(1) ncteq nuclear parton distributions and (2) nlo parton … · 2014-01-13 · (1) ncteq nuclear...

120
(1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist University, Dallas, TX 75275, USA Collaborators: F. I. Olness, K. Kovaˇ ık, I. Schienbein, S. Jadach, M. Skrzypek 10 January 2014 1 / 45

Upload: others

Post on 26-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(1) nCTEQ Nuclear Parton Distributionsand

(2) NLO Parton Shower Monte Carlo

A. Kusina

Southern Methodist University, Dallas, TX 75275, USA

Collaborators:F. I. Olness, K. Kovarık, I. Schienbein, S. Jadach, M. Skrzypek

10 January 2014

1 / 45

Page 2: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Education/Employment

Master’s studies: Jagiellonian University, Krakow, Poland;supervisor: Stanislaw Jadach;thesis: “Evolution of parton distributions in QCD as a two-levelMarkovian process and its Monte Carlo simulation”

PhD studies: Institute of Nuclear Physics PAN in Krakow, Poland;supervisor: Stanislaw Jadach;thesis: “Exclusive Kernels for NLO QCD Non-singlet Evolution”

Postdoc position: Southern Methodist University, Dallas, TX;working with Fred Olness

2 / 45

Page 3: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Topics/projects I have been working on

During PhD:

Evolution equations:DGLAP, CCFM

NLO parton shower Monte CarloDuring postdoc at SMU:

nCTEQ parton distribution functionsN3LO heavy quark production in DISWe combined the full massive NLO result with the N3LO masslesscalculation to obtain an approximate N3LO DIS structure functionswith heavy quark mass effects. This is being implemented inHeraFitter and QCDNUM programs.

W/Z production at LHCWe investigated theoretical uncertainties related with W/Z productionoriginating form the strange quark PDF, and observed how W/Zmeasurements at LHC can be used to constrain strange PDF.

Hybrid Variable Flavor Number Scheme:generalization of the variable-flavor-number scheme for heavy quarks

3 / 45

Page 4: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ PDFs

nCTEQ nuclear PDFsin collaboration with:F. Olness, K. Kovarık, I. Schienbein and T. Jezo

4 / 45

Page 5: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Motivations

What are PDFs of boundprotons/neutrons?

Heavy ion collisions in LHC and RHIC

Differentiate flavors in free-proton PDFs (e.g. strange)charged lepton DIS

Fl±2 ∼

(13

)2[d + s] +

(23

)2[u + c]

neutrino DIS

Fν2 ∼

[d + s + u + c

]Fν

2 ∼[d + s + u + c

]Fν

3 ∼ 2[d + s − u − c

]Fν

3 ∼ 2[u + c − d − s

]5 / 45

Page 6: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Assumptions entering the nuclear PDF analysis

1 Factorization & DGLAP evolution

allow for definition of universal PDFsmake the formalism predictiveneeded even if it is broken

2 Isospin symmetry un/A(x) = dp/A(x)

dn/A(x) = up/A(x)

3 The bound proton PDFs have the same evolution equations and sumrules as the free proton PDFs provided we neglect any contributionsfrom the region x > 1 (it is expected to have negligible contribution[PRC 73, 045206 (2006), arXiv:hep-ph/0509241] )

Then observables OA can be calculated as:

OA = Z Op/A + (A − Z)On/A

With the above assumptions we can use the free proton framework toanalyze nuclear data

6 / 45

Page 7: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Schematics of Global Analysis

1 Parametrize PDFs at low initial scale µ = Q0 = 1.3GeV:

f (x,Q0) = f (x; a0, a1, . . . ) = a0xa1 (1 − x)a2 P(x; a3, . . . )

2 Use DGLAP equation to evolve f (x, µ) from µ = Q0 to µ = Q.

3 Define and minimize appropriate χ2 function(with respect to parameters a0, a1, . . . )

χ2(ai) =∑

experiments

wnχ2n(ai)

χ2n(ai) =

∑data points

(data − theory(ai)

uncertainty

)2

(by default wn = 1)

7 / 45

Page 8: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Uncertainties in global analysis

Experimental errors (included in PDFs error analysis)

Theoretical uncertainties (not included)

“Details” of Global Fits(e.g. parametrization, HF schemes; hard to estimate notincluded)

Propagating experimental errors to PDFs:

Hessian MethodEigenvector PDFsQuadratic approximationSimple computation of correlations

Lagrange Multipliers

Monte Carlo Methods

8 / 45

Page 9: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Hessian method [JHEP 07 (2002) 012, arXiv:hep-ph/0201195]

Expand χ2 function around minimum, a0i , and diagonalize

χ2 = χ20 +

∑ij

12

(ai − a0i )(aj − a0

j )(∂2χ2

∂yi∂yj

)0

= χ20 +

∑i

z2i

Choose ∆χ2 = χ2 − χ20 value (defining 1-σ uncertainty),

ideal case ∆χ2 = 1realistic global analysis ∆χ2 ∼ 10 − 100

Construct error PDFs corresponding to each eigenvector direction:

f ±i = f (zi) = f (0, . . . , zi = ±

√∆χ2, . . . , 0)

zi = ±

√∆χ2

Calculate errors of observable X:

∆X =12

√∑i

[X(f +

i ) − X(f −i )]2

9 / 45

Page 10: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Available nuclear PDFs

Multiplicative nuclear correction factors

f p/Ai (xN , µ0) = Ri(xN , µ0,A,Z) f free proton

i (xN , µ0)

Hirai, Kumano, Nagai [PRC 76, 065207 (2007), arXiv:0709.3038]Eskola, Paukkunen, Salgado [JHEP 04 (2009) 065, arXiv:0902.4154]de Florian, Sassot, Stratmann, Zurita[PRD 85, 074028 (2012), arXiv:1112.6324]

Native nuclear PDFsnCTEQ [PRD 80, 094004 (2009), arXiv:0907.2357]

f p/Ai (xN , µ0) = fi(xN ,A, µ0)

fi(xN ,A = 1, µ0) ≡ f free protoni (xN , µ0)

10 / 45

Page 11: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ framework [PRD 80, 094004 (2009), arXiv:0907.2357]

Functional form of the bound proton PDF same as for thefree proton (CTEQ6M, x restricted to 0 < x < 1)

xf p/Ai (x,Q0) = c0xc1 (1 − x)c2 ec3x(1 + ec4 x)c5 , i = uv, dv, g, . . .

d(x,Q0)/u(x,Q0) = c0xc1 (1 − x)c2 + (1 + c3x)(1 − x)c4

A-dependent fit parameters (reduces to free proton for A = 1)

ck → ck(A) ≡ ck,0 + ck,1(1 − A−ck,2

), k = 1, . . . , 5

PDFs for nucleus (A,Z)

f (A,Z)i (x,Q) =

ZA

f p/Ai (x,Q) +

A − ZA

f n/Ai (x,Q)

(bound neutron PDF f n/Ai by isospin symmetry)

11 / 45

Page 12: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Data sets

NC DIS & DYCERN BCDMS & EMC & NMCN = (D, Al, Be, C, Ca, Cu, Fe, Li, Pb, Sn,W)FNAL E-665N = (D, C, Ca, Pb, Xe)DESY HermesN = (D, He, N, Kr)SLAC E-139 & E-049N = (D, Ag, Al, Au, Be,C, Ca, Fe, He)FNAL E-772 & E-886N = (D, C, Ca, Fe,W)

Single pion production(not yet included)

RHIC - PHENIX & STAR

N = Au

Neutrino (to be included later)

CHORUS CCFR & NuTeV

N = Pb N = Fe

12 / 45

Page 13: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ fits

Fit properties:

fit @NLO

using ACOT heavy quark scheme

kinematical cuts: Q > 2GeV,W > 3.5GeV

708 (1233) data points after (before)cuts

17 free parameters

7 gluon8 valence2 sea

χ2/dof = 0.87

Error analysis:

use Hessian method

χ2 = χ20 +

12

Hij(ai − a0i )(aj − a0

j )

Hij =∂2χ2

∂ai∂aj

tolerance ∆χ2 = 35 (every nucleartarget within 90% C.L.)

eigenvalues span 10 orders ofmagnitude→ require numericalprecision

use noise reducing derivatives

13 / 45

Page 14: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ results

A-dependence of bound proton PDFs

x f Ai (x,Q) A = (1, 2, 4, 9, 12, 27, 56, 108, 207)

PRELIMINARY

uval dval

u g

14 / 45

Page 15: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ results

Nuclear correction factors(Q = 10GeV)

Ri(Pb) =f Pbi (x,Q)

f pi (x,Q)

different solution for d-valence& u-valence compared to EPS09& DSSZ

sea quark nuclear correctionfactors similar to EPS09

nuclear correction factorsdepend largely on underlyingproton baseline

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

( , )

nCTEQEPS09DSSZ

PRELIMINARY

15 / 45

Page 16: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ results

Nuclear PDFs (Q = 10GeV)

x f Pbi (x,Q)

nCTEQ dval & uval solutionbetween HKN07 & EPS09

nCTEQ features largeruncertainties than previousnPDFs

better agreement betweendifferent groups (nPDFs don’tdepend on proton baseline)

in EPS09 and DSSZ analysisuval & dval are tied togetherwhereas in nCTEQ they aretreated as independent

10 3 10 2 10 1 10.0

0.1

0.2

0.3

0.4

0.5

( , )nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

( , )nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10

5

10

15

20

( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.0

0.2

0.4

0.6

0.8

1.0

( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.0

0.2

0.4

0.6

0.8

1.0

( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8 ( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

( , )

nCTEQHKN07EPS09DSSZ

PRELIMINARY

16 / 45

Page 17: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ results

Structure function ratio

R =FFe

2 (x,Q)

FD2 (x,Q)

good data description

despite different u-valence &d-valence ratios are similar toEPS09

0.01 0.1 1

0.80

0.85

0.90

0.95

1.00

1.05

1.10

]

=

nCTEQ ±

HKN07

EPS09

0.01 0.1 1

0.80

0.85

0.90

0.95

1.00

1.05

1.10

]

=

nCTEQ ±

HKN07

EPS09

PRELIMINARY

17 / 45

Page 18: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Main difference with the free-proton PDFs

More parameters & less data→ less constraining power→ moreassumptions (fixing) about ai parameters

Assumptions replace uncertainties!(error bands underestimates true uncertainties)

0.01 0.1 1

0.80

0.85

0.90

0.95

1.00

1.05

1.10

]

=

nCTEQ ±

HKN07

EPS09

18 / 45

Page 19: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Summary

We have first nCTEQ error PDFs (still preliminary, single piondata is being included)

nCTEQ PDFs features larger (more realistic) uncertainties.

Plans for future:finish current analysisredo analysis of neutrino nuclear correctionshigh x region, deuterium nuclear corrections – CJ collaboration inJLABinclude new data (LHC, JLAB, Minerνa, ???)different methods for minimizing and estimating errors

19 / 45

Page 20: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO Parton Shower MC

NLO Parton Shower MCin collaboration with:S. Jadach, M. Skrzypek

20 / 45

[arXiv:1310.6090]

[Acta Phys.Polon. B43 (2012) 2067, arXiv:1209.4291]

[PRD 87 (2013) 034029, arXiv:1103.5015]

[Acta Phys.Polon. B42 (2011) 2433, arXiv:1111.5368]

[JHEP 1108 (2011) 012, arXiv:1102.5083]

Page 21: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

What are parton shower Monte Carlo event generators?

Parton shower Monte Carlo event generatorComputer program designed to simulate the final states of high-energycollisions in full detail down to the level of individual stable particles.

The aim is to generate a large number of simulated collision events,each consisting of a list of final-state particles and their momenta,such that the probability to produce an event with a given list isproportional (approximately) to the probability that the correspondingactual event is produced in the real world.

21 / 45

[Bryan Webber, scholarpedia.10662]

Page 22: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Why do we need Monte Carlo event generators?

LHC experiments requiredetailed understanding ofsignals and backgrounds

full detector simulationfull exclusive hadronicevents

can only be done withMonte Carlo eventgenerators

22 / 45

Page 23: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Monte Carlo event generators

Complex finalstates in full detail

Arbitraryobservables andcuts from finalstates

23 / 45[JHEP 02 (2009) 007, arXiv:0811.4622]

Page 24: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

LHC ”event”

hn

h1

W/Z

p

p h2

• proton PDF• fits to data at

low scale (NNLO)

• parton shower• evolution eq.

(NNLO)•Monte Carlo

(LO)

• hard process• fixed order

(NLO, NNLO)•Monte Carlo

(NLO)

• hadronization• modeling

24 / 45

Page 25: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Factorization vs. Monte Carlo

Every Parton Shower Monte Carlo (MC) is based on the concept offactorization. For pp collisions it can be written as:

σ =∑

ij

∫dx1dx2 fi(x1, µ)fj(x2, µ) σi(p1, p2, αS(µ),Q2/µ2)

In MC we want to generate exclusive distributions (full 4-momentadependence)

Above formula is inclusive!

It violates 4-momentum conservation (k⊥ component);

Features huge oversubtractions (time ordered exponential isconstructed by geometrical series).

25 / 45

Page 26: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Factorization vs. Monte Carlo

Every Parton Shower Monte Carlo (MC) is based on the concept offactorization. For pp collisions it can be written as:

σ =∑

ij

∫dx1dx2 fi(x1, µ)fj(x2, µ) σi(p1, p2, αS(µ),Q2/µ2)

In MC we want to generate exclusive distributions (full 4-momentadependence)

These problems have been solved only in LO approximation;

Big progress towards NLO (POWHEG, MC@NLO);

Still no solution for full NLO in the shower.

25 / 45

Page 27: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Aim

Ultimate aimConstruct MC generator with NLO shower and NLO/NNLO hardprocess

Steps on the way

reformulate collinear factorization to exclusive (unintegrated)form;

construct new LO shower;

include NLO corrections to hard process;

include NLO corrections to the shower itself (ladders);

26 / 45

Page 28: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Outline

1 Introduction

2 Our projectRebuilding LO MC showerIncluding NLO corrections to hard processRelation to other methodsNLO corrections in the shower

27 / 45

Page 29: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

LO shower

Main features of the new LO shower:based on modified collinear factorization;

conserving 4-momentum (also transverse component)giving perturbative series directly in terms of exponent notgeometrical series (avoiding oversubtractions)real emissions regularized geometrically in 4 dimensionssubtractions defined in unintegrated form (corresponding to MCcounterterms)

angular ordering;

no gaps (cover thewhole phase space)

28 / 45

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

Page 30: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO shower

Analytical integration ofthe LO MC distribution

over the multigluon phase-space gives the standard collinear formula:

σ0 =

∫ 1

0dxF dxB DF(t, xF) DB(t, xB) σB(sxFxB)

*

Wη-3 -2 -1 0 1 2 3

* Wη/ d

σ

d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-610×

*

Wη-3 -2 -1 0 1 2 3

Ratio

CM

C/Co

ll.

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

η∗W = 12 ln(xF/xB) – in

collinear limit – rapidity of Wboson

agreement of < 0.5%

29 / 45

Page 31: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Outline

1 Introduction

2 Our projectRebuilding LO MC showerIncluding NLO corrections to hard processRelation to other methodsNLO corrections in the shower

30 / 45

Page 32: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

Because LO shower covers thewhole phase space the NLOcorrections can be included bymeans of simple reweightingtechniques

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ) WNLO

MC

31 / 45

Page 33: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO shower – proof of concept

Analytical integration ofthe NLO MC distribution

σ0 =

∫dx0Fdx0B d0(t0 , x0F )d0(t0 , x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−12CFαs

π2 P(zFi))δ

xF =x0F∏n1

i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−12CFαs

π2 P(zBj))δ

xB=x0B∏n2

j=1 zBj

× dτ2(P −n1+n2∑

j=1kj; q1 , q2)

dσBdΩ

(sxFxB , θ) WNLOMC

over the multigluon phase-space gives the standard collinear formula:

σ1 =

1∫0

dxF dxB dz DF(t, xF) DB(t, xB) σB(szxFxB)δz=1(1 + ∆S+V ) + C2r(z)

*

Wη-3 -2 -1 0 1 2 3

NLO(

CMC)

, NL

O(Co

ll.)

0

5

10

15

20

25

-910×

*

Wη-3 -2 -1 0 1 2 3

NLO:

CM

C/Co

ll.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

η∗W = 12 ln(xF/xB) – in

collinear limit – rapidity of Wboson

agreement of < 1%

32 / 45

Page 34: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

WNLOMC = 1 + ∆S+V +

∑j∈F

β1(q1, q2, kj)

P(zFj) dσB(s, θ)/dΩ+

∑j∈B

β1(q1, q2, kj)

P(zBj) dσB(s, θ)/dΩ

soft+virtual NLO correction (kinematics independent!)

∆S+V =CFαs

π

(23π2 −

54

)

real correction (with subtraction)

β1(q1, q2, k) =[ (1 − β)2

2dσB

dΩq(s, θF) +

(1 − α)2

2dσB

dΩq(s, θB)

]−θα>β

1 + (1 − α − β)2

2dσB

dΩq(s, θ) − θα<β

1 + (1 − α − β)2

2dσB

dΩq(s, θ).

summation over all partons!

33 / 45

Page 35: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Summation in NLO weight for hard process

WNLOMC = 1 + ∆S+V +

∑j∈F

β1(q1, q2, kj)

P(zFj) dσB(s, θ)/dΩ+

∑j∈B

β1(q1, q2, kj)

P(zBj) dσB(s, θ)/dΩ

34 / 45

Page 36: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO weight distribution

h_wt1rEntries 100000

Mean 0.9851

RMS 0.04095

wt0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.05

0.1

0.15

0.2

0.25

0.3

-310×h_wt1r

Entries 100000

Mean 0.9851

RMS 0.04095

NLO weight

WNLOMC

Correcting to NLO requiresonly reweighting with WNLO

MCweight:

strongly peaked

positive

without long-ranged tails

Good behavior of WNLOMC is a

profit form reformulating thecollinear factorization andrebuilding LO shower.

35 / 45

Page 37: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Relation to other methods

POWHEG

First generate hardest emission with NLO accuracy (independentof the shower)

Additional complications of vetoed/truncated shower (emissionsfrom the shower can not be harder then the first emission)

MC@NLO

Generate, in a separate MC branch, events according to anon-positive NLO correcting distribution

Negative weights

36 / 45

Page 38: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Relation to other methods

gluon

Born

Z

1−st order corrections

quar

k

proton proton

P

P

P

P

P

P

P

P

Virt

Main differences with respect to POWHEG and MC@NLO are:“Democratic” summation over all emitted gluons, withoutdeciding explicitly which gluon is involved in hard process

WNLOMC = 1 + ∆S+V +

∑j∈F

β1(q1, q2, kj)

P(zFj) dσB(s, θ)/dΩ+

∑j∈B

β1(q1, q2, kj)

P(zBj) dσB(s, θ)/dΩ

differences related to modified factorization scheme (like absence of(1/(1 − z))+ distributions in the real part of the NLO corrections)

Here I concentrate only on the first point.

37 / 45

Page 39: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Relation to other methods

LO

NLO

Inclusive distribution of gluons on thelog Sudakov plane of:

rapidity t = ξ

v = ln(1 − z)

NLO correction located near therapidity of the hard process t = ξ = tmax

complete phase space near (z = 0,t = tmax) corner

standard LO MCs feature empty“dead zone” (used by POWHEGand MC@NLO )

We can anticipate that the dominantcontribution to

∑j∈F WNLO

j is from thehardest in kT gluon (from LO shower)

38 / 45

Page 40: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

kT–ordering & hardest emissionhardest in kT gluon rest

K = 1 component reproducesthe LO distribution over allthe region where NLOcorrection is non-negligible(hard process corner).

This represents the hardestemission of POWHEG.

NLO correction

39 / 45

Page 41: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

kT–ordering & hardest emission

Comparison of the full NLO correction:∑

j WNLOj and its two hardest

(in kT ) components WNLOK=1 , WNLO

K=2 :

(x)10

log-3 -2.5 -2 -1.5 -1 -0.5 0

(x)

QN

LO

xD

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014NLO total and K=1,2 contribs.Tot.

K=1

K=2

x =∏

j zj

K = 1 saturates the entiresum very well

K = 2 component is small(additional NNLO terms)

40 / 45

Page 42: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Ordering & hardest emission – summary

We can keep the sum∑

j WNLOj or restrict to WNLO

K=1 .

We use angular ordering but no vetoed/truncated showers areneeded (we just relabel already generated gluons)

In POWHEG scheme K = 1 gluon is generated separately in thefirst step, requiring the use of vetoed/truncated showers in caseof angular-ordered LO MC shower.

41 / 45

Page 43: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Outline

1 Introduction

2 Our projectRebuilding LO MC showerIncluding NLO corrections to hard processRelation to other methodsNLO corrections in the shower

42 / 45

Page 44: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO corrections in the MC ladder (gluons out of quarks)

gluon

quar

k

Z1−st order corrections

proton proton

P

P

P

P

P

P

P

PVirt W(k2, k1) =

∣∣∣∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣∣∣∣2

∣∣∣∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣∣∣ +2

1

2

1

∣∣∣∣∣∣∣∣∣∣2

∣∣∣∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣∣∣∣2 − 1

ρn(kl) = e−SISR

2

1

n

2

n−1

p

︸ ︷︷ ︸virtual + softcorrections

+

n∑p1=1

p1−1∑j1=1

2

p

n

1

1

j1

︸ ︷︷ ︸1 NLO real correction(insertion)

+

n∑p1=1

p1−1∑p2=1

p1−1∑j1=1

j1,p2

p2−1∑j2=1

j2,p1 ,j2

2

p

n

j2

j1

2p

1

︸ ︷︷ ︸2 NLO real corrections(insertions)

+ . . .

43 / 45

Page 45: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO corrections in the MC ladder (gluons out of quarks)

ρn(kl) = e−SISR

2

1

n

2

n−1

p+

n∑p1=1

p1−1∑j1=1

2

p

n

1

1

j1

+

n∑p1=1

p1−1∑p2=1

p1−1∑j1=1

j1,p2

p2−1∑j2=1

j2,p1 ,j2

2

p

n

j2

j1

2p

1

+ . . .

From the numerical point of view one or two

NLO insertions2

1

are sufficient (restrict number of pi sums).

Sums over jk can be also restricted (like in the case of hardprocess) using variable

upj = ηp − ηj + λ ln(1 − zj)

and choosing only the hardest (or two hardest) in upj emissions.

44 / 45

Page 46: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Summary/Prospects

The “proof of concept” of the methodology is done!

3 we extended collinear factorization to be suitable for MC;

3 we constructed a new LO Parton Shower;

3 method for implementing NLO corrections in hard process is working;

3 we have a method for including NLO corrections in the showerladders;

but... this is done for non-singlet case (gluonstrahlung), now we need somemore work to go to the practical level

7 include singlet diagrams (easier)

7 optimize technique of adding NLO corrections to the ladders;

7 work on implementation of W/Z production at LHC(first: LO shower + NLO hard process);

45 / 45

Page 47: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

BACKUP SLIDES

NLO Parton Shower

46 / 45

Page 48: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

LO shower

Main features of new LO shower:based on modified collinear factorization;

conserving 4-momentum (also transverse component)giving perturbative series directly in terms of exponent notgeometrical series (avoiding oversubtractions)real emissions regularized geometrically in 4 dimensionssubtractions defined in unintegrated form (corresponding to MCcounterterms)

angular ordering;

cover the whole phase space – no gaps;

47 / 45

Page 49: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO shower

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

σ(C(0)0 Γ

(1)F Γ

(1)B ) =

∞∑n1=1

∞∑n2=1

σ[C(0)

0 (P′K(1)0F )n1(P′′K(1)

0B )n2]

T .O.

48 / 45

Page 50: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO MC shower

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ)

d0(t0, x0F) – initial PDF (preferably in MC scheme)

SF & SB – Sudakov formfactors

LO DGLAP kernel P(zBj) = 12 (1 + z2)

49 / 45

Page 51: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO MC shower

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ)

d0(t0, x0F) – initial PDF (preferably in MC scheme)

SF & SB – Sudakov formfactors

LO DGLAP kernel P(zBj) = 12 (1 + z2)

49 / 45

Page 52: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO MC shower

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ)

d0(t0, x0F) – initial PDF (preferably in MC scheme)

SF & SB – Sudakov formfactors

LO DGLAP kernel P(zBj) = 12 (1 + z2)

49 / 45

Page 53: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO MC shower

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ)

d0(t0, x0F) – initial PDF (preferably in MC scheme)

SF & SB – Sudakov formfactors

LO DGLAP kernel P(zBj) = 12 (1 + z2)

49 / 45

Page 54: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO MC shower

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ)

Ξ – Z-boson rapidity (division between F and B hemispheres)

ηi = 12 ln k+

k− – rapidity of emitted gluons (η0F > · · · > ηi−1 > ηi · · · > Ξ)

ki – rescaled 4-momenta

50 / 45

Page 55: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO MC shower

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ)

Ξ – Z-boson rapidity (division between F and B hemispheres)

ηi = 12 ln k+

k− – rapidity of emitted gluons (η0F > · · · > ηi−1 > ηi · · · > Ξ)

ki – rescaled 4-momenta

50 / 45

Page 56: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO MC shower

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ)

Ξ – Z-boson rapidity (division between F and B hemispheres)

ηi = 12 ln k+

k− – rapidity of emitted gluons (η0F > · · · > ηi−1 > ηi · · · > Ξ)

ki – rescaled 4-momenta

50 / 45

Page 57: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO MC shower

gluon

Born

quar

k

Z

proton proton

P

P

P

P

P

P

P

P

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ)

d3E(kj) = d3k2k0

1k2 = π

dφ2π

dk+

k+ dη – eikonal phase-space for real gluondσBdΩ

– LO hard process matrix-element

51 / 45

Page 58: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

(re-)constructed LO shower

Analytical integration of LO MC distribution

over the multigluon phase-space gives the standard collinear formula:

σ0 =

∫ 1

0dxF dxB DF(t, xF) DB(t, xB) σB(sxFxB)

52 / 45

Page 59: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

LO MC shower vs. collinear factorization

*

Wη-3 -2 -1 0 1 2 3

* Wη/ d

σ

d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-610×

*

Wη-3 -2 -1 0 1 2 3

Rat

io C

MC

/Co

ll.

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

η∗W = 12 ln(xF/xB)

η∗W – in collinear limit –rapidity of W boson

agreement of < 0.5%

53 / 45

Page 60: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

54 / 45

Page 61: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

σ0 =

∫dx0Fdx0B d0(t0, x0F)d0(t0, x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−1

2CFαs

π2 P(zFi))δxF=x0F

∏n1i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−1

2CFαs

π2 P(zBj))δxB=x0B

∏n2j=1 zBj

× dτ2(P −n1+n2∑

j=1

kj; q1, q2)dσB

dΩ(sxFxB, θ) WNLO

MC

55 / 45

Page 62: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

WNLOMC = 1 + ∆S+V +

∑j∈F

β1(q1, q2, kj)

P(zFj) dσB(s, θ)/dΩ+

∑j∈B

β1(q1, q2, kj)

P(zBj) dσB(s, θ)/dΩ

soft+virtual NLO correction (kinematics independent!)

∆V+S =CFαs

π

(23π2 −

54

)

real correction (with subtraction)

β1(q1, q2, k) =[ (1 − β)2

2dσB

dΩq(s, θF) +

(1 − α)2

2dσB

dΩq(s, θB)

]−θα>β

1 + (1 − α − β)2

2dσB

dΩq(s, θ) − θα<β

1 + (1 − α − β)2

2dσB

dΩq(s, θ).

summation over all partons!

56 / 45

Page 63: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

WNLOMC = 1 + ∆S+V +

∑j∈F

β1(q1, q2, kj)

P(zFj) dσB(s, θ)/dΩ+

∑j∈B

β1(q1, q2, kj)

P(zBj) dσB(s, θ)/dΩ

soft+virtual NLO correction (kinematics independent!)

∆V+S =CFαs

π

(23π2 −

54

)

real correction (with subtraction)

β1(q1, q2, k) =[ (1 − β)2

2dσB

dΩq(s, θF) +

(1 − α)2

2dσB

dΩq(s, θB)

]−θα>β

1 + (1 − α − β)2

2dσB

dΩq(s, θ) − θα<β

1 + (1 − α − β)2

2dσB

dΩq(s, θ).

summation over all partons!

56 / 45

Page 64: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

WNLOMC = 1 + ∆S+V +

∑j∈F

β1(q1, q2, kj)

P(zFj) dσB(s, θ)/dΩ+

∑j∈B

β1(q1, q2, kj)

P(zBj) dσB(s, θ)/dΩ

soft+virtual NLO correction (kinematics independent!)

∆V+S =CFαs

π

(23π2 −

54

)

real correction (with subtraction)

β1(q1, q2, k) =[ (1 − β)2

2dσB

dΩq(s, θF) +

(1 − α)2

2dσB

dΩq(s, θB)

]−θα>β

1 + (1 − α − β)2

2dσB

dΩq(s, θ) − θα<β

1 + (1 − α − β)2

2dσB

dΩq(s, θ).

summation over all partons!

56 / 45

Page 65: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

WNLOMC = 1 + ∆S+V +

∑j∈F

β1(q1, q2, kj)

P(zFj) dσB(s, θ)/dΩ+

∑j∈B

β1(q1, q2, kj)

P(zBj) dσB(s, θ)/dΩ

soft+virtual NLO correction (kinematics independent!)

∆V+S =CFαs

π

(23π2 −

54

)

real correction (with subtraction)

β1(q1, q2, k) =[ (1 − β)2

2dσB

dΩq(s, θF) +

(1 − α)2

2dσB

dΩq(s, θB)

]−θα>β

1 + (1 − α − β)2

2dσB

dΩq(s, θ) − θα<β

1 + (1 − α − β)2

2dσB

dΩq(s, θ).

summation over all partons!

56 / 45

Page 66: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Summation in NLO weight for hard process

WNLOMC = 1 + ∆S+V +

∑j∈F

β1(q1, q2, kj)

P(zFj) dσB(s, θ)/dΩ+

∑j∈B

β1(q1, q2, kj)

P(zBj) dσB(s, θ)/dΩ

57 / 45

Page 67: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO weight distribution

h_wt1rEntries 100000

Mean 0.9851

RMS 0.04095

wt0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.05

0.1

0.15

0.2

0.25

0.3

-310×h_wt1r

Entries 100000

Mean 0.9851

RMS 0.04095

NLO weight

WNLOMC

Correcting to NLO requiresonly reweighting with WNLO

MCweight:

strongly peaked

positive

without long-ranged tails

Good behavior of WNLOMC is a

profit form reformulating thecollinear factorization andrebuilding LO shower.

58 / 45

Page 68: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO weight distribution

h_wt1rEntries 100000

Mean 0.9851

RMS 0.04095

wt0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.05

0.1

0.15

0.2

0.25

0.3

-310×h_wt1r

Entries 100000

Mean 0.9851

RMS 0.04095

NLO weight

WNLOMC

Correcting to NLO requiresonly reweighting with WNLO

MCweight:

strongly peaked

positive

without long-ranged tails

Good behavior of WNLOMC is a

profit form reformulating thecollinear factorization andrebuilding LO shower.

58 / 45

Page 69: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

As in LO, the NLO MC distribution can be integrated analyticallyover the multigluon phase space giving standard collinear formula:

σ1 =

1∫0

dxF dxB dz DF(t, xF) DB(t, xB) σB(szxFxB)δz=1(1 + ∆S+V ) + C2r(z)

“coefficient function”: C2r(z) = −CFαsπ

(1 − z)

is different then the MS one: CMS2r (z) =

CFαsπ

1+z2

1−z [2 ln(1 − z) − ln(z)]

singular logarithmic terms ln(1−z)1−z of MS are absent

we have a build-in resummation of lnn(1−z)1−z terms

59 / 45

Page 70: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process

As in LO, the NLO MC distribution can be integrated analyticallyover the multigluon phase space giving standard collinear formula:

σ1 =

1∫0

dxF dxB dz DF(t, xF) DB(t, xB) σB(szxFxB)δz=1(1 + ∆S+V ) + C2r(z)

“coefficient function”: C2r(z) = −CFαsπ

(1 − z)

is different then the MS one: CMS2r (z) =

CFαsπ

1+z2

1−z [2 ln(1 − z) − ln(z)]

singular logarithmic terms ln(1−z)1−z of MS are absent

we have a build-in resummation of lnn(1−z)1−z terms

59 / 45

Page 71: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process – proof of concept

To test concept of our method we compare numerically inclusivedistributions obtained from the full scale MC generation (4-momentaconserving)

σ0 =

∫dx0Fdx0B d0(t0 , x0F )d0(t0 , x0B)

∞∑n1=0

∞∑n2=0

∫dxF dxB

× e−SF

∫Ξ<ηn1

( n1∏i=1

d3E(ki)θηi<ηi−12CFαs

π2 P(zFi))δ

xF =x0F∏n1

i=1 zFi

× e−SB

∫Ξ>ηn2

( n2∏j=1

d3E(kj)θηj>ηj−12CFαs

π2 P(zBj))δ

xB=x0B∏n2

j=1 zBj

× dτ2(P −n1+n2∑

j=1kj; q1 , q2)

dσBdΩ

(sxFxB , θ) WNLOMC

and from the collinear formula

σ1 =

1∫0

dxF dxB dz DF(t, xF) DB(t, xB) σB(szxFxB)δz=1(1 + ∆S+V ) + C2r(z)

60 / 45

Page 72: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process – proof of concept

*

Wη-3 -2 -1 0 1 2 3

NL

O(C

MC

), N

LO

(Co

ll.)

0

5

10

15

20

25

-910×

*

Wη-3 -2 -1 0 1 2 3

NL

O:

CM

C/C

oll.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

η∗W = 12 ln(xF/xB)

η∗W – in collinear limit –rapidity of W boson

agreement of < 1%

61 / 45

Page 73: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO correction to hard process – proof of concept

*

Wη-3 -2 -1 0 1 2 3

LO

an

d N

LO

-810

-710

-610

*

Wη-3 -2 -1 0 1 2 3

Rat

io

NL

O/L

O

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

η∗W = 12 ln(xF/xB)

η∗W – in collinear limit –rapidity of W boson

NLO correction is only∼ 1.5% of LO!

62 / 45

Page 74: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Summary of presented scheme

NLO corrections to hard process added on top of the LO MCwith a simple, positive weight;

There is a built-in resummation of lnn(1−x)1−x terms;

Virtual+soft corrections ∆V+S are completely kinematicsindependent (all the complicated dΣc± contributions ofMC@NLO scheme are absent);

There is no need to correct for the difference in the collinearcounter-terms of the MC and MS scheme

but there is a price for it:

we needed to rebuild LO shower

deviations from MS factorization scheme means differentcoefficient function and PDFs (this is well controlled)

63 / 45

Page 75: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Summary of presented scheme

NLO corrections to hard process added on top of the LO MCwith a simple, positive weight;

There is a built-in resummation of lnn(1−x)1−x terms;

Virtual+soft corrections ∆V+S are completely kinematicsindependent (all the complicated dΣc± contributions ofMC@NLO scheme are absent);

There is no need to correct for the difference in the collinearcounter-terms of the MC and MS scheme

but there is a price for it:

we needed to rebuild LO shower

deviations from MS factorization scheme means differentcoefficient function and PDFs (this is well controlled)

63 / 45

Page 76: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Outline

1 Introduction

2 Our projectRebuilding LO MC showerIncluding NLO corrections to hard processRelation to other methodsNLO corrections in the shower

64 / 45

Page 77: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Relation to other methods

There are two well established methods for including NLOcorrections to hard process in MC shower:

POWHEG

MC@NLO

There is also an effort of Japanese group of H. Tanaka (arXiv:1106.3390)

In the following I show some of the conceptual differences betweenour scheme and POWHEG and MC@NLO methods (concentratingon POWHEG).

65 / 45

Page 78: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Relation to other methods

Main differences with respect to POWHEG and MC@NLO are:“Democratic” summation over all emitted gluons, withoutdeciding explicitly which gluon is involved in hard process

WNLOMC = 1 + ∆S+V +

∑j∈F

β1(q1 , q2 , kj)

P(zFj) dσB(s, θ)/dΩ+

∑j∈B

β1(q1 , q2 , kj)

P(zBj) dσB(s, θ)/dΩ

differences related to modified factorization scheme (like absence of(1/(1 − z))+ distributions in the real part of the NLO corrections)

Here I concentrate only on the first point.

66 / 45

Page 79: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Relation to other methods

For better visualization we restrict to one “ladder” and a simplifiedweight:

WNLOMC = 1 +

∑j∈F

β1(q1, q2, kj)

P(zFj) dσB(s, θ)/dΩ

67 / 45

Page 80: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Relation to other methods

LO

NLO

Inclusive distribution of gluons onthe log Sudakov plane of:

rapidity t = ξ

v = ln(1 − z)

NLO correction located near therapidity of the hard processt = ξ = tmax

complete phase space near(z = 0, t = tmax) corner

standard LO MCs featureempty “dead zone” (used byPOWHEG and MC@NLO )

68 / 45

Page 81: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

kT–ordering & hardest emission

We can anticipate that the dominant contribution to

WNLOMC = 1 +

∑j∈F

WNLOj

comes from the gluon with the highest

ln kTj ∼ tj + ln(1 − zj)

that is the closest to the hard process corner (z = 0, t = tmax).

We can easily relabel gluons generated in MC (∑

j →∑

K), so they areordered in transverse momentum

κK+1 < κK , κK ∼ ln kTK

with K = 1 being the hardest one.

69 / 45

Page 82: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

kT–ordering & hardest emissionhardest in kT gluon rest

K = 1 component reproducesthe LO distribution over allthe region where NLOcorrection is non-negligible(hard process corner).

This represents the hardestemission of POWHEG.

NLO correction

70 / 45

Page 83: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

kT–ordering & hardest emission

Comparison of the full NLO correction:∑

j WNLOj and its two hardest

(in kT ) components WNLOK=1 , WNLO

K=2 :

(x)10

log-3 -2.5 -2 -1.5 -1 -0.5 0

(x)

QN

LO

xD

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014NLO total and K=1,2 contribs.Tot.

K=1

K=2

x =∏

j zj

K = 1 saturates the entiresum very well

K = 2 component is small(additional NNLO terms)

71 / 45

Page 84: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Ordering & hardest emission – summary

We can keep the sum∑

j WNLOj or restrict to WNLO

K=1 .

We use angular ordering but no vetoed/truncated showers areneeded (we just relabel already generated gluons)

In POWHEG scheme K = 1 gluon is generated separately in thefirst step, requiring the use of vetoed/truncated showers in caseof angular-ordered LO MC shower.

72 / 45

Page 85: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Angular ordered shower

73 / 45

Page 86: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Mapping (rescaling)

We order all gluons by the distance form Ξ – the rapidity of theproduced Z boson. We define permutation π:|ηπi − Ξ| > |ηπi−1 − Ξ|, i ∈ F,B

Mapping is now defined recursively as:

kπi = λikπi , λi =s(xi−1 − xi)

2(P −∑i−1

j=1 kπj) · kπi

, i = 1, 2, ..., n1 + n2.

Features of the mapping:

pure rescaling

preserves angels

preservers soft factors (dα/α)

no gaps in phase-space

74 / 45

Page 87: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

LO MC algorithm

1 variables zF and zB are generated by the FOAM MC Sampler;2 four-momenta kµi are generated separately in the F and B parts of

the phase space with the constraints∑

j∈F αj = 1 − zF and∑j∈B βj = 1 − zB;

3 double-ordering permutation π is established;4 rescaling parameter λ1 is calculated; kπ1 = λ1kπ1 is set, such that

(P − kπ1)2 = sx1;5 parameter λ2 is calculated and kπ2 = λ2kπ2 is set, such that

(P − kπ1 − kπ2)2 = sx2 = szπ1zπ2 and so on... ;6 in the rest frame of P = P −

∑j kπj four-momenta qµ1 and qµ2 are

generated according to the Born angular distribution.

75 / 45

Page 88: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO corrections in the MC ladder (gluons out of quarks)

gluon

quar

k

Z1−st order corrections

proton proton

P

P

P

P

P

P

P

PVirt W(k2, k1) =

∣∣∣∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣∣∣∣2

∣∣∣∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣∣∣ +2

1

2

1

∣∣∣∣∣∣∣∣∣∣2

∣∣∣∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣∣∣∣2 − 1

ρn(kl) = e−SISR

2

1

n

2

n−1

p+

n∑p1=1

p1−1∑j1=1

2

p

n

1

1

j1

+

n∑p1=1

p1−1∑p2=1

p1−1∑j1=1

j1,p2

p2−1∑j2=1

j2,p1 ,j2

2

p

n

j2

j1

2p

1

+ . . .

76 / 45

Page 89: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO corrections in the MC ladder (gluons out of quarks)

h_lxWTn1Entries 9.162e+08Mean -2.332RMS 0.568

log10(x)-3 -2.5 -2 -1.5 -1 -0.5 0

-510

-410

-310

-210

-110

1

h_lxWTn1Entries 9.162e+08Mean -2.332RMS 0.568

NLO DGLAP

log10(x)-3 -2.5 -2 -1.5 -1 -0.5 00.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

DGLAP NLO Excl/Incl

Numerical results for D(x,Q) from two Monte Carlos inclusive and exclusive.Blue curve is single NLO insertion, red curve is double insertion component.Evolution 10GeV→1TeV starting from δ(1 − x).The ratio demonstrates 3-digit agreement, in units of LO.

77 / 45

Page 90: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO corrections in the MC ladder (gluons out of quarks)

ρn(kl) = e−SISR

2

1

n

2

n−1

p+

n∑p1=1

p1−1∑j1=1

2

p

n

1

1

j1

+

n∑p1=1

p1−1∑p2=1

p1−1∑j1=1

j1,p2

p2−1∑j2=1

j2,p1 ,j2

2

p

n

j2

j1

2p

1

+ . . .

From the numerical point of view one or two

NLO insertions2

1

are sufficient (restrict number of pi sums).

Sums over jk can be also restricted (like in the case of hardprocess) using variable

upj = ηp − ηj + λ ln(1 − zj)

and choosing only the hardest (or two hardest) in upj emissions.

78 / 45

Page 91: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

hardest emission in upj

distribution of LO gluons NLO correction

hardest in upj gluon (LO) rest of LO gluons

79 / 45

Page 92: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Gluon pair component of the NLO kernel, ∼ CFCA (FSR)

Virt

Straightforward inclusion of gluon pair diagram in the previousmethod would ruin Monte Carlo weight due to presence of Sudakovdouble logarithmic +SFSR in 2-real correction:∣∣∣∣∣∣ 2

1

∣∣∣∣∣∣2 =

∣∣∣∣∣∣ + +

∣∣∣∣∣∣2 −∣∣∣∣∣∣ 2

1

∣∣∣∣∣∣2and −SFSR in the virtual correction:∣∣∣∣∣∣

∣∣∣∣∣∣2 =(1 + 2<(∆ISR + VFSR)

) ∣∣∣∣∣∣ 1−z

z∣∣∣∣∣∣2 .

80 / 45

Page 93: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Gluon pair component of the NLO kernel, ∼ CFCA (FSR)

SOLUTION:

Resummation/exponentiation of FSR, see next slides for details of thescheme and numerical test of the prototype MC.

81 / 45

Page 94: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

NLO FSR correction at the end of the ladder, ∼ CFCA

Additional NLO FSR correction at the end of the ladder:

e−SISR−SFSR

∞∑n,m=0

m∑r=1

21

n−1

n−2

r m

2

where Sudakov SFSR is subtracted in the virtual part:∣∣∣∣∣∣∣∣∣∣∣∣∣∣2

=(1 + 2<(∆ISR + VFSR−SFSR )

) ∣∣∣∣∣∣∣ 1−z

z∣∣∣∣∣∣∣2

.

and FSR counterterm is subtracted in the 2-real-gluon part:∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣2

=

∣∣∣∣∣∣∣ + +

∣∣∣∣∣∣∣2

∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣2

.

The miracle: both are free of any collinear or soft divergences!!!

82 / 45

Page 95: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

ISR+FSR NLO corrections at end of the ladder

D[1]NS(x,Q) =

e−S∞∑

n,m=0

n−1

n−2

1

m21

2

+

n−1∑j=1

1 2n−1

n−2

1

j

m

2

+

m∑r=1

21

1

r m

2

n−1

n−2

= e−SISR

δx=1 +

∞∑n=1

( n∏i=1

∫Q>ai>ai−1

d3ηi ρ(1)1B (ki)

)e−SFSR

∞∑m=0

( m∏j=1

∫Q>anj>an(l−1)

d3η′j ρ(1)1V (k′j )

)

×

[β(1)

0 (zn) +

n−1∑j=1

W(kn, kj) +

m∑r=1

W(kn, k′r)]δx=

∏nj=1 xj

β(1)0 ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣2

∣∣∣∣∣∣∣∣∣ 1−z

z∣∣∣∣∣∣∣∣∣2 , W(k2, k1) ≡

∣∣∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣∣∣2

∣∣∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣∣∣2

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣∣ + +

∣∣∣∣∣∣∣∣∣2

∣∣∣∣∣∣∣∣∣2

1

∣∣∣∣∣∣∣∣∣2

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣2 − 1.

83 / 45

Page 96: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

BACKUP SLIDES

nCTEQ

84 / 45

Page 97: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

85 / 45

Page 98: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Hessian method [JHEP 07 (2002) 012, arXiv:hep-ph/0201195]

Expand χ2 function around minimum, a0i ,

χ2 = χ20 +

∑ij

12

(ai − a0i )(aj − a0

j )(∂2χ2

∂yi∂yj

)0

86 / 45

Page 99: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Hessian method [JHEP 07 (2002) 012, arXiv:hep-ph/0201195]

Expand χ2 function around minimum, a0i , and diagonalize

χ2 = χ20 +

∑ij

12

(ai − a0i )(aj − a0

j )(∂2χ2

∂yi∂yj

)0

= χ20 +

∑i

z2i

87 / 45

Page 100: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Hessian method [JHEP 07 (2002) 012, arXiv:hep-ph/0201195]

Expand χ2 function around minimum, a0i , and diagonalize

χ2 = χ20 +

∑ij

12

(ai − a0i )(aj − a0

j )(∂2χ2

∂yi∂yj

)0

= χ20 +

∑i

z2i

Choose ∆χ2 = χ2 − χ20 value (defining 1-σ uncertainty),

ideal case ∆χ2 = 1realistic global analysis ∆χ2 ∼ 10 − 100

Construct error PDFs corresponding to each eigenvector direction:

f ±i = f (zi) = f (0, . . . , zi = ±

√∆χ2, . . . , 0)

zi = ±

√∆χ2

Calculate errors of observable X:

∆X =12

√∑i

[X(f +

i ) − X(f −i )]2

88 / 45

Page 101: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ results

Nuclear correction factors(Q = 10GeV)

Ri(Pb) =f Pbi (x,Q)

f pi (x,Q)

different solution for d-valence& u-valence compared to EPS09& DSSZ

sea quark nuclear correctionfactors similar to EPS09

nuclear correction factorsdepend largely on underlyingproton baseline

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 ( , )

nCTEQEPS09DSSZ

10 3 10 2 10 1 1

( , )

nCTEQEPS09DSSZ

PRELIMINARY

89 / 45

Page 102: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ results

Nuclear PDFs (Q = 10GeV)

x f Pbi (x,Q)

nCTEQ d-valence & u-valencesolution between HKN07 &EPS09

nCTEQ features largeruncertainties than previousnPDFs

better agreement betweendifferent groups (nPDFs don’tdepend on proton baseline)

10 3 10 2 10 1 10.0

0.1

0.2

0.3

0.4

0.5

( , )nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

( , )nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10

5

10

15

20

( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.0

0.2

0.4

0.6

0.8

1.0

( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.0

0.2

0.4

0.6

0.8

1.0

( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 1

0.0

0.2

0.4

0.6

0.8 ( , )

nCTEQHKN07EPS09DSSZ

10 3 10 2 10 1 10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

( , )

nCTEQHKN07EPS09DSSZ

PRELIMINARY

90 / 45

Page 103: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ vs. EPS09

nCTEQ

xup/Av (Q0) = xcu

1 (1 − x)cu2 ecu

3x(1 + ecu4 x)cu

5

xdp/Av (Q0) = xcd

1 (1 − x)cd2 ecd

3 x(1 + ecd4 x)cd

5

cuvk = cuv

k,0 + cuvk,1

(1 − A

−cuvk,2

)cdv

k = cdvk,0 + cdv

k,1

(1 − A

−cdvk,2

)

EPS09

up/Av (Q0) = Rv(x,A,Z) u(x,Q0)

dp/Av (Q0) = Rv(x,A,Z) d(x,Q0)

Rv =

a0 + (a1 + a2x)(e−x − e−xa ) x ≤ xa

b0 + b1x + b2x2 + b3x3 xa ≤ x ≤ xe

c0 + (c1 − c2x)(1 − x)−β xe ≤ x ≤ 1

10 3 10 2 10 1 1x0.0

0.1

0.2

0.3

0.4

0.5

(,

)

nCTEQNP14EPS09

10 3 10 2 10 1 1x0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7nCTEQNP14EPS09

we set: cdv1 = cuv

1

cdv2 = cuv

291 / 45

Page 104: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

nCTEQ results

Structure function ratio

R =FFe

2 (x,Q)

FD2 (x,Q)

good data description

despite different u-valence &d-valence ratios are similar toEPS09

0.01 0.1 1

0.80

0.85

0.90

0.95

1.00

1.05

1.10

]

=

nCTEQ ±

HKN07

EPS09

0.01 0.1 1

0.80

0.85

0.90

0.95

1.00

1.05

1.10

]

=

nCTEQ ±

HKN07

EPS09

PRELIMINARY

92 / 45

Page 105: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

K. Kovarık, DIS2013

Page 106: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

K. Kovarık, DIS2013

Page 107: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

K. Kovarık, DIS2013

Page 108: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Compatibility of nuclear corrections for νA and l±A DIS

Fit to l±A DIS and DY dataχ2/dof = 0.89

Fit to νA DIS data onlyχ2/dof = 1.33

96 / 45

PRL106, 122301 (2011), arXiv:1012.0286PRD80, 094004 (2009), arXiv:0907.2357

Page 109: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Compatibility of nuclear corrections for νA and l±A DIS

x

−210

−110 1

]A−

l 2R

[F

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.202

=5 GeV2

QA=56, Z=26

w = 0

w = 1/7

w = 1/2

w = 1

∞w =

x

−210

−110 1

]A

ν 2R

[F

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.202

=5 GeV2

QA=56, Z=26

w = 0

w = 1/7

w = 1/2

w = 1

∞w =

χ2 =∑

l±A data

χ2i +

∑νA data

wχ2i , w = 0, 1

7 ,12 , 1,∞

97 / 45

PRL106, 122301 (2011), arXiv:1012.0286PRD80, 094004 (2009), arXiv:0907.2357

Page 110: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Compatibility of nuclear corrections for νA and l±A DIS

It was argued in the literature that νA DIS data is compatiblewith l±A data:Paukkunen, Salgado, JHEP 07, 32 2010, arXiv:1004.3140

de Florian, Sassot, Stratmann, Zurita, PRD85, 074028 (2012), arXiv:1112.6324

However these results were obtained using uncorrelated errorsfor NuTeV experiment, which were crucial for the nCTEQconclusions PRL106, 122301 (2011).

w l±A χ2(/pt) νA χ2(/pt) total χ2(/pt)1-corr 708 736 (1.04) 3134 4246 (1.36) 4983 (1.30)1-uncorr 708 809 (1.14) 3110 3115 (1.00) 3924 (1.02)

98 / 45

Page 111: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Compatibility of nuclear corrections for νA and l±A DIS

Recent paperPaukkunen, Salgado, PRL110, 212301 (2013), arXiv:1302.2001suggests a method to renormalize the NuTeV data so that the tensionbetween νA and l±A data sets are removed

Instead of looking at the ratio of cross-sections Rν(x, y,E) ≡σνexp(x,y,E)

σνCTEQ6.6(x,y,E)

they suggest considering

Rν(x, y,E) ≡

σνexp(x, y,E)/Iνexp(E)

σνCTEQ6.6(x, y,E)/IνCTEQ6.6(E)

where

Iνexp(E) ≡∑

i∈fixed E

σexp,i(x, y,E) × Bi(x, y)

Bi(x, y) is size of the experimental (x, y)-bin

However this analysis still do not take into account correlated errorsprovided by NuTeV collaboration.

99 / 45

Page 112: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

K. Kovarık, DIS2013

Page 113: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

EPS09 framework [JHEP 04 (2009) 065, arXiv:0902.4154]

Parametrization (using CTEQ6.1M baseline)

f Ai (xN , µ0) = Ri(xN , µ0,A,Z) fi(xN , µ0)

Ri(x,A,Z) =

a0 + (a1 + a2x)(e−x − e−xa ) x ≤ xa

b0 + b1x + b2x2 + b3x3 xa ≤ x ≤ xe

c0 + (c1 − c2x)(1 − x)−β xe ≤ x ≤ 1

PDFs for nucleus (A,Z)

f (A,Z)i (x,Q) =

ZA

f p/Ai (x,Q) +

A − ZA

f n/Ai (x,Q)

(bound neutron PDF f n/Ai by isospin symmetry)

101 / 45

Page 114: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

DS04 framework

Parametrization (GRV98 baseline, FFNS, Q20 = 0.4GeV2)

f p/Ai (xN ,Q2

0) =

∫ A

xN

dyy

Wi(y,A,Z) fi(xN

y,Q2

0).

allows for 0 < xN < AWeight functions Wi parameterize nuclear effects for valence, sea and gluon

Wv(y,A,Z) = A[avδ(1 − εv − y) + (1 − av)δ(1 − εv′ − y)

]+ nv

( yA

)αv (1 −

yA

)βv+ ns

( yA

)αs (1 −

yA

)βs

Ws(y,A,Z) = Aδ(1 − y) +asNs

( yA

)αs (1 −

yA

)βs

Wg(y,A,Z) = A δ(1 − y) +ag

Ng

( yA

)αg (1 −

yA

)βg

Nuclear structure functions are defined as usual

A FA2 (x,Q2) = Z Fp/A

2 (x,Q2) + (A − Z) Fn/A2 (x,Q2)

X In principle takes into account x > 1 region.X Convenient for working in Mellin space.? Unfortunately in the actual grids 0 < x < 1, and sum rules are consistent with (0, 1) range.

102 / 45

De Florian, Sassot, PRD 69, 074028 (2004)arXiv:hep-ph/0311227

Page 115: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

DS04 framework

DS04 feature very good data description (DIS, DY, 420 data points) withχ2/ndof = 0.76

0.8

1

0.8

1

0.8

1

0.8

1

10-2

10-1

1

NMCE-139

He/D Be/D

C/D Al/D

Ca/DF2 /

FA

F2

FD

Fe/D

Ag/D

xN

Au/D

10-2

10-1

1

0.8

1

0.8

1

0.8

1

10-2

10-1

1

NMC

Be/C Al/C

Ca/C

F2 /

FA

F2

FC

Fe/C

Pb/C Sn/C

xN

10-2

10-1

1

103 / 45

Page 116: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Variables: DIS of nuclear target eA→ e′X

DIS variables in case on nucleons

in nucleus

Q2 ≡ −q2

xA ≡Q2

2 pA·q

pA – nucleus momentumxA ∈ (0, 1) – analog of Bjorken variable(fraction of the nucleus momentum carried by a nucleon)

Analogue variables for partons:

pN =pAA – average nucleon momentum

xN ≡Q2

2 pN ·q= A xA – parton momentum fraction with respect to the

average nucleon momentum pN

xN ∈ (0,A) – parton can carry more than the average nucleonmomentum pN .

104 / 45

e e′

q

A X

Page 117: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Motivations: proton Strange PDF

Before CTEQ6.6 proton PDFs it was assumedP. Nadolsky et al. PRD 78, 013004 (2008), arXiv:0802.0007

s(x) = s(x) ∼ κu(x) + d(x)

2, κ =

12

Underestimating s PDFuncertainty, as u, d are muchbetter constrained.

Neutrino-nucleon dimuondata (CCFR, NuTeV)

allowed to fit sPDF independently of u, dsea.

0.001 0.01 0.1 1.

0.9

1.

1.1

1.2 CTEQ6.6

CTEQ6.1

si(x)s0(x)

x

105 / 45

Page 118: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

ATLAS strange measurement

ATLAS has used W/Z production to infer constraints on the strangequark distribution (2010 data, 35pb−1)G. Aad et al. (ATLAS Collaboration) Phys. Rev. Lett. 109, 012001 (2012), arXiv:1203.4051

for Q2 = 1.9 GeV2 and x = 0.023:

rs = 0.5(s + s)/d = 1.00+0.25−0.28

106 / 45

Page 119: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

CMS Wc final states measurement

CMS measured ratios of cross-sections using 36pb−1 of dataCMS-PAS-EWK-11-013

arXiv:1310.1138

R±c =σ(W+c)σ(W−c)

= 0.92 ± 0.19(stat.) ± 0.04(sys.)

see also:W. J. Stirling, E. Vryonidou, Phys. Rev. Lett. 109, 082002 (2012), arXiv:1203.6781

107 / 45

Page 120: (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton … · 2014-01-13 · (1) nCTEQ Nuclear Parton Distributions and (2) NLO Parton Shower Monte Carlo A. Kusina Southern Methodist

Motivations: proton Strange PDF

large proton s-quark PDFuncertainty:

10­5

x10­4 10­3 10­2 10­1 1

0

2

4

6

8

10

s+su+d

NNPDF2.1

much more important in LHC thanin Tevatron

heavy quarks contributions moreimportantlarger rapidity rangehigh energy→ probes PDFs atsmall x

y­3 ­2 ­1 0 1 2 3

/dy [

nb]

σ d

­210

­110

1

TevatronW+

du

dc

sc

su

y­4 ­2 0 2 4

/dy [

nb]

σ d

­210

­110

1

10 LHC 7W+

du

dc

sc

su

108 / 45