1 chapter 25: all-pairs shortest-paths. 2 some algorithms when no negative edges –using...

44
1 Chapter 25: All- Pairs Shortest-Paths

Upload: arthur-fowler

Post on 16-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

1

Chapter 25: All-Pairs Shortest-Paths

Page 2: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

2

Some Algorithms• When no negative edges

– Using Dijkstra’s algorithm: O(V3)– Using Binary heap implementation: O(VE lg

V)– Using Fibonacci heap: O(VE + V2log V)

• When no negative cycles– Floyd-Warshall [1962]: O(V3) time

• When negative cycles– Using Bellman-Ford algorithm: O(V2 E) =

O(V4 )– Johnson [1977]: O(VE + V2log V) time based

on a clever combination of Bellman-Ford and Dijkstra

Page 3: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

3

Notations

• G = (V, E) with w: E -> R• Input form: matrix W= (wij )

• wij =0 if i = j ,

• wij = the weight of the directed edge if i≠j and (i, j) є E,

• Otherwise wij = ∞

• Output: D = (dij),

• dij = δ(i,j) the shortest weight path from i to j

Page 4: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

4

A dynamic programming approach

1. characterize the structure of an optimal solution,2. recursively define the value of an optimal solution,3. compute the value of an optimal solution in a bottom-up fashion.

Page 5: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

5

The structure of an optimal solution

•Consider a shortest path p from vertex i to vertex j, and suppose that p contains at most m edges. Assume that there are no negative-weight cycles. Hence m ≤ n-1 is finite.

Page 6: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

6

The structure of an optimal solution

• If i = j, then p has weight 0 and no

edge.

• If i≠j, we decompose p into i ~ k -

> j where p’ contains at most

m-1 edges.

• Moreover, p’ is a shortest path from i to k and δ(i,j) = δ(i,k) + wkj

'p

Page 7: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

7

Recursive solution to the all-pairs shortest-path problem

• Define: lij(m) = minimum weight of any path from i to j that contains at most m edges.

0 if i = j• lij(0) =

∞ if i ≠ j• Then lij(m) = min{ lij(m-1), min1≤k≤n

{lik(m-1) + wkj}} = min1≤k≤n {lik(m-1) + wkj} (why?)

Page 8: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

8

Recursive solution to the all-pairs shortest-path

problem• Since shortest path from i to j

contains at most n-1 edges, δ(i,j) = lij(n-1) = lij(n) = lij(n+1) = …• Computing the shortest-path weight

bottom up:– Compute L(1) ,L(2) ,…., L(n-1) where L(m)=(lij (m))– Note that L(1) = W.

Page 9: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

9

EXTENDED-SHORTEST-PATHS(L, W)

• Given matrices L(m-1) and W return L(m)

1 n <- L.row2 Let L’ = (l’ij) be a new n x n matrix

3 for i = 1 to n4 for j = 1 to n5 l’ij = ∞

6 for k = 1 to n7 l’ij = min(l’ij, lik + wkj)

8 return L’

Page 10: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

10

06

052

04

710

4830

)1(L

0618

20512

11504

71403

42830

)2(L

1

45

2

3

-4

17

2

6

-5

83

4

Example:

W =

Page 11: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

11

06158

20512

115047

11403

42330

)3(L

06158

20512

35047

11403

42310

)4(L

Page 12: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

12

Matrix Multiplication

Let l(m-1) -> a w -> b l(m) -> c min -> + + -> ‧

time complexity : O(n3)

Cij = k=1 to n aik‧bkj

lij(m) = min1≤k≤n {lik(m-1) + wkj}

Page 13: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

13

SLOW-ALL-PAIRS-SHORTEST-PATHS(W)

L(1) = L(0) ‧ W = WL(2) = L(1) ‧ W = W2

L(3) = L(2) ‧ W = W3

‧ ‧ ‧

L(n-1) = L(n-2) ‧W = Wn-1

Page 14: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

14

SLOW-ALL-PAIRS-SHORTEST-PATHS(W)

1 n = W.rows2 L(1) = W3 for m = 2 to n-14 let L(m) be a new n x n matrix5 L(m) = EXTENDED-SHORTEST-

PATHS( L(m-1), W )6 return L(n-1)

Time complexity : O(n4)

Page 15: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

15

Improving the running time

L(1) = WL(2) = W2 =W.WL(4) =W4 = W2.W2

. . .

i.e., using repeating squaring!

Time complexity: O(n3lg n)

12122)2( )1log()1log()1log()1log(

nnnn

WWWL

Page 16: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

16

FASTER-ALL-PAIRS-SHORTEST-PATHS(W)1. n =W.row2. L(1) =W3. m =14. while m < n-1 5. let L(2m) be a new n x n matrix

6. L(2m) = Extend-Shorest-Path(L(m), L(m))7. m = 2m8. return L(m)

FASTER-ALL-PAIRS-SHORTEST-PATHS

Page 17: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

17

The Floyd-Warshall algorithm

• A different dynamic programming formulation

‧The structure of a shortest path: Let V(G)={1,2,…,n}. For any pair of

vertices i, j єV, consider all paths from i to j whose intermediate vertices are drawn from {1, 2,…,k}, and let p be a minimum weight path among them.

Page 18: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

18

The structure of a shortest path

• If k is not in p, then all intermediate vertices are in {1, 2,…,k-1}.

• If k is an intermediate vertex of p,

then p can be decomposed into i ~ k

~ j where p1 is a shortest path from i

to k with all the intermediate vertices in {1,2,…,k-1} and p2 is a shortest path from k to j with all the intermediate vertices in {1,2,…,k-1}.

1p1 p 2 p

Page 19: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

19

A recursive solution to the all-pairs shortest path

• Let dijk =the weight of a shortest path

from vertex i to vertex j with all intermediate vertices in the set {1,2,…,k}.

dij(k) = wij if k = 0

= min(dij(k-1), dik

(k-1) + dkj(k-1)) if k ≥ 1

D(n) = (dij(n)) if the final solution!

Page 20: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

20

FLOYD-WARSHALL(W)

1. n = W.rows 2. D(0)= W 3. for k = 1 to n 4. Let D(k) = (dij

(k)) be a new n x n matrix 5. for i = 1 to n 6. for j = 1 to n 7. dij

(k) = min (dij(k-1), dik

(k-1) + dkj(k-

1)) 8. return D(n)

Complexity: O(n3)

Page 21: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

21

Constructing a shortest path

• π(0), π(1),…, π(n)

• πij(k) : is the predecessor of the vertex j

on a shortest path from vertex i with all intermediate vertices in the set {1,2,…,k}.

πij(0) = NIL if i=j or wij = ∞

= i if i ≠j and wij < ∞

πij(k) = πij

(k-1) if dij(k-1) ≤ dik

(k-1) + dkj(k-1)

= πkj(k-1) if dij

(k-1) > dik(k-1) + dkj

(k-1)

Page 22: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

22

Example

06

052

04

710

4830

)0(D

06

20552

04

710

4830

(1)D

NNNN

NNN

NNNN

NNN

NN

5

44

3

22

111

(0)

NNNN

N

NNNN

NNN

NN

5

1414

3

22

111

(1)

Page 23: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

23

06

20552

11504

710

44830

(2)D

NNNN

N

NN

NNN

N

5

1414

223

22

1211

(2)

06

20512

11504

710

44830

)3(D

NNNN

N

NN

NNN

N

5

1434

223

22

1211

(3)

Page 24: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

24

06158

20512

35047

11403

44130

(4)D

06158

20512

35047

11403

42310

(5)D

N

N

N

N

N

5434

1434

1234

1244

1241

(4)

N

N

N

N

N

5434

1434

1234

1244

1541

(5)

Page 25: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

25

Transitive closure of a directed graph

• Given a directed graph G = (V, E) with V = {1,2,…, n}

• The transitive closure of G is G*= (V, E*) where E*={(i, j)| there is a path from i to j in G}.

Modify FLOYD-WARSHALL algorithm:tij

(0) = 0 if i≠j and (i,j) ∉ E

1 if i=j or (i,j) є Efor k ≥ 1 tij

(k) = tij(k-1) (tik

(k-1) tkj(k-1))

Page 26: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

26

TRANSITIVE-CLOSURE(G)1 n = |G.V|2 Let T(0) = (tij

(0)) be a new n x n matrix

3 for i = 1 to n 4 for j =1 to n5 if i == j or (i, j) ∈ G.E6 tij

(0) = 1

7 else tij(0) = 0

8 for k =1 to n9 Let T(k) = (tij

(k)) be a new n x n matrix

10 for i = 1 to n11 for j =1 to n12 tij

(k) = tij(k-1) (tik

(k-1) tkj(k-1))

123 return T(n)

Time complexity: O(n3)

Page 27: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

27

Example

1101

0110

1110

0001

(0)T

1101

0110

1110

0001

(1)T

1101

1110

1110

0001

(2)T

1111

1110

1110

0001

(3)T

1111

1111

1111

0001

(4)T

① ②

③④

Page 28: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

28

Some Algorithms• When no negative edges

– Using Dijkstra’s algorithm: O(V3)– Using Binary heap implementation: O(VE lg

V)– Using Fibonacci heap: O(VE + V2log V)

• When no negative cycles– Floyd-Warshall [1962]: O(V3) time

• When negative cycles– Using Bellman-Ford algorithm: O(V2 E) =

O(V4 )– Johnson [1977]: O(VE + V2log V) time based

on a clever combination of Bellman-Ford and Dijkstra

Page 29: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

29

Johnson’s algorithm for sparse graphs

• If all edge weights in G are nonnegative,

we can find all shortest paths in O(V2lg V

+ VE) by using Dijkstra’s algorithm with

Fibonacci heap

• Bellman-Ford algorithm takes O(VE)

• Using reweighting technique

Page 30: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

30

Reweighting technique

• If G has negative-weighted edge, we compute a new set of nonnegative weight that allows us to use the same method. The new set of edge weight ŵ satisfies:

• 1. For all pairs of vertices u, v єV, a shortest path from u to v using weight function w is also a shortest path from u to v using the weight function ŵ

• 2. ∀(u,v) є E(G), ŵ(u,v) is nonnegative

Page 31: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

31

Lemma: (Reweighting doesn’t change shortest paths)

• Given a weighted directed graph G = (V, E) with weight function w:E→R , let h:V →R be any function mapping vertices to real numbers. For each edge (u,v) є E, ŵ(u,v) = w(u,v) + h(u) – h(v)

• Let P=<v0,v1,…,vk> be a path from vertex v0 to vk Then w(p) = δ(v0,vk) if and only if ŵ(p) = (v0,vk) Also, G has a negative-weight cycle using weight function w iff G has a negative weight cycle using weight function ŵ. 

Page 32: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

32

Proof• ŵ(p) = w(p) + h(v0) – h(vk)

ŵ(p) = ŵ(vi-1 ,vi)

= (w(vi-1 ,vi) + h(vi-1)-h(vi))

= w(vi-1 ,vi) + h(v0)-h(vk)

=w(p) + h(v0) – h(vk)

k

i 1

k

i 1

k

i 1

Page 33: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

33

Proof

• Because h(v0) and h(vk) do not depend on the path, if one path from v0 to vk is shorter than another using weight function w, then it is also shorter using ŵ. Thus,

w(p) = δ(v0,vk) if and only if ŵ(p) = (v0,vk)

Page 34: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

34

Proof

• G has a negative-weight cycle using w iff G has a negative-weight cycle using ŵ. 

• Consider any cycle C=<v0,v1,…,vk> with v0=vk . Then ŵ(C) = w(C) + h(v0) – h(vk) = w(C) .

Page 35: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

35

Producing nonnegative weight by reweighting

• Given a weighted directed graph G = (V, E)

• We make a new graph G’= (V’,E’), V’ = V ∪ {s}, E’ = E ∪{(s,v): v є V} and w(s,v) = 0, for all v in V

• Let h(v) = δ(s, v) for all v V’• We have h(v) ≤ h(u) + w(u, v) (why?)• ŵ(u, v) = w(u, v) + h(u) – h(v) ≥ 0

Page 36: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

36

-41

7

2

6

-5

8

3 42

3

45

1

Example:

Page 37: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

37

-4

1

7

2

6

-5

8

3 4-1

-5

-4 0

0

2

3

45

1

0S

0

0

0

0

0

Page 38: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

38

0

0

10

2

2

0

13

4 0-1

-5

-4 0

0

2

3

45

1

0S

4

0

0

1

5

h(v) = δ(s, v)ŵ(u, v) = w(u, v) + h(u) – h(v)

Page 39: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

39

JOHNSON algorithm

1 Computing G’, where G’.V = G.V ∪ {s}and G’.E= G.E ∪{(s, v): v є G.V} and w(s, v) = 0.

2 if BELLMAN-FORD(G’, w, s)= FALSE3 print “the input graph contains negative

weight cycle”4 else for each vertex v є G’.V5 set h(v) to be the value of δ(s, v) computed

by the BF algorithm6 for each edge (u, v) є G’.E, ŵ(u, v) = w(u, v)

+ h(u) – h(v)

Page 40: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

40

JOHNSON algorithm

7 Let D = (duv) be a new n x n matrix

8 for each vertex u є G.V run DIJKSTRA (G, ŵ, u) to compute (u, v)

for all v є V[G] .10 for each vertex v є G.V 11 duv = (u, v) + h(v) – h(u)

12 return DComplexity: O(V2lgV + VE)

Page 41: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

41

00

10

2

2

0

13

4 0

2

3

45

1

2/1

2/-3

2/20/-4

0/0

00

10

2

2

0

13

4 0

2

3

45

1 0/0

2/3 0/-4

0/12/-1

00

10

2

2

0

13

4 03

45

1 0/0

0/4

2/7

2/3 0/5

2

Page 42: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

42

0 010

2

2

0

13

4 0

2

3

45

1

2/2

0/-1

0/-5

0/02/-2

00

10

2

2

0

13

4 0

2

3

45

12/5

4/8

0/0

2/1

2/6

Page 43: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

43

Homework

• Practice at home: Exercises: 25.1-5, 25.1-6, 25.1-7

• Practice at home : 25.2-4, 25.2-5• Exercises: 25.2-8 (Due: Jan. 4)• Practice at home : 25.3-3• Exercises: 25.3-5 (Due: Jan. 4)

Page 44: 1 Chapter 25: All-Pairs Shortest-Paths. 2 Some Algorithms When no negative edges –Using Dijkstra’s algorithm: O(V 3 ) –Using Binary heap implementation:

44

Quiz 5• Please show the ordering of the

following vertices produced by Topological Sort Algorithm

under-shorts

pants

belt

shirt

tie

socks

shoes

jacket