07 lecture

66
Introduction to Telecommunication M J Khan Lecture 07

Upload: fatima-tahir

Post on 15-Jul-2015

104 views

Category:

Technology


5 download

TRANSCRIPT

Page 1: 07 lecture

Introduction to Telecommunication

M J Khan

Lecture 07

Page 2: 07 lecture

Menu

• Frequency and frequency domain

• Fourier Transform

• Discrete Fourier Transform (DFT)

• Signal Encoding Techniques

• Bit Encoding Techniques

Page 3: 07 lecture

Frequency

• Frequency is the rate of change with respect

to time.

• Change in a short span of time means high

frequency.

• Change over a long span of time means low

frequency.

Page 4: 07 lecture

Time domain VS Frequency domain

Page 5: 07 lecture

Time domain VS Frequency domain

A complete sine wave in the time domain

can be represented by one single spike in

the frequency domain.

Page 6: 07 lecture

Time domain VS Frequency domain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

-5

0

5

10

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

-5

0

5

10

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4

5

Page 7: 07 lecture

Time domain VS Frequency domain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

-5

0

5

10

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4

5

Page 8: 07 lecture

Time domain VS Frequency domain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-10

-5

0

5

10

0 10 20 30 40 50 60 70 80 90 1000

1

2

3

4

5

Page 9: 07 lecture

Fourier Analysis

Fourier analysis is a tool that changes a time

domain signal to a frequency domain signal

and vice versa.

Page 10: 07 lecture

Fourier Series

Every composite periodic signal can be

represented with a series of sine and cosine

functions. The functions are integral

harmonics of the fundamental frequency “f”

of the composite signal. Using the series we

can decompose any periodic signal into its

harmonics.

Page 11: 07 lecture

Fourier Transform

Fourier Transform gives the frequency

domain of a non-periodic time domain signal.

Page 12: 07 lecture

Discrete Fourier Transform (DFT)

We are living digital age where every signal

is

• Sampled

• Of finite extent

The DFT is the sampled Fourier Transform.

1

0

/2)()(N

t

NstjetfsF

Page 13: 07 lecture

Inverse DFT

In similar fashion we can transform

frequency domain to time domain

1

0

/2)(1

)(N

s

NstjesFN

tf

Page 14: 07 lecture

Example

Let

]123543[)(tf

1

0

/2)()(N

t

NstjetfsF

We know

By Applying we get

]5.1962i 1.0000-0205.1962i - 1.0000-18[)(sF

Page 16: 07 lecture

Signal Encoding Techniques

• Digital Data Analog Signal

• Analog Data Analog Signal

• Analog Data Digital Signal

Page 17: 07 lecture

Digital Data Analog Signal

Page 18: 07 lecture

Digital Data Analog Signals

Page 19: 07 lecture

Digital Data Analog Signals

Page 20: 07 lecture

Amplitude Shift Keying

Page 21: 07 lecture

Frequency Shift Keying

Page 22: 07 lecture

Phase Shift Keying

Page 23: 07 lecture

Phase Shift Keying

Page 24: 07 lecture

4-PSK

Page 25: 07 lecture

8-PSK

Page 26: 07 lecture

Quadrature amplitude modulation is a

combination of ASK and PSK so that a

maximum contrast between each signal

unit (bit, dibit, tribit, and so on) is

achieved.

Note:

Page 27: 07 lecture

The 4-QAM and 8-QAM collections

Page 28: 07 lecture

Time domain for an 8-QAM signal

Page 29: 07 lecture

16-QAM collections

Page 30: 07 lecture

Bit and baud

Page 31: 07 lecture

Bit and baud rate comparisonModulation Units Bits/Baud Baud rate Bit Rate

ASK, FSK, 2-PSK Bit 1 N N

4-PSK, 4-QAM Dibit 2 N 2N

8-PSK, 8-QAM Tribit 3 N 3N

16-QAM Quadbit 4 N 4N

32-QAM Pentabit 5 N 5N

64-QAM Hexabit 6 N 6N

128-QAM Septabit 7 N 7N

256-QAM Octabit 8 N 8N

Page 32: 07 lecture

Analog Data Analog Signals

Amplitude Modulation (AM)

Frequency Modulation (FM)

Phase Modulation (PM)

Page 33: 07 lecture

Analog Data Analog Signal

Page 34: 07 lecture

Analog Data Analog Signal

Page 35: 07 lecture

Amplitude Modulation

Page 36: 07 lecture

Angle Modulation

Page 37: 07 lecture

Analog Data Digital Signal

Page 38: 07 lecture

Pulse Code Modulation

Page 39: 07 lecture

Pulse Code Modulation

PCM involves following steps

1. Sampling

2. Quantization

3. Coding

Page 40: 07 lecture

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Analog Signal

Time (seconds)

L

e

v

e

l

s

Page 41: 07 lecture

Nyquist Sampling Theorem

Page 42: 07 lecture

Nyquist Sampling

Theorem

Fs = Fc/2

Page 43: 07 lecture

Nyquist Sampling

Theorem

Fs = Fc/2

Page 44: 07 lecture

Nyquist Sampling

Theorem

Fs = Fc

Page 45: 07 lecture

Nyquist Sampling

Theorem

Fs = Fc

Page 46: 07 lecture

Nyquist Sampling

Theorem

Fs = 1.5*Fc

Page 47: 07 lecture

Nyquist Sampling

Theorem

Fs = 1.5*Fc

Page 48: 07 lecture

Nyquist Sampling

Theorem

Fs = 2*Fc

Page 49: 07 lecture

Nyquist Sampling

Theorem

Fs = 2*Fc

Page 50: 07 lecture

Nyquist Sampling

Theorem

Fs = 4*Fc

Page 51: 07 lecture

Nyquist Sampling

Theorem

Fs = 4*Fc

Page 52: 07 lecture

Nyquist Sampling

Theorem

Fs = 6*Fc

Page 53: 07 lecture

Nyquist Sampling

Theorem

Fs = 6*Fc

Page 54: 07 lecture

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sampling

Time (seconds)

L

e

v

e

l

s

Page 55: 07 lecture

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Quantization

Time (seconds)

L

e

v

e

l

s

Page 56: 07 lecture

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

After Sampling

Time (seconds)

L

e

v

e

l

s

Page 57: 07 lecture

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

After Quantization

Time (seconds)

L

e

v

e

l

s

Page 58: 07 lecture

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0011

0100

0111

1000

1001

1010

1011

10111011

1010

1001

10001000

0111

10001000

1000

0110

Coding

Time (seconds)

L

e

v

e

l

s

Page 59: 07 lecture

Delta Modulation

Page 60: 07 lecture

Pulse Code Modulation

Delta Modulation involves following

steps

1. Step up or Step down

2. Coding

Page 61: 07 lecture

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Analog Signal

Time (seconds)

L

e

v

e

l

s

Page 62: 07 lecture

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Follow the Difference

Time (seconds)

L

e

v

e

l

s

Page 63: 07 lecture

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Coding

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0

Time (seconds)

L

e

v

e

l

s

Page 64: 07 lecture

Bit Encoding

Page 65: 07 lecture

1 0 1 0 1 1 0 01

Unipolar NRZ

NRZ-Inverted

(Differential

Encoding)

Bipolar

Encoding

Differential

Manchester

Encoding

Polar NRZ

Manchester

Encoding

Page 66: 07 lecture