06 solute redistribution

Upload: serhenk

Post on 08-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 06 Solute Redistribution

    1/47

    Solute RedistributionTopic 6

    M.S Darwish

    MECH 636: Solidification Modelling

    dCL

    d!s

    kCo

    Cs=kC

    o

    CL

  • 8/6/2019 06 Solute Redistribution

    2/47

    Local Equilibrium

    Solidus and liquidus curves

    Equilibrium distribution coefficient, k0

    Tieline jump

    Macrosegregation at Planar Interfaces

    GulliverScheil equations

    Assumptions

    Mass balance

    Limitations

    Transportlimited segregation

    Initial Transient

    Steadystate solute distribution

    Terminal Transient

    Effects of Stirring & Convection

    BurtonPrimSlichter Theory, kBPS

  • 8/6/2019 06 Solute Redistribution

    3/47

  • 8/6/2019 06 Solute Redistribution

    4/47

    CS

    CL

    Distance

    Com

    position

    solid liquid

    kCo Co Co/k

    T

    Cmax Ceut

    TLT

    TS

    CSCL k=CS/CL

    C

    A B

    To

    Composition

    Temperature

    ?

    In practice equilibrium is

    maintained at the solid liquid

    interface where composition

    agrees with the phase diagram

    ?

    k=C

    s

    *

    Cl

    *

  • 8/6/2019 06 Solute Redistribution

    5/47

    C

    liquidus

    solidus

    T

    Tie line jump

    CB

    S L

    Molecular scale

    Continuum scale

  • 8/6/2019 06 Solute Redistribution

    6/47

    Composition

    Distance0

    CS

    = Co

    End of Solidification

    *

    Composition

    Co

    kCo

    Distance0 L

    CL

    = CL! C

    o

    Start of Solidification

    *

    Composition

    Co

    CL

    CSkCo

    Distance0 L

    At Temperature T

    sCs + lCl =Co

    Complete Diffusion in

    Solid and Liquid

    Respectively

    kCo Co Co/k

    T

    Csm Ceut

    TLT

    TS

    CSCL k=CS/CL

    C

    A B

    To

    Composition

    Temperature

    Lever Rule

  • 8/6/2019 06 Solute Redistribution

    7/47

  • 8/6/2019 06 Solute Redistribution

    8/47

    Although local interfacial equilibrium

    generally holds during solidification, the

    system cannot remain in global

    equilibrium because diffusion rates in

    the solid are too slow.

    G. Gulliver (1921) and E. Scheil (1942)

    both assumed:

    Perfect mixing in liquid

    No diffusion in solid

    Local equilibrium at S/L interface

    Cs

    *C

    l

    *( )dx = L x( )dCl

    Cl

    * Cs*

    Cl

    *1

    dx = L x( )dCl

    Cl= C

    l

    *( )

    Cl

    *k1( )dx = L x( )dCl

    k1( )d x

    L x( )0

    x

    =d C

    l

    ClC0

    Cl

    s=

    x

    Lnote that

    solid liquid

    dxL0

    x

  • 8/6/2019 06 Solute Redistribution

    9/47

    The GulliverScheil mass balanceeventually leads to nonphysicalpredictions as s1.

    The phase diagram provides limits to

    how high the concentrations, Clor Cscan rise due to segregation. Secondphase formation (generally from eutecticreaction) then occurs.

    GulliverScheil is independentof the shape of the S/L interface!

    Where

    s=

    x

    L

    1 s( )

    k01( )=

    Cl

    C0

  • 8/6/2019 06 Solute Redistribution

    10/47

    Composition

    Co

    CL

    CSkCo

    Distance0 L

    At Temperature T

    *Composition

    Co

    kCo

    Distance0 L

    CL=

    CL! C

    o

    Start of Solidification

    *

    kCo

    Co

    Csm

    CE

    Composition

    Distance0 L

    End of Solidification

    kCo Co Co/k

    T

    Csm Ceut

    TLT

    TS

    CSCL k=CS/CL

    C

    A B

    To

    Composition

    Temperature

    ClC

    s

    *( )ds = 1 s( )dClsolidification of

    ds

    Cs

    *= kC

    o1

    s( )k1

    Cl= C

    o1

    s( )k1

    d

    1 0

    s

    =dC

    l

    Cl1 k( )Co

    Cl

    Scheil relation

    dCL

    d!s

    kCo

    Cs=kC

    o

    CL

    rejected solute fromsolid

    solute increase inliquid

  • 8/6/2019 06 Solute Redistribution

    11/47

    0

    1

    2

    3

    4

    5

    0 0.2 0.4 0.6 0.8 1

    Cl

    /Co

    Fraction Solid, fs

    0.1

    k0=0.01

    0.2

    0.3

    0.4

    0.5

    0.6

    0.70.8

    k0

  • 8/6/2019 06 Solute Redistribution

    12/47

    0

    0.5

    1

    1.5

    2

    0 0.2 0.4 0.6 0.8 1

    Cs

    /C0

    Fraction Solid, fs

    k0=0.03

    0.10.2

    0.30.4

    0.50.6

    0.7

    0.8

    k0

  • 8/6/2019 06 Solute Redistribution

    13/47

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    Cl

    /C0

    Fraction Solid, fs

    k0

    =10

    5

    3

    2

    1.2

    1.5

    1.05

    k0>0

    1

    1

    s( )k01( )

    =

    Cl

    C0

  • 8/6/2019 06 Solute Redistribution

    14/47

    0

    1

    2

    3

    4

    5

    0 0.2 0.4 0.6 0.8 1

    Cs

    /C0

    Fraction Solid, fs

    k0=10

    5

    3

    2

    1.5

    1.2

    1.05

    k0>1

    k0 1

    s( )k01( )

    =

    Cs

    C0

  • 8/6/2019 06 Solute Redistribution

    15/47

    Maximum solubilityof Cu in Al is 2.5 at.% or 4.5 wt%.

  • 8/6/2019 06 Solute Redistribution

    16/47

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 2 4 6 8 10

    Dendritic Microsegregation(Al-4.5 wt% Cu)

    Conc.entration,

    Cu(at.%)

    Distance, X (microns)

    Segregation limit setby solubility limit.

    Al2.5 at% Cu

  • 8/6/2019 06 Solute Redistribution

    17/47

  • 8/6/2019 06 Solute Redistribution

    18/47

    liquidus

    solidus

    T

    C

    x

    solid liquid

    CB

    vC

    Cs(x

    )

    Cl(x)

    Solute boundary layer

    develops ahead of theadvancing S/L interface.

    Cs

    *T( )

    Cl

    *T( )

    Cl

    *T( )

    Cl*

    T( )

  • 8/6/2019 06 Solute Redistribution

    19/47

    Cl

    *

    Cs

    *

    Csx( )

    Clx( )

    C0

    Solid Liquid

    Solid LiquidJB

    v

  • 8/6/2019 06 Solute Redistribution

    20/47

    Consider Geometry

    Apply Ficks second law Find the general SS solution

    Apply boundary conditions

    Find solute gradient at theinterface

    v

  • 8/6/2019 06 Solute Redistribution

    21/47

    vIn 1-D

    dC

    dt= DC D

    2C

    dC

    dt= D

    2C

    z

    dC

    dt= D

    2C

    z= 0

  • 8/6/2019 06 Solute Redistribution

    22/47

    dz

    v

    Cs

    Cl

    dt

    A

    J =1

    J1 J2

    0

    2

    =

    =

    zdz

    dcDJ

    J1=J2

    dCdz

    = ClCs

    *

    ( )dz

    dt

    = v Cl

    Cs*

    ( )

    v = D

    ClC

    s

    *( )dC

    dzz= 0

  • 8/6/2019 06 Solute Redistribution

    23/47

  • 8/6/2019 06 Solute Redistribution

    24/47

    C

    C

    Z

    z

    Z

    vZz =

    vdt

    dz=

    ( )

    += z

    D

    vaazc exp10

    Apply Boundary conditions to evaluate the constants:

    ( )0

    Czc == ( ) Czc == 0

    00Ca = 01 CCa =

    ( ) ( )

    += z

    D

    vCCCzc exp00

    ( )0

    0

    CCD

    v

    z

    c

    z

    =

    =

    ( )0=

    =z

    z

    cDCCv

    ( ) ( ) = 0CC

    D

    vDCCv

    ( )1

    0=

    CC

    CC=

    Flux Balance at SS:

    Evaluate dc/dz:

    (Supersaturation)

    Must equal 1 for SS!

  • 8/6/2019 06 Solute Redistribution

    25/47

    C

    C

    Z

    C0

    Destabilizationrequires acertain growthdistance.

    Solute buildupincreases with time(or growth distance).

  • 8/6/2019 06 Solute Redistribution

    26/47

  • 8/6/2019 06 Solute Redistribution

    27/47

    At the interface

    Composition

    Co

    Co/k

    Distance0 L

    Start of Solidification

    kCo Co Co/k

    T

    Csm Ceut

    TLT

    TS

    CS

    CL k=CS/CL

    C

    A B

    To

    Composition

    Temperature

    dC

    dt= D

    d2C

    dx2

    dC

    dx

    dx

    dt= v

    dC

    dx

    DdC

    dx

    = v Cl

    Cs

    ( )

    dC

    dx

    = v

    DC

    l

    1 k( )

    far from the interface

    Cl= C

    o

    Cl= C

    o/k

    Cl=C

    o1+

    1 k

    k

    e

    x

    D / v

    Characteristic Distanc

    vdC

    dt= D

    d2C

    dx2

    D / v

    Initial

    Transient

    Composition

    Co

    CEut

    Distance0 L

    Steady State

    Csm

    FinalTransient

    After Solidification

  • 8/6/2019 06 Solute Redistribution

    28/47

    InitialTransient

    Composition

    Co

    CEut

    Distance0 L

    Steady State

    Csm

    FinalTransient

    After Solidification

    Cl= C

    o1+

    1 k

    k

    e

    x

    D / v

    C

    s

    =C

    o

    1+ 1

    k

    ( )e

    kx

    D / v

    ab

    f

    ac

    d

    bL

    L

    ab

    f

    L

    T1ab

    A B

    c d

    T2 e f T3

  • 8/6/2019 06 Solute Redistribution

    29/47

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.5 1 1.5 2 2.5 3

    [Cl(x

    )-

    C0

    ]/[C

    0/k

    0-

    C0

    ]

    =-(vX)/Dl

    Steady-State Dimensionless Solute Field in Melt

    1/e

    1/e2

    1/e3

    Note the characteristicdifusion length, ,

  • 8/6/2019 06 Solute Redistribution

    30/47

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.5 1 1.5 2 2.5 3

    [Cl(

    x)-

    C0

    ]/[C

    0/k

    0-

    C0]

    =-(vX)/Dl

    Steady-State Dimensionless Solute Field in Melt

    1/e

    1/e2

    1/e3

    Difusion is negligible beyond 3 e-folding lengths from the S/Linterface. The linear boundary layer approximation is equal to 1 e-folding,

    =1.

  • 8/6/2019 06 Solute Redistribution

    31/47

  • 8/6/2019 06 Solute Redistribution

    32/47

    0

    5

    10

    15

    20

    25

    00.20.40.60.81

    ScaledSolidConcentr

    ation,

    Cs

    /C0

    Dimensionless Distance from End, x/(Dl/v)

    k0=0.05

    0.2

    0.5

    31

    Terminal Transient

    0.1

    As a practical note, terminaltransients are seldom ofinterest in real crystal growthprocesses. The growth process

    is usually halted before thistransient begins.

    Note, little if any interactionoccurs when the S/L interfaceis more than a distance Dl/v

    from the end of the crucible.

  • 8/6/2019 06 Solute Redistribution

    33/47

  • 8/6/2019 06 Solute Redistribution

    34/47

    r

    R where a and b are constants.

    Boundary conditions:

    General solution:

    Particular solution:

    C r >> R( ) = C0 =a

    r+ b

    C r = R( ) = Cl*=

    a

    R+ b

    a = R Cl

    *C

    0( )

    C r( ) = C0 +R

    rC

    l

    *C

    0( )

  • 8/6/2019 06 Solute Redistribution

    35/47

    r

    RControlling solute gradient:

    Flux balance: J1=J2

    Substituting yields: or

    NOTE: difusivity

    shape factor

    supersaturation

    dC

    dr=

    R

    r2C

    l

    *C

    0( )

    dC

    drr=R

    =

    Cl

    *C

    0( )R

    C r( ) = C0 +R

    rC

    l

    *C

    0( )

    v=

    D

    Cl

    Cs

    *( )

    dC

    dzr=R

    v = D1

    R

    C

    lC

    0( )

    ClC

    s

    *( )

    Rv

    D=

    ClC

    0( )

    ClC

    s

    *( )

  • 8/6/2019 06 Solute Redistribution

    36/47

    Needle with hemispherical cap

    r

    R

    v

    Flux balance

    A Ah

    dC

    drr=R

    =

    Cl

    *C

    0( )R

    A Cl

    *C

    0( ) dzdt

    = AhD dC

    drr=R

    v = DA

    h

    AR

    C

    l

    * C0( )

    Cl

    * Cs

    *( )

    v = D

    2

    R

    Cl

    * C0( )

    Cl

    * Cs

    *( )

    Ah

    A=

    2R2

    R2

    = 2

  • 8/6/2019 06 Solute Redistribution

    37/47

  • 8/6/2019 06 Solute Redistribution

    38/47

    Plane Sphere Plate Needle

  • 8/6/2019 06 Solute Redistribution

    39/47

  • 8/6/2019 06 Solute Redistribution

    40/47

    During crystal growth and planefront solidification stirring occurs, whichaffects the segregation process. This was analyzed by Burton, Prim andSlichter (BPS Theory). They suggested three important zones: Solid zone (no diffusion) A static layer,, (diffusion transport) Liquid zone (complete mixing)

    diffusionregion convective mixing region

    0 x

    melt

    C0

    Cl^

    solid

    no diffusionCs

    ^

    Cs(x)

  • 8/6/2019 06 Solute Redistribution

    41/47

    BPS approximated the fluid dynamic momentum boundary layer as a staticzone, and bulk liquid as fully mixed.

    They derived segregation curves (inner & outer) consistent with these

    approximations in the fluid mechanics.

    Solid Liquid

    Cl x( ) =Cs*

    + Cl*

    Cs*

    ( )e

    v

    Dl

    x

    , (x )

    Clx( ) =C0, (x >)

    Cs*

    Cl

    *

    kBPS

    Cs

    *

    C0

  • 8/6/2019 06 Solute Redistribution

    42/47

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 2 4 6 8 10

    KBPS

    /(Dl/v)

    k0=0.005

    0.020.01

    0.3

    0.5

    0.15

    0.05

    Slower stirringRapidstirring

    k0

  • 8/6/2019 06 Solute Redistribution

    43/47

    0

    20

    40

    60

    80

    100

    0 2 4 6 8 10

    kBPS

    /ko

    /(Dl/v)

    k0=0.01

    0.0133

    0.02

    0.05

    0.1

    0.3

    0.03

    Slower stirringRapid stirring

  • 8/6/2019 06 Solute Redistribution

    44/47

  • 8/6/2019 06 Solute Redistribution

    45/47

  • 8/6/2019 06 Solute Redistribution

    46/47

    As summarized below, stirring provides kinetic control on the

    amount of macrosegregation segregation during steadystate

    plane front growth.

    Faster stirring kBPS Cs

    0 k0 k0C0

    0

  • 8/6/2019 06 Solute Redistribution

    47/47

    Equilibrium (lever-law) at S/L interfaces requires:

    Tie-line jumps

    Solidus & liquidus slopes (ms & ml)

    Segregation coefficient, k0

    Motion of the interface causes mass transport

    Diffusion boundary layer

    Solute rejection

    Gulliver-Scheil behavior leads to macrosegregation.

    Transients arise during solidification:

    Initial

    Steady-state

    Terminal

    Bouyancy convection treated with Burton-Prim-Schlichter theory