1 ch1. atomic structure orbitals orbitals periodicity periodicity

35
1 CH1. Atomic Structure CH1. Atomic Structure orbitals orbitals p p eriodicity eriodicity

Upload: angelica-hampton

Post on 21-Jan-2016

271 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

1

CH1. Atomic StructureCH1. Atomic Structure orbitalsorbitals pperiodicityeriodicity

Page 2: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

2

Schrodinger equation

- (h2/22me2) [d2/dx2+d2/dy2+d2/dz2] + V = E

 

gives quantized energies

h = constant

me = electron mass

V = potential E

E = total energy

Page 3: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

3

n,l,ml (r,) = Rn,l (r) Yl,ml ()

Rn,l(r) is the radial component of

• n = 1, 2, 3, ...; l = 0 to n – 1 • integral of over all space must be

finite, so R → 0 at large r

Spherical coordinates

Page 4: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

4

Rn,l (r)

Orbital n l Rn,l for H atom

1s 1 0 2 (Z/ao)3/2 e-/2

2s 2 0 1 / (2√2) (Z/ao)3/2 (2 - ½) e-/4

= 2 Zr / na0

Page 5: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

5

Radial Distribution Function (RDF)

• R(r)2 is a probability function (always positive)

• The volume increases exponentially with r, and is 0 at nucleus (where r = 0)

• 4r2R2 is a radial distribution function (RDF) that takes into account the spherical volume element

RDF max

is the Bohr

radius

Page 6: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

6

n,l,ml (r,) = Rn,l(r) Yl,ml()

Yl,ml () is the angular component

of

• ml = - l to + l

• When l = 0 (s orbital), Y is a constant, and is spherically symmetric

Page 7: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

7

Some Y2 functions

positive negative

When l = 1 (p orbitals)ml = 0 (pz orbital)

Y = 1.54 cos, Y2 cos2, ( = angle between z axis and xy

plane) xy is a nodal plane

Page 8: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

8

Orbitals

an atomic orbital is a specific solution for , parameters are Z, n, l, and ml

• Examples:1s is n = 1, l = 0, ml = 0

2px is n = 2, l = 1, ml = -1

Page 9: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

9

Example - 3pz orbital

From SA Table 1.2 for hydrogenic orbitals;

n = 3, l = 1, ml = 0

3pz = R3pz . Y3pz

3pz = (1/18)(2-1/2(Z/a0)3/2(4)e-cos

where2Zr/na0

Page 10: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

10

Some orbital shapes

Atomic orbital viewer

Page 11: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

11

Orbital energies

For 1 e- (hydrogenic) orbitals:

E = – mee4Z2 / 8h2n2

E – (Z2 / n2)

Page 12: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

12

Many electron atoms

• with three or more interacting bodies (nucleus and 2 or more e-) we can’t solve or E directly

• common to use a numerative self-consistent field (SCF)

• starting point is usually hydrogen atom orbitals

• E primarily depends on effective Z and n, but now also quantum number l

Page 13: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

13

Shielding

• e- - e- interactions (shielding, penetration, screening) increase orbital energies

• there is differential shielding related to radial and angular distributions of orbitals

• example - if 1s electron is present then E(2s) < E(2p)

Page 14: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

14

Orbital energies

Page 15: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

15

Effective Nuclear Charge

• Zeff = Z* = Z -

• SCF calculations for Zeff have been tabulated (see text)

• Zeff is calculated for each orbital of each element

• E approximately proportional to -(Zeff)2 / n2

shielding parameter

Page 16: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

16

Table 1.2

Page 17: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

17

Valence Zeff trends

s,p 0.65 Z / e-

d 0.15 Z / e-

f 0.05 Z / e-

Page 18: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

18

Electron Spin

• ms (spin quantum number) with 2

possible values (+ ½ or – ½). • Pauli exclusion principal - no two

electrons in atom have the same 4 quantum numbers (thus only two e-

per orbital)

Page 19: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

19

Electronic Configurations

Examples: • Ca (Z = 20) ground state config.

1s2 2s2 2p6 3s2 3p6 4s2

or just write [Ar]4s2

• N (Z = 7) 1s2 2s2 2p3

[He] 2s22p3

actually [He] 2s22px1 2py

1 2pz1

Page 20: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

20

Multiplicity

• Hund's rule of maximum multiplicity – atom is more stable when electron's correlate with the same ms sign

• This is a small effect, only important where orbitals have same or very similar energies (ex: 2px 2py 2pz, or 4s and 3d)

• S = max total spin = the sum adding +½ for each unpaired electron

• multiplicity = 2S + 1

Page 21: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

21

1st row transition metals

# unpaired e- multiplicity

Sc [Ar]3d14s2 1 2

Ti [Ar]3d24s2 2 3

V [Ar]3d34s2 3 4

Cr [Ar]3d54s1 6 7

Mn [Ar]3d54s2 5 6

Fe [Ar]3d64s2 4 5

Co [Ar]3d74s2 3 4

Ni [Ar]3d84s2 2 3

Cu [Ar]3d104s1 1 2

Zn [Ar]3d104s2 0 1

3d half-filled

3d filled

Page 22: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

22

Ionic configurations

• Less shielding, so orbital E’s are ordered more like hydrogenic case, example: 3d is lower in E than 4s

• TM ions usually have only d-orbital valence electrons, dns0

Fe (Z = 26)

Fe is [Ar]3d64s2

But Fe(III) is [Ar]3dBut Fe(III) is [Ar]3d5 5 4s4s00

Page 23: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

23

Atomic Orbitals - Summary

(R,Y)• RDF and orbital shapes

• shielding, Zeff, and orbital energies

• electronic configurations, multiplicity

Page 24: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

24

Periodic Trends

• Ionization Energy ( I )

• Electron Affinity (Ea)

• Electronegativity () • Atomic Radii• Hardness / Softness

Page 25: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

25

Ionization energy

• Energy required to remove an electron from an atom, molecule, or ion

• I = H [A(g) → A(g)+ + e- ]• Always endothermic (H > 0), so I is always positive

Page 26: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

26

Ionization energy

• Note the similarity of trends for I and Zeff, both increase left to right across a row, more rapidly in sp block than d block

• Advantage of looking at I trend is that many data are experimentally determined via gas-phase XPS

• But, we have to be a little careful, I doesn't correspond only to valence orbital energy…

Page 27: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

27

Ionization energy

• I is really difference between two atomic states

• Example:N(g) → N+(g) + e- px

1py1pz

1 → 2px12py

1

mult = 4 → mult = 3

vs. O(g) → O+(g) + e-

px2py

1pz1 → px

1py1pz

1

mult = 3 → mult = 4

Trend in I is unusual, but not trend in Zeff

Page 28: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

28

Ionization energy

I can be measured for molecules

cation I (kJ/mol)

NO 893  

NO2  940 

CH3 950 

O2  1165 

OH 1254 

N2 1503 HOAsF6

N2AsF6

CH3SO3CF3, (CH3)2SO4

NOAsF6

NO2AsF6

O2AsF6 

Molecular ionization energies can help explain some compounds’ stabilities.

DNE

Page 29: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

29

Electron affinity• Energy gained by capturing an electron

• Ea = – H [A(g) + e- → A-(g)]

• Note the negative sign above • Example:

H [F(g) + e- → F- (g)] = - 330 kJ/mol

Ea(F) = + 330 kJ/mol (or +3.4 eV)

• notice that I(A) = Ea(A+)

I = H [A(g) → A+(g) + e-]

Page 30: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

30

Electron affinity• Periodic trends similar to those for I,

that is, large I means a large Ea

• Ea negative for group 2 and group 18 (closed shells), but Ea positive for other elements including alkali metals: H [Na(g) + e- → Na-(g)] ≈ - 54 kJ/mol

• Some trend anomalies:

Ea (F) < Ea (Cl) and Ea (O) < Ea (S) these very small atoms have high e- densities that cause greater electron-electron repulsions

Why aren’t sodide

A+ Na- (s)

salts common ?

Page 31: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

31

Electronegativity

Attractive power of atom or group for electrons

Pauling's definition (P): A-A bond enthalpy = AA (known)B-B bond enthalpy = BB (known)A-B bond enthalpy = AB (known) If H(AB) < 0 then AB > ½ (AA + BB)

AB – ½ (AA + BB) = const [(A) - (B)]y

Mulliken’s definition: M = ½ (I + Ea)

Page 32: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

32

Atomic Radii

Radii decrease left to right across periods

• Zeff increases, n is constant

• Smaller effect for TM due to slower increase Zeff

• (sp block = 0.65, d block = 0.15 Z / added proton)

Page 33: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

33

Atomic Radii

• X-ray diffraction gives very precise distances between nuclei in solids

• BUT difficulties remain in tabulating atomic or ionic radii. For example:

• He is only solid at low T or high P, but all atomic radii change with P,T• O2 solid consists of molecules

O=O........O=O• P(s) radius depends on allotrope studied

Page 34: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

34

Atomic radii - trends

• Radii increase down a column, since n increases lanthanide contraction: 1st row TM is

smaller, 2nd and 3rd row TMs in each triad have similar radii (and chemistries)

Pt 1.39Os 1.35Ta 1.476

Pd 1.37Ru 1.34Nb 1.475

Ni 1.25Fe 1.26 V 1.35 Å4

Group 10Group 8Group 5PeriodWhy? Because 4f electrons are diffuse and don't shield effectively

Page 35: 1 CH1. Atomic Structure orbitals orbitals periodicity periodicity

35

Hardness / Softness

• hardness () = ½ (I - Ea)

prop to HOAO – LUAO gap• large gap = hard, unpolarizable

small gap = soft, polarizable• polarizability () is ability to

distort in an electric field