1 microelectronics processing course - j. salzman - 2006 microelectronics processing diffusion

33
1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

Post on 21-Dec-2015

263 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

1Microelectronics Processing Course - J. Salzman - 2006

Microelectronics Processing Diffusion

Page 2: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

2Microelectronics Processing Course - J. Salzman - 2006

Doping

Doping is the process that puts specific amounts of dopants in the wafer surface through openings in the surface layers.

Thermal diffusion is a chemical process that takes place when the wafer is heated (~1000 C) and exposed to dopant vapor. In this process the dopants move to regions of lower concentration.

Doping Control is critical in MOS device scaling. (Scaling down the gate length requires equal scaling in doping profile)

Thermal diffusion

Ion source

Ion implantation

Page 3: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

3Microelectronics Processing Course - J. Salzman - 2006

Comparison of thermal diffusion Comparison of thermal diffusion and ion implantationand ion implantation

Page 4: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

4Microelectronics Processing Course - J. Salzman - 2006

Mathematics of diffusion:Mathematics of diffusion:Fick’s First diffusion lawFick’s First diffusion law

F

F

D is thermally activated

Page 5: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

5Microelectronics Processing Course - J. Salzman - 2006

Mathematics of diffusion:Mathematics of diffusion:Fick’s Second diffusion lawFick’s Second diffusion law

What goes in and does not go out, stays there

C/t = (Fin-Fout)/ x

Page 6: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

6Microelectronics Processing Course - J. Salzman - 2006

Fick’s diffusion lawFick’s diffusion law

F

F

Concentration independent diffusion equation.Often referred to as Fick’s second law.

Page 7: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

7Microelectronics Processing Course - J. Salzman - 2006

Analytic solutions of the diffusion Analytic solutions of the diffusion equations:equations:

Case of a spike delta function in infinite Case of a spike delta function in infinite mediamedia

QtxC

and

xfortasC

xfortasC

conditionsBoundary

),(

00

000

:

Dt

xtC

Dt

x

Dt

QtxC

profileGaussianadescribes

lawdiffusionsFickofsolutionThe

4exp),0(

4exp

2),(

:

'

22

(x)

Page 8: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

8Microelectronics Processing Course - J. Salzman - 2006

The evolution of a Gaussian The evolution of a Gaussian diffusion profilediffusion profile

•Peak concentration decreases as 1/√t and is given by C(0,t).•Approximate measure of how far the dopant has diffused (the diffusion length) is given by x=2√Dt which is the distance from origin where the concentration has fallen by 1/e

Page 9: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

9Microelectronics Processing Course - J. Salzman - 2006

Carl Friedrich Gauss (1777-1855)

Page 10: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

10Microelectronics Processing Course - J. Salzman - 2006

Analytic solutions of the diffusion Analytic solutions of the diffusion equations:equations:

Case of a spike delta function near the Case of a spike delta function near the surfacesurface

Dt

QtCwith

Dt

xtC

Dt

x

Dt

QtxC

),0(

4exp),0(

4exp),(

22

The symmetry of the problem is similar to previous case, with an effective dose of 2Q introduced into a (virtual) infinite medium.The solution is thus:

Page 11: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

11Microelectronics Processing Course - J. Salzman - 2006

Constant total dopant (number) Constant total dopant (number) diffusion:diffusion:

Impurity profileImpurity profile

Three impurity profiles carried out under constant total dopant diffusion conditions. Note the reduction in the surface concentration C(0,t) with

time, and the corresponding rise in the bulk density.

Log scale Linear scale

Page 12: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

12Microelectronics Processing Course - J. Salzman - 2006

Analytic solutions of the diffusion Analytic solutions of the diffusion equations:equations:

Case of an infinite source of dopantCase of an infinite source of dopant

00

000

:

xfortatCC

xfortatC

conditionsboundaryThe

n

i

ii Dt

xxx

Dt

CtxC

1

2

4exp

2),(

Dt

x

dC

dDt

x

Dt

CtxC

Dtx

2

)(

)(exp4

exp2

),( 22/

0

2

Page 13: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

13Microelectronics Processing Course - J. Salzman - 2006

The error functionThe error function

A related function is tabulated:

The solution of the diffusion equation from an infinite source is finally:

z

dzerf0

2)exp(2

)(

)2

(2

)2

(12

),(Dt

xerfc

C

Dt

xerf

CtxC

Page 14: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

14Microelectronics Processing Course - J. Salzman - 2006

Constant surface concentration: Constant surface concentration: diffusion depthdiffusion depth

Log scale Linear scale

Plots of C(x,t)/Cs vs diffusion depth x(µm) under constant surface concentration conditions for three different values of √Dt . This could mean either a change of temperature (i.e D(T)) or time, t.

Page 15: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

15Microelectronics Processing Course - J. Salzman - 2006

Total number of impuritiesTotal number of impurities(predeposition dose)(predeposition dose)

As seen in the figure, the error function solution is approximately triangular. The total dose may be estimated by an area of triangular of height Cs and a base of 2√Dt, giving Q= Cs √Dt.More accurately:

= Characteristic distance for diffusion.CS = Surface concentration (solid solubility limit).

t

Page 16: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

16Microelectronics Processing Course - J. Salzman - 2006

Two-step junction formation:Two-step junction formation:(a) Predeposition from a constant source (a) Predeposition from a constant source

(erfc)(erfc)(b) Limited source diffusion (Gaussian)(b) Limited source diffusion (Gaussian)

Page 17: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

17Microelectronics Processing Course - J. Salzman - 2006

Shallow predep approximationShallow predep approximation

)()0,(;)(2

xQtxCDtC

Qpredeps

Solution of Drive-in profile:

indriveindrive Dt

x

Dt

QtxC

)(4exp

)(),(

2

In summary:

22

22/1

22

11

4exp

2)(

tD

x

tD

tDCxC s

D1= Diffusivity at Predep temperaturet1= Predep timeD2= Diffusivity at Drive-in temperaturet2= Drive-in time

Page 18: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

18Microelectronics Processing Course - J. Salzman - 2006

Two-step junction formationTwo-step junction formation

Page 19: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

19Microelectronics Processing Course - J. Salzman - 2006

Temperature dependence of DTemperature dependence of D

Page 20: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

20Microelectronics Processing Course - J. Salzman - 2006

Diffusion coefficients (constants) for a Diffusion coefficients (constants) for a number of impurities in Siliconnumber of impurities in Silicon

Substitutional Interstitial

Page 21: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

21Microelectronics Processing Course - J. Salzman - 2006

Typical diffusion coefficient values

Element D0 (cm2/sec) EA(eV)

B 10.5 3.69

P 10.5 3.69

As 0.32 3.56

Page 22: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

22Microelectronics Processing Course - J. Salzman - 2006

The two principal diffusion The two principal diffusion mechanisms:mechanisms:

Schematic diagramsSchematic diagrams

Vacancy diffusionin a semiconductor.

Interstitial diffusion in a semiconductor.

Page 23: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

23Microelectronics Processing Course - J. Salzman - 2006

 

                               

                             

Vacancy Intersticial

Page 24: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

24Microelectronics Processing Course - J. Salzman - 2006

Thermal diffusion – general Thermal diffusion – general commentscomments

Schematic diagram of a furnace for diffusing impurities (e.g. phosphorus) into silicon.

Page 25: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

25Microelectronics Processing Course - J. Salzman - 2006

Rapid thermal annealingRapid thermal annealing

a) Concept. b) Applied Materials 300 mm RTP system.

Page 26: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

26Microelectronics Processing Course - J. Salzman - 2006

Dopant diffusion sourcesDopant diffusion sources

(a) Gas Source: AsH3, PH3, B2H6

(b) Solid Sources: BN, NH4H2PO4, AlAsO4

(c) Spin-on-glass: SiO2+dopant oxide

(d) Liquid source: A typical bubbler arrangement for doping a silicon wafer using a liquid source. The gas flow is set using mass flow controller (MFC).

Page 27: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

27Microelectronics Processing Course - J. Salzman - 2006

Junction depthJunction depth

Page 28: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

28Microelectronics Processing Course - J. Salzman - 2006

Sheet resistanceSheet resistance

The resistance of a rectangular block is:R = ρL/A = (ρ/t)(L/W) ≡ Rs(L/W)

Rs is called the sheet resistance. Its units are termed Ω/ .

L/W is the number of unit squares of material in the resistor.

Page 29: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

29Microelectronics Processing Course - J. Salzman - 2006

Sheet resistanceSheet resistance

Page 30: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

30Microelectronics Processing Course - J. Salzman - 2006

Irving’s curves: Motivation to Irving’s curves: Motivation to generate themgenerate them

Page 31: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

31Microelectronics Processing Course - J. Salzman - 2006

Irving’s curvesIrving’s curves

Page 32: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

32Microelectronics Processing Course - J. Salzman - 2006

Figure illustrating the Figure illustrating the relationship ofrelationship of

NNoo, N, NBB, x, xjj, and R, and Rss

Page 33: 1 Microelectronics Processing Course - J. Salzman - 2006 Microelectronics Processing Diffusion

33Microelectronics Processing Course - J. Salzman - 2006

Diffusion of Gaussian Diffusion of Gaussian implantation profileimplantation profile

Note: Q is the implantation dose.

Q