3CH3C

NH

CF3H

N

CF3

N Ph CH3H3CO

n-BuOH

n-BuOH 118℃OR MeCN 81℃

X

14% 66%

X

1,R1=CH3, R2=CF3

2,R1=H, R2=H3,R1=H, R2=CH3

4,R1=H, R2=C6H5

Lawesson reagent

D. N. Reinhoudt

R2 可以不必是强吸电子基团

R1

N

O

R

PH3COS

PS

S

SOCH3 R1

N

S

R

N

S

H R2

HR1

tol uene115℃

N

O

H R2

HR1

Page 4: 1,5-H shift

R1

N

O

RR1

N

S

R

N+

R

S-

H

H1,5-H shift

N+

R

S-

R1

R1H

S

N

H R

H

Mechanism

Tetrahedron.1984,4309-4312

Page 5: 1,5-H shift

Solvent Yield

5a Toluene 54%/32%

1-butanol cis 74%

5b X

5c X

7a toluene 3d X

1-butanol 44%/42%

MeCN/ZnCl2 47%/12%

7b 1-butanol 6dMeCN/ZnCl2 3d

X

toluene/ZnCl2 11%/26%

7c tolueneCH3COOH 12d

X

9 1-butanol 10dMeCN/ZnCl2 3d

X

10 1-butanol 67%

11a11b11c

1-butanol 2htoluene 35h

82%78%84%

D. N. Reinhoudt, JOC, 49, 2, 1984.

Page 6: 1,5-H shift

N

Mechanism

总结 :1, 溶剂效应 ( 极性溶剂更容易促进反应 )2,lewis 酸可以促进反应3

4 任何可以稳定 1,5- 偶极的基团都可以促进反应

N N

O

> >

1,6H shiftN+

C- CH2R2

NX

R1

H

R2

H

H

X

R1

stereo-

mutation

N+

C- R1

X

CH2R2

N

R1R2H2C

5a R1=R2=COOEt, X=_

7a R1=CN, R2=Ph, X=_

7b R1=CN, R2=Ph, X=CH2

H

N

RR

XH

H

H

N+

RR

XH

H

a

[1,6] H

b

[1,5] H

C-

N+X

H

RRH

C-

N+X

H H

RR

[1,2] H

NX

RR

10, R=COOEt, X=_

11a, R=CN, X=_

11b, R=CN, X=CH2

11c, R=CN, X=O

b

与 5 不同

Page 7: 1,5-H shift

D. N. Reinhoudt, Tetrahedron Letter, 1984, 25, 19, 2025.

N

NC OHH

H

NC X

N N+

C-NC

XH

N+

Y-

NC

H

NC

(CH2)4Y

H

X=OAc,OTS,Cl

acetyl chloridep-Toluenesulfonyl chlorideDMF 50℃

3a

Page 8: 1,5-H shift

Synthesis, 2005, 2161.Synthesis, 2007, 2872.

Page 9: 1,5-H shift

Daniel Seidel, Org. Lett. 2009, 11, 129.

rt

Page 10: 1,5-H shift
Page 11: 1,5-H shift

illustrate for the first time that such a reaction is amendable to enantioselective catalysis.

Page 12: 1,5-H shift

Dainel Seidel, J. Am. Chem. Soc. 2009,131,13266

the first example of a catalytic enantioselective hydride shift/ring closure reaction cascade

Page 13: 1,5-H shift

the first example of a organocatalytic enantioselective hydride transfer/ring closure reaction cascade

J. Am. Chem. Soc. DaeYoungKim, 2010, 132, 11847

Page 14: 1,5-H shift

Daniel Seidel, J. Am. Chem. Soc. 2008, 130, 416

Page 15: 1,5-H shift

Sames, J. Am. Chem. Soc. 2005, 127, 12180.

无杂原子

Page 16: 1,5-H shift

Sames, Org. Lett. 2005, 7, 5429.

O HO

EE

lewis acid

rt O O

EE

H

[1,5] H

O+

EE

H O M-

M

C-O 形成

1 , BF3.Et2O 是催化该反应最好的 lewis acid2 ,所得产物不一定全是螺环,如 15 , 17. 但需要更强的 lewis acid TiF4 。3 , ketone 19 也可以参与类似的反应。只是还未找到更为有效的催化剂。

Page 17: 1,5-H shift

OO

E

E

2

OO

E

9

OO

22

E E

OO

23 20

O

O

EE

1

O

O

E

8

O

O21

EE

O

O22

O

19

Me Me

ArMe

O

Me Me

ArMe

-6.79 -2.33 +2.42 +0.13 +1.21

O

Me Me

ArMe

Me Me

OAr Me

Ar=4-(MeO)C6H4

4 : 96

30% mmol BF3.Et2O

CH2Cl2,rt, 5h

DFT caculation

No reaction Low yieldexcellent yield

Page 18: 1,5-H shift

O

E

PtXn 5mol%

MeCN, 120℃ O

EUnactivated teminal alkynes

Lewis acid activation of the terminal alkyne and the subsequent hydride transfer

Page 19: 1,5-H shift

Sames, J. Am. Chem. Soc. 2009, 131, 16525.

PtI4 more electrophilic and more accessible to the alkyne

Greater hydride PtI4NoReationK2PtCl

苄醚

Page 20: 1,5-H shift

Deuterium Labeling Studies and Proposed Mechanisms

H

O Ph

DD

H

O Ph

DD

I4Pt

O+Ph

D

H-I4Pt

I4Pt

H

D

DPhO

D

D

Ph

O

PtI4

Ph

D D

O+Ph

D

D PtI4-

I4Pt

D

DPhH

Path B

vinylideneformation

Path A

alkyneactivation

[1,6] H [1,5] H

C-C bondformation

C-C bondformation

[1,2]H

Page 21: 1,5-H shift

Sames, Org. Lett. 2009, 11, 2972.

less active need stronger activation

Page 22: 1,5-H shift

the aryl alkyl ethers were less reactive in comparison to the dialkyl ethers

no reaction was observed in theabsence of catalyst under these conditions

Page 23: 1,5-H shift
Page 24: 1,5-H shift

Akiyama, Org. Lett. 2010, 12, 1732.

Page 25: 1,5-H shift