00 uhi report

19
POLITECNICO DI MILANO – Ingegneria dei Sistemi Edilizi PhD Program Sistemi Edilizi e compatibilita ambientale URBAN HEAT ISLAND PHENOMENON (UHI) GENERATION | MITIGATION Individual Report Presented to: Prof. GATTONI Presented by: Amr ELESAWY (750084) This report provides an overview of the definition and description of the Urban Heat Island phenomenon, its causes, impacts, and factors that contribute to mitigating its effect.

Upload: amr-alaa

Post on 24-Oct-2014

21 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 00 UHI Report

POLITECNICO  DI  MILANO  –  Ingegneria  dei  Sistemi  Edilizi  PhD  Program  Sistemi  Edilizi  e  compatibilita  ambientale  

                                   

   URBAN  HEAT  ISLAND  PHENOMENON  (UHI)  GENERATION  |  MITIGATION  Individual  Report    Presented  to:   Prof.  GATTONI  Presented  by:   Amr  ELESAWY  (750084)  This  report  provides  an  overview  of  the  definition  and  description  of  the  Urban  Heat   Island   phenomenon,   its   causes,   impacts,   and   factors   that   contribute   to  mitigating  its  effect.  

Cultural Heritage in Egypt!!"#$%&'()"#*"+*,-%*"./*01,2*"+*!(1&"*

Page 2: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     1  

TABLE  OF  CONTENTS    Introduction  ...........................................................................................................  2  Report  Objectives  ...................................................................................................  2  URBAN  HEAT  ISLAND  PHENOMENON  ..................................................................  3  1.  Definition  |  Description  .....................................................................................  3  -­‐   Surface  UHI:  ........................................................................................................  3  -­‐   Atmospheric  UHI:  ................................................................................................  4  2.  Measurment  .......................................................................................................  5  3.  Causes  ................................................................................................................  6  -­‐   Buildings  .............................................................................................................  6  -­‐   Properties  of  Surface  Materials  ............................................................................  6  -­‐   Reduction  of  Vegetation  in  Urban  Areas  ................................................................  6  -­‐   Anthropogenic  heat  .............................................................................................  7  4.  UHI  Impact  .........................................................................................................  7  5.  UHI  Mitigation  ....................................................................................................  8  -­‐   Trees,  vegetation,  and  green  roofs  .......................................................................  8  -­‐   Cool  roofs  ...........................................................................................................  9  -­‐   Cool  pavements  ..................................................................................................  9  COOL  ROOFS  ........................................................................................................  10  Properties  of  Cool  Roofs  ......................................................................................  11  -­‐   Solar  Reflectance  ...............................................................................................  11  -­‐   Thermal  Emittance  ............................................................................................  11  -­‐   Temperature  Effects  ..........................................................................................  11  Cool  Roof  Types  ...................................................................................................  12  -­‐   Material  ............................................................................................................  12  -­‐   Geometry  .........................................................................................................  13  Cool  Roofs  Contribution  Conflict  ..........................................................................  13  UHI  and  ENERGY  BALANCE  ..................................................................................  14  Energy  Balance  in  the  Urban  Atmospheric  layer  .................................................  14  Energy  Balance  in  the  Urban  Surface  layer  ..........................................................  14  Storage  and  anthropogenic  heat  fluxes  in  the  urban  energy  balance  .................  14  CONCLUSION  .......................................................................................................  16  BIBLIOGRAPHY  .....................................................................................................  17    

LIST  OF  TABLES  Tab.  1  Basic  Characteristics  of  Surface  and  Atmospheric  UHIs  ..............................  4    

LIST  OF  FIGURES    Fig.  1  Thermal  Image  Depicting  Surface  UHI  in  Atlanta  (Georgia),  on  September  

28th,  2000.  .....................................................................................................  5  Fig.  2  Scheme  showing  the  difference  in  behavior  between  Cool  and  Hot  Roofs.

 .....................................................................................................................  10    

Page 3: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     2  

In t roduct ion  In   the  modern   age   of   urban   climatology,  much   emphasis   has   been   placed   on  observing  and  documenting  heat  island  magnitudes  in  cities  around  the  world.  The  first  scientific  observations  were  documented  on  this  phenomena  were  by  Luke  Howard  in  1833.  His  temperature  analysis  in  and  around  London,  England,  have  shown  a  city  distinctly  warmer  than  its  countryside.  These  studies  and  their  estimates  of  UHI  magnitude  are  unrivalled  (incomparable)  in  their  contributions  to  urban  climatology.    Although   the   size   of   literature   about   this   phenomenon   is   reasonable   enough,  recently,  scholars  have  been  questioning  the  authenticity  with  which  heat  island  observations  have  been  gathered  and  reported  through  history.  To  what  extent  does  this  literature  serve  the  aims  of  science?  Can  its  measurements  be  trusted?  So   far,   the   response   to   these   questions   is   not   obvious.   Modern   heat   island  investigators   such   as   Parry   (1956),   Chandler   (1962,   1970)   and  Bohm  and  Gabl  (1978),  for  example,  alluded  to  problems  of  methodology  decades  ago.  In  recent  years,  discussion  around  these  same  problems  has  been  open  and  direct.1    Report  Ob jec t ives  This  report  provides  an  overview  of  different  types  of  urban  heat   islands,  their  causes,  impacts,  and  factors  that  contribute  to  mitigating  their  effect.  The  report  will  discuss:    

-­‐ Definition   and   a   brief   description   of   the   phenomenon,   and   its   types  (Surface  and  Atmospheric);  

-­‐ Causes  of  urban  heat  island  formation;  -­‐ Urban   heat   island   impacts   on   energy   consumption,   environmental  

quality,  and  human  health;  -­‐ Methods   of   mitigating   the   negative   impacts   of   the   phenomenon,  

focusing  on  the  Cool  Roofs  as  a  possible  solution;  -­‐ Discussing   the   relation   between   the   energy   balance   and   the   UHI  

Phenomenon.  -­‐ Highlighting  the  doubts  and  conflicts  in  the  authenticity  and  correctness  

of   the   information   regarding   the   phenomenon,   and   how   grave   the  impact  of  it  on  global  warming.    

                                                                                                                                 1  Stewart,  I.  D.,  “A  systematic  review  and  scientific  critique  of  methodology  in  modern  urban  heat  island  literature,”  International  Journal  of  Climatology,  published  online  15  Apr.  2010.  DOI:  10.1002/joc.2141  

Page 4: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     3  

URBAN  HEAT  ISLAND  PHENOMENON  1 .  Def in i t ion  |  Descr ip t ion  In   the   urban   development,   a   process   of   natural   landscape   replacement   takes  place.   Buildings,   roads,   and   other   infrastructure   replace   open   land   and  vegetation.   Surfaces   that   were   once   permeable   and   moist   generally   become  impermeable  and  dry.  This  development   leads   to   the   formation  of  urban  heat  islands;   in   other   words,  Urban   Heat   Island   (UHI)   is   the   phenomenon  whereby  urban  regions  experience  warmer  temperatures  than  their  rural  surroundings.      The  annual  mean  air  temperature  of  a  city  with  one  million  or  more  people  can  be   (1   to   3°C)   warmer   than   its   surroundings,   and   on   a   clear,   calm   night,   this  temperature  difference  can  be  as  much  as  (12°C).  Even  smaller  cities  and  towns  will   produce   heat   islands,   though   the   effect   often   decreases   as   city   size  decreases.2  With  the  increase  of  population,  the  urban  areas  tend  to  modify  a  greater  and  greater   area   of   land   and   have   a   corresponding   increase   in   the   average  temperature.      The  temperature  difference  usually  is  larger  at  night  than  during  the  day,  and  is  most   apparent   when  winds  are   weak.   Seasonally,   UHI   is   seen   during   both  summer  and  winter.  The  main  causes  of  the  urban  heat  island  are:  

1) The  modification  of   the   land   surface  by  urban  development  which  uses  materials  that  effectively  retain  heat.  

2) Waste   heat   generated   by   energy   usage   (e.g.   Heating   and   cooling  equipments  in  buildings…etc.)  is  a  secondary  contributor.3  

Understanding  urban  heat  island  (UHI)  contamination  in  the  situ  climate  record  is  a  complex  task  because  the  results  are  impacted  by  a  wide  variety  of  factors  not  related  to  urbanization.  Two   of   the   distinctive   ways   of   forming   HUI   are   the   Surface   UHI   and   the  Atmospheric  UHI.  4  These  two  heat  island  types  differ  in:  

§ Their  Formation;  § The  techniques  used  to  identify  and  measure  them;  § Their  impacts,  and;  § The  methods  available  to  moderate  them.  

 -­‐ Surface  UHI:  

On  a  hot,  sunny  summer  day,  the  sun  can  heat  and  dry  exposed  urban  surfaces,  like  roofs  and  pavement,  to  temperatures  (27  to  50°C)  hotter  than  the  air5,  while  shaded  or  moist  surfaces—often  in  more  rural  surroundings—remain  close  to  air  

                                                                                                               2  Oke,  T.R.  1982.  The  Energetic  Basis  of  the  Urban  Heat  Island.  Quarterly  Journal  of  the  Royal  Meteorological  Society.  108:1-­‐24.  3  Glossary  of  Meteorology  (2009).  "Urban  Heat  Island".  American  Meteorological  Society.  Retrieved  2009-­‐06-­‐19.  4  http://www.epa.gov/heatislands/about/index.htm    5  Berdahl   P.   and   S.   Bretz.   1997.   Preliminary   Survey   of   the   Solar   Reflectance   of   Cool   Roofing   Materials.  Energy  and  Buildings  25:149-­‐158.  

Page 5: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     4  

temperatures.   Surface   UHI   are   present   day   and   night,   but   they   tend   to   be  strongest  during  the  day  when  the  sun  is  shining.    On  average,  the  difference  in  daytime  surface  temperatures  between  developed  and  rural  areas  is  (10  to  15°C);  the  difference  in  nighttime  surface  temperatures  is  typically  smaller,  at  (5  to  10°C).6  Surface  UHIs  are  typically   largest   in  the  summer  and  lowest   in  winter;  because  of   the  variation   in   radiation  and   temperature,  due   to   the  changes   in   the  sun’s  intensity  with  seasons.    

-­‐ Atmospheric  UHI:  Atmospheric   urban   heat   islands   refer   to   the   existence   of  warmer   air   in   urban  areas  compared  to  cooler  air  in  nearby  rural  surroundings.  It’s  often  divided  into  two  different  types:    

1. Canopy  layer  UHI:  It  exists  in  the  layer  of  air  where  people  live,  from  the  ground  to  below  the  tops  of  trees  and  roofs.    

2. Boundary   layer   UHI:   It   starts   from   the   rooftop   and   treetop   level   and  extend  up  to  the  point  where  urban  landscapes  no  longer  influence  the  atmosphere.    

Atmospheric   urban   heat   islands   are   often   weak   during   the   late   morning   and  throughout  the  day,  and  they  become  more  marked  after  sunset  due  to  the  slow  release   of   heat   from   urban   infrastructure.   The   timing   of   this   peak,   however,  depends   on   the   properties   of   urban   and   rural   surfaces,   the   season,   and  prevailing  weather  conditions.    Following  is  a  table  summarizing  the  comparison  between  the  main  two  types  of  the  UHI  phenomenon:  

 Tab.  1  Basic  Characteristics  of  Surface  and  Atmospheric  UHIs7  

We   could   also   mention   that   both   Surface   and   atmospheric   UHIs   are  interconnected  and  both  have  a  significant  impact  on  each  other.  Surfaces  in  the  urban  setting  radiate  heat  which  affects  on  the  atmospheric  temperature,  which  by   turn   reflects   back   on   the   surface   materials   (especially   dark   ones,   such   as                                                                                                                  6  Numbers  from  Voogt,  J.A.  and  T.R.  Oke.  2003.  Thermal  Remote  Sensing  of  Urban  Areas.  Remote  Sensing  of  Environment.  86.  (Special  issue  on  Urban  Areas):  370-­‐384.  7  Oke.  T.R.  1987.  Boundary  Layer  Climates.  New  York,  Routledge.  

Page 6: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     5  

Asphalt)  forcing  them  to  store  more  heat  than  that  in  the  normal  temperatures.    2 .  Measurment  To   identify   urban   heat   islands,   scientists   use   direct   and   indirect   methods,  numerical   modeling,   and   estimates   based   on   empirical   models.   Researchers  often   use   remote   sensing,   an   indirect   measurement   technique,   to   estimate  surface  temperatures.  They  use  the  data  collected  to  produce  thermal   images,  such  as  that  shown  in  Fig.  1.    

 Fig.  1  Thermal  Image  Depicting  Surface  UHI  in  Atlanta  (Georgia),  on  September  28th,  2000.8  

                                                                                                                 8  http://earthobservatory.nasa.gov/IOTD/view.php?id=7205  

 

Page 7: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     6  

3 .  Causes  There  are  several  causes  of  an  urban  heat  island  (UHI).  Briefly  stated  as  follows:    

-­‐ Buildings  § Buildings   Block   Surface   Heat:   The   principal   reason   for   the  

nighttime  warming,  radiating  into  the  relatively  cold  night  sky.  § Geometric   Impact:   The   tall   buildings   within   many   urban   areas  

provide   multiple   surfaces   for   the   reflection   and   absorption   of  sunlight,   increasing   the   efficiency   with   which   urban   areas   are  heated.  This  is  called  the  "urban  canyon  effect".  Urban  geometry  influences   wind   flow,   energy   absorption,   and   a   given   surface’s  ability   to   emit   long-­‐wave   radiation   back   to   space.   In   developed  areas,   surfaces   and   structures   are   often   at   least   partially  obstructed  by  objects,  such  as  neighboring  buildings,  and  become  large  thermal  masses  that  cannot  release  their  heat  very  readily  because  of   these  obstructions.  Especially  at  night,   the  air   above  urban   centers   is   typically   warmer   than   air   over   rural   areas.  Nighttime   atmospheric   heat   islands   can   have   serious   health  implications  for  urban  residents  during  heat  waves  

 -­‐ Properties  of  Surface  Materials  

§ Materials  commonly  used  in  urban  areas  for  pavement  and  roofs,  such  as  concrete  and  asphalt,  have  significantly  different  thermal  bulk  properties  (including  heat  capacity  and  thermal  conductivity)  and   surface   “Radiative”   properties   (Albedo  and  Emissivity)   than  the  surrounding  rural  areas.  

§ Built   up   communities   generally   reflect   less   and   absorb  more   of  the   sun’s   energy.   This   absorbed   heat   results   in   an   increase   in  surface   temperatures   and   thus   contribute   to   the   formation   of  surface  and  atmospheric  UHIs.  

§ Materials   such   as   solar   reflectance,   thermal   emissivity   or   heat  capacity   control   the   ability   of   the   material   to   have   a   lower   or  higher  contribution  to  the  increase  of  the  UHI.  For  example,  dark  surfaces  with  high  emittance  values  will  stay  cooler,  because  they  will  release  heat  more  readily.  

 -­‐ Reduction  of  Vegetation  in  Urban  Areas  

§ In  rural  areas,  vegetation  and  open  land  are  dominant.  Trees  and  vegetation   provide   shade,   which   lowers   surface   temperatures  and  reduces  temperatures  through  “evapotranspiration”.  

§ In   contrast,   urban   areas   are   characterized   by   dry,   impervious  surfaces,   such   as   roofs,   sidewalks,   roads,   and   parking   lots.   This  change  in  ground  cover  results  in  less  shade  and  moisture  to  keep  urban   areas   cool;   also   urban   areas   evaporate   less  water,  which  results  in  elevating  surface  and  air  temperatures.  

 

Page 8: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     7  

-­‐ Anthropogenic  heat  § Refers   to  the  heat  generated  by  cars,  air  conditioners,   industrial  

facilities,   and   a   variety   of   other   manmade   sources,   which  contributes  to  the  increase  of  the  UHI  as  well  as  the  urban  energy  budget,  particularly  in  the  winter.  

-­‐ High  Pollution  Levels  § Various   forms   of   pollution   change   the   “Radiative”   properties   of  

the   atmosphere.   This   causes   a   change   in   the  energy   balance  of  the   urban   area,   often   leading   to   higher   temperatures   than  surrounding  rural  areas.9  

 4 .  UHI   Impact  Increased   temperatures   from   UHIs,   especially   during   summer,   can   affect   a  community’s   environment   and   quality   of   life.  While   some   heat   island   impacts  seem  positive,  such  as  lengthening  the  plant-­‐growing  season,  most  impacts  are  negative  and  include:    

-­‐ Impact  on  Energy  Consumption  Increased   summertime   temperatures   in   cities   increase   energy   demand   for  cooling.  Research  shows  that  electricity  demand  for  cooling  increases  1.5–2.0%  for   every   (0.6°C)   increase   in   air   temperatures,   starting   from   (20   to   25°C),  suggesting   that   5–10%   of   community-­‐wide   demand   for   electricity   is   used   to  compensate  for  the  heat  island  effect.10  Urban  heat  islands  increase  overall  electricity  demand,  as  well  as  peak  demand,  which  generally  occurs  on  hot   summer  weekday  afternoons,  when  offices  and  homes  are  running  cooling  systems,  lights,  and  appliances.      

-­‐ Impact  on  Human  Health  and  Comfort  Increased   daytime   temperatures,   reduced   nighttime   cooling,   and   higher   air  pollution   levels  associated  with  urban  heat   islands  can  affect  human  health  by  contributing   to   general   discomfort,   respiratory   difficulties,   heat   cramps   and  exhaustion,  non-­‐fatal  heat  stroke,  and  heat-­‐related  mortality.  Heat  islands  can  also  exacerbate  the  impact  of  heat  waves,  which  are  periods  of  unusually   hot,   and   often   humid,   weather.   Sensitive   populations,   such   as  children,  older  adults,  and  those  with  existing  health  conditions,  are  at  particular  risk  from  these  events.  Excessive  heat  events  are  particularly  dangerous  and  can  result   in  above-­‐average  rates  of  mortality.  The  Centers  for  Disease  Control  and  Prevention   estimates   that   from   1979–2003,   excessive   heat   exposure  contributed   to   more   than   8,000   premature   deaths   in   the   United   States.   This  figure   exceeds   the   number   of  mortalities   resulting   from   hurricanes,   lightning,  tornadoes,  floods,  and  earthquakes  combined.11  

                                                                                                               9  T.  R.  Oke  (1982).  "The  energetic  basis  of  the  urban  heat  island".  Quarterly  Journal  of  the  Royal  Meteorological  Society  108  (455):  1–24.  10  Akbari,  H.  2005.  Energy  Saving  Potentials  and  Air  Quality  Benefits  of  Urban  Heat  Island  Mitigation  (PDF)  (19  pp,  251K).  Lawrence  Berkeley  National  Laboratory.  11  Center  for  Disease  Control  and  Prevention.  2006.  Extreme  Heat:  A  Prevention  Guide  to  Promote  Your  Personal  Health  and  Safety.  

Page 9: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     8  

-­‐ Impact  on  Air  Quality  Urban   heat   islands   raise   demand   for   electrical   energy   in   summer.   Companies  that  supply  electricity  typically  rely  on  fossil  fuel  power  plants  to  meet  much  of  this  demand,  which  in  turn  leads  to  an  increase  in  air  pollutant  and  greenhouse  gas  emissions.  The  primary  pollutants   from  power  plants   include  sulfur  dioxide  (SO2),  nitrogen   oxides  (NOx),  particulate   matter  (PM),  carbon   monoxide  (CO),  and  mercury  (Hg).   These   pollutants   are   harmful   to   human   health   and   also  contribute   to   complex   air   quality   problems   such   as   the   formation   of  ground-­‐level  ozone  (smog),  fine  particulate  matter,  and  acid  rain.  Increased  use  of  fossil-­‐fuel-­‐powered   plants   also   increases   emissions   of   greenhouse   gases,   such  as  carbon  dioxide  (CO2),  which  contribute  to  global  climate  change.12  In  addition  to  their  impact  on  energy-­‐related  emissions,  increased  temperatures  can   directly   increase   the   rate   of   ground-­‐level   ozone   formation.   Ground-­‐level  ozone  is  formed  when  NOx  and  volatile  organic  compounds  (VOCs)  react  in  the  presence  of  sunlight  and  hot  weather.  If  all  other  variables  are  equal,  such  as  the  level   of   precursor   emissions   in   the   air   and   wind   speed   and   direction,   more  ground-­‐level  ozone  will  form  as  the  environment  becomes  sunnier  and  hotter.    

-­‐ Impact  on  Water  Quality  High  pavement  and  rooftop  surface   temperatures  can  heat  extra  storm  water.  Tests  have   shown   that  pavements   that  are   (38oC)   can  elevate   initial   rainwater  temperature   from   roughly   (21oC)   to   over   (35oC).13  This   heated   storm   water  generally   becomes   excess,   which   drains   into   storm   sewers   and   raises   water  temperatures  as  it  is  released  into  streams,  rivers,  ponds,  and  lakes.  Water  temperature  affects  all  aspects  of  aquatic  life,  especially  the  metabolism  and   reproduction   of   many   aquatic   species.   Rapid   temperature   changes   in  aquatic  ecosystems  resulting  from  warm  storm  water  runoff  can  be  particularly  stressful,  even  fatal  to  aquatic  life.    5 .  UHI  Mi t igat ion  Will  the  urban  areas  benefit  from  heat  island  reduction?  The  answer  depends  on  a  number  of  factors—some  within  and  some  outside  of  a   community's   control.   Although   prevailing   weather   patterns,   climate,  geography,   and   topography   are   beyond   the   influence   of   local   policy,   decision  makers  can  select  a  range  of  energy-­‐saving  strategies  that  will  generate  multiple  benefits,   including   vegetation,   landscaping,   and   land   use   design   projects,   and  improvements  to  building  and  road  materials.14  Following  are  some  of  the  most  effective  UHI  mitigation  strategies:  

-­‐ Trees,  vegetation,  and  green  roofs  They   can   reduce   heating   and   cooling   energy   use   and   associated   air  pollution   and   greenhouse   gas   emissions,   remove   air   pollutants,   help  lower  the  risk  of  heat-­‐related  illnesses  and  deaths,  improve  storm-­‐water  control  and  water  quality,   reduce  noise   levels,  create  habitats,   improve  

                                                                                                               12  http://www.epa.gov/heatislands/impacts/index.htm#2  13  James,  W.  2002.  Green  roads:  research  into  permeable  pavers.  Stormwater  3(2):48-­‐40.  14  http://www.epa.gov/heatislands/mitigation/index.htm  

Page 10: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     9  

aesthetic  qualities,  and  increase  property  values.    -­‐ Cool  roofs  

They  lower  cooling  energy  use,  peak  electricity  demand,  air  pollution  and  greenhouse   gas   emissions,   heat-­‐related   incidents,   and   solid   waste  generation   due   to   less   frequent   re-­‐roofing.   Later   in   the   report,   this  mitigation  technique  will  be  discussed  with  more  depth.  

-­‐ Cool  pavements  They   have   the   potential   of   indirectly   reducing   energy   consumption,   air  pollution,  and  greenhouse  gas  emissions.  Depending  on   the   technology  used,  cool  pavements  can  improve  storm-­‐water  management  and  water  quality,   increase  surface  durability,  enhance  nighttime   illumination,  and  reduce  noise.15  

Using   these   strategies   in   combination   can   enhance   their   effectiveness.     For  example,  installing  a  permeable  pavement  parking  lot  that  includes  shade  trees  can  extend  the  longevity  of  the  pavement  and  vegetation.    Widespread   implementation   of   these   mitigation   strategies   also   provides  additional  benefits.  For  example,  a  single  cool  roof  will  mainly  result  in  benefits  to   the  building   owner   and  occupants.   Community-­‐wide   cool   roof   installations,  though,  has   the  potential   to  provide   savings   to   the  building  owner,  occupants  and  to  the  community  at  large  scales,  as  a  large  number  of  cool  roofs  can  reduce  air   temperatures,   resulting   in   multiple   benefits   associated   with   cooler  summertime  air.      

                                                                                                               15  Ibid.  

Page 11: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     10  

COOL  ROOFS  Are   the   roofs   characterized  with   high  Albedo   –   Solar   Reflectance—   as  well   as  high  thermal  emittance.  These  two  characteristics  help  reflect  sunlight  and  emit  heat  away  from  a  building,  reducing  roof  temperatures.  Solar   Reflectance   of   the   cool   roofs   is   the   ability   to   reflect   the  visible,  infrared  and  ultraviolet  wavelengths   of   the   sun;   while   its   Thermal  Emittance  is  the  ability  to  radiate  absorbed,  or  non-­‐reflected  solar  energy.  Cool  roofs  may  be  installed  on  low-­‐slope  roofs  (such  as  the  flat  or  gently  sloping  roofs   typically   found   on   commercial,   industrial,   and   office   buildings)   or   the  steep-­‐sloped  roofs  used  in  many  residences  and  retail  buildings.    

 Fig.  2  Scheme  showing  the  difference  in  behavior  between  Cool  and  Hot  Roofs.16  

Cool  roofing  products  are  made  of  highly  reflective  and  emissive  materials  that  can  remain  approximately  50  to  60°F  (28-­‐33°C)  cooler  than  traditional  materials  during  peak  summer  weather.17  Cool   roofs   achieve   cooling   energy   savings   in   hot   summers   but   can   increase  heating  energy   load  during   cold  winters.18  Therefore,   the  net   energy   saving  of  cool  roofs  varies  depending  on  climate.  Without  a  proper  maintenance  program  to  keep   the  material   clean,   the  energy   savings  of   cool   roofs   can  diminish  over  time  due  to  Albedo  degradation  and  soiling.19    In  order  to  understand  how  cool  roofing  work,   first   I’ll   start  by  explaining  how  their  properties  and  roofing  materials  fit  and  contribute  within  the  cycle  of  solar  radiation,   temperature   and   the  Urban  Heat   Islands   Phenomenon.   This   part   of  the  report  discusses  the  following:                                                                                                                  16  http://www.custombiltmetals.com/cool-­‐roof.php  17  Levinson,  R.,  H.  Akbari,  S.  Konopacki,  and  S.  Bretz.  2002.  Inclusion  of  Cool  Roofs  in  Nonresidential  Title  24  Prescriptive  Requirements  (PDF)  (64  pp,  492K).  Paper  LBNL-­‐50451.  Lawrence  Berkeley  National  Laboratory.  18  United  States  Environmental  Protection  Agency  (2011).  Reducing  Urban  Heat  Islands:  Compendium  of  Strategies.  19  Bretz,  Sarah;  Hashem  Akbari  (1997).  "Long-­‐term  performance  of  high  albedo  roof  coatings".  Energy  and  Buildings  25  (2):  159-­‐167.  doi:10.1016/S0378-­‐7788(96)01005-­‐5.  

Page 12: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     11  

Proper t ies  o f  Coo l  Roofs  -­‐ Solar  Reflectance    

Solar   reflectance,   or   albedo,   is   the   percentage   of   solar   energy   reflected   by   a  surface.  Solar  reflectance  measurement  methods  have  been  developed  in  order  to   determine   how   well   a   material   reflects   energy   at   each   solar   energy  wavelength,  then  calculating  the  weighted  average  of  these  values.  Traditional   roofing   materials   have   low   solar   reflectance   of   5   to   15   percent,  which  means  they  absorb  85  to  95  percent  of  the  energy  reaching  them  instead  of  reflecting  the  energy  back  out  to  the  atmosphere.  The  coolest  roof  materials  have   a   high   solar   reflectance   of   more   than   65   percent,   absorbing   and  transferring  to  the  building  35  percent  or  less  of  the  energy  that  reaches  them.20  These  materials  reflect  radiation  across  the  entire  solar  spectrum,  especially   in  the  visible  and  infrared  (heat)  wavelengths.    

-­‐ Thermal  Emittance    Although   solar   reflectance   is   the   most   important   property   in   determining   a  material’s  contribution  to  urban  heat  islands,  thermal  emittance  is  also  a  part  of  the   equation.   Any   surface   exposed   to   radiant   energy   will   get   hotter   until   it  reaches   thermal   equilibrium   (i.e.,   it   gives   off   as   much   heat   as   it   receives).   A  material’s  thermal  emittance  determines  how  much  heat  it  will  radiate  per  unit  area  at  a  given  temperature,  that  is,  how  readily  a  surface  gives  up  heat.  When  exposed   to   sunlight,   a   surface   with   high   emittance   will   reach   thermal  equilibrium  at  a  lower  temperature  than  a  surface  with  low  emittance,  because  the  high-­‐emittance  surface  gives  off  its  heat  more  readily.    

-­‐ Temperature  Effects    Solar   reflectance   and   thermal   emittance   have   noticeable   effects   on   surface  temperature.  Conventional  roof  surfaces  have  low  reflectance  but  high  thermal  emittance;  standard  black  asphalt  roofs  can  reach    (74  -­‐85°C)  at  midday  during  the   summer.   Bare  metal   or  metallic   surfaced   roofs   have   high   reflectance   and  low   thermal   emittance   and   can  warm   to   (66   -­‐77°C).   Research   has   shown   that  cool   roofs   with   both   high   reflectance   and   high   emittance   reach   peak  temperatures   of   only   110   to   115°F   (43-­‐46°C)   in   the   summer   sun.   These   peak  values  vary  by  local  conditions.  Nonetheless,  research  reveals  that  conventional  roofs   can  be   55   to   85°F   (31-­‐47°C)   hotter   than   the   air   on   any   given  day,  while  cool   roofs   tend   to   stay   within   10   to   20°F   (6-­‐11°C)   of   the   background  temperature.21    

                                                                                                               20  United  States  Environmental  Protection  Agency  (2011).  Reducing  Urban  Heat  Islands:  Compendium  of  Strategies:  Cool  Roofs.  21  These  temperature  ranges  are  compiled  from  the  following  individual  reports:    

Konopacki,  S.,  L.  Gartland,  H.  Akbari,  and  I.  Rainer.  1998.  Demonstration  of  Energy  Savings  of  Cool  Roofs.  Paper  LBNL-­‐40673.  Lawrence  Berkeley  National  Laboratory,  Berkeley,  CA.    Gartland,  L.  n.d.  Cool  Roof  Energy  Savings  Evaluation  for  City  of  Tucson.    Miller,  W.A.,  A.  Desjarlais,  D.S.  Parker,  and  S.  Kriner.  2004.  Cool  Metal  Roofing  Tested  for  Energy  Efficiency  and  Sustainability.  CIB  World  Building  Congress,  May  1-­‐7,  2004.  Toronto,  Ontario.    Konopacki,  S.  and  H.  Akbari.  2001.  Measured  Energy  Savings  and  Demand  Reduction  from  a  Reflective  Roof  Membrane  on  a  Large  Retail  Store  in  Austin.  Paper  LBNL-­‐47149.  Lawrence  Berkeley  National  Laboratory,  Berkeley,  CA.  

Page 13: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     12  

 

These  reduced  surface  temperatures  from  cool  roofs  can  lower  air  temperature.  For  example,  a  New  York  City  simulation  predicted  near-­‐surface  air  temperature  reductions   for   various   cool   roof   mitigation   scenarios.   The   study   assumed   50-­‐percent   adoption   of   cool   roofs   on   available   roof   space   and   ran   models   to  evaluate  the  resulting  temperature  changes.  Averaged  over  all  times  of  day,  the  model   predicted   a   city-­‐wide   temperature   reduction   of   (0.2°C).   The   city-­‐wide,  3:00  p.m.  average  reduction  was  (0.3°C)  and  ranged  from  0.7  to  (0.4  -­‐  0.8°C)  in  six  specific  study  areas  within  the  city.22    Cool  Roof  Types    Cool  roofs  can  be  categorized  in  two  difference  manners:    

-­‐ Material  Cool   roofs   for   commercial   and   industrial   buildings   fall   into   one   of   three  categories:   roofs  made   from   inherently   cool   roofing  materials,   roofs  made   of  materials  that  have  been  coated  with  a  solar  reflective  coating,  or  green  planted  roofs.  

§ Inherently  cool  roofs  White  vinyl   roofs,  which  are   inherently   reflective,  achieve  some  of   the  highest  reflectance   and   emittance   measurements   of   which   roofing   materials   are  capable.  A  roof  made  of   thermoplastic  white  vinyl,   for  example,  can  reflect  80  percent  or  more  of   the  sun’s   rays  and  emit  at   least  70%  of   the  solar   radiation  that   the  building   absorbs.  An  asphalt  roof   only   reflects   between  6   and  26%  of  solar   radiation,   resulting   in   greater   heat   transfer   to   the   building   interior   and  greater  demand  for  air  conditioning.  23    

§ Coated  roofs  This   type   of   intervention   works   also   for   retrofitting.   The   roof   can   be   made  reflective  by  applying  a  solar  reflective  coating  to  its  surface.  There  are  two  main  types  of  cool   roof  coatings:  Cementitious  and  Elastomeric.  Cementitious   coatings   contain   cement   particles.   Elastomeric   coatings   include  polymers,  which  are  added   to   reduce  brittleness  and   improve  adhesion.  Some  coatings   contain  both   cement  particles   and  polymers.  Both   types  have  a   solar  reflectance  of  65  percent  or  higher  when  new  and  have  a  thermal  emittance  of  80  to  90  percent  or  more.  The  important  distinction  is  that  elastomeric  coatings  provide   a  waterproofing  membrane,  while   cementitious   coatings   are   pervious  and  rely  on  the  underlying  roofing  material  for  waterproofing.    

§ Green  roofs  Green  roofs  provide  a  thermal  mass  layer  which  helps  reducing  the  flow  of  heat  into   a   building.   The   solar   reflectance   of   green   roofs   varies   depending   on   the  

                                                                                                               22  Rosenzweig,  C.,  W.  Solecki,  L.  Parshall,  S.  Gaffin,  B.  Lynn,  R.  Goldberg,  J.  Cox,  and  S.  Hodges.  2006.  Mitigating  New  York  City’s  Heat  Island  with  Urban  Forestry,  Living  Roofs,  and  Light  Surfaces.  Sixth  Symposium  on  the  Urban  Environment  and  Forum  on  Managing  our  Physical  and  Natural  Resources,  American  Meteorological  Society.  Atlanta,  GA.  23  http://en.wikipedia.org/wiki/Cool_roof  

Page 14: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     13  

plant   types   (generally   0.3-­‐0.5).24  Because  of   the   lower   solar   reflectance,   green  roofs   reflect   less   sunlight   and   absorb   more   solar   heat   than   white   roofs.   The  absorbed  heat  in  the  green  roofs  is  trapped  by  the  greenhouse  effect  and  then  cooled  by  “evapotranspiration”.  

-­‐ Geometry  Depending  on   the   geometry  of   the   roof,   there   are   two   categories:   low-­‐sloped  and  steep-­‐sloped.  A  low-­‐sloped  roof  is  essentially  flat,  with  only  enough  incline  to  provide  drainage.  It  is  usually  defined  as  having  no  more  than  2  inches  (5  cm)  of  vertical  rise  over  12   inches  (30  cm)  of  horizontal  run.  These  roofs  are  found  on   the  majority  of   commercial,   industrial,  warehouse,  office,   retail,   and  multi-­‐family  buildings,  as  well  as  some  single-­‐family  homes.  Steep-­‐sloped  roofs  have  inclines  greater  than  a  2-­‐inch  rise  over  a  12-­‐inch  run.  These  roofs  are  found  most  often   on   residences   and   retail   commercial   buildings   and   are   generally   visible  from  the  street.  Low-­‐sloped  and  steep-­‐sloped  roofs  use  different  roofing  materials.  Traditionally,  low-­‐sloped  roofs  use  built-­‐up  roofing  or  a  membrane,  and  the  primary  cool  roof  options  are  coatings  and  single-­‐ply  membranes.  

 Cool  Roofs  Contr ibut ion  Conf l i c t  Recent  works  executed  by   researchers   from  Stanford  University,   regarding   the  Urban  Heat  Island  phenomenon  claim  that,   if  all  the  roofs   in  urban  areas  were  painted  white,  it  would  increase,  not  decrease,  global  warming.25  How  correct  or  false  this  piece  of  information  is,  is  a  matter  of  scientific  research  and  discussion,  for   it   could   change   the  orientation  of   studies   implemented   for   remedying   the  phenomenon’s  negative  impact.        

                                                                                                               24  Levinson,  Ronnen  (2010).  "Cool  Roofs,  Cool  Cities,  Cool  Planet"  (PowerPoint  Slides).  Retrieved  10  December  2011.  25  http://news.stanford.edu/news/2011/october/urban-­‐heat-­‐islands-­‐101911.html  

Page 15: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     14  

UHI  and  ENERGY  BALANCE  The   following   description   of   the   relation   between   the   UHI   Phenomenon   and  ENERGY   BALANCE   is   extracted   and   summarized   from   a   paper   by   A.J   Arnfield,  titled   “Two   decades   of   Urban   Climate   Research:   A   review   of   Turbulence,  Exchanges  of  Energy  and  Water,  and  the  Urban  heat  Island”26  Understanding   the   urban   energy   balance   is   a   complex   issue   and   takes   into  account   many   interrelated   factors   on   both   the   Urban   Surface   and   urban  atmospheric  scale.    Energy  Ba lance   in   the  Urban  Atmospher i c   l ayer  Within   the  Urban  Atmospheric   Layer,   energy  balances  are  governed  by  micro-­‐scale  processes  mediated  by  the  site  conditions  of  the  immediate  surroundings.  These  conditions,  consisting  of  the  specifics  of  a  3D  surface  geometry,  substrate  materials   and   wetness,   wind   exposure,   shading   and   the   like,   are   subject   to  countless  variations  within  real  cities.  As  a  means  of  distilling  what  is  common  to  many  urban  landscapes  from  what  is  unique   to   the   particular   architectural,   cultural,   and   geographical  milieu,  much  urban  climate  work  has  adopted  the  construct  of  the  Urban  Canyons  (UC).  The  UC   consists   of   the   space   between   adjacent   buildings,   comprising   the   solid  surfaces  on  the  faces  of  those  buildings  and  the  street,  the  enclosed  air  volume,  the  open  ‘top’  at  roof  level  and  the  ‘ends’  of  the  canyon  at  street  intersections,  through   which   mass   and   energy   fluxes   may   occur   horizontally.   The   canyon  aspect   ratio   (AR),   the   ratio   of   wall   height   to   building   separation,   has   been  suggested   by   many   as   a   major   control   on   flow   within   the   UC,   on   turbulent  intensities,  on  radiative  environments  and,  hence,  on  the  total  energy  budget.    Energy  Ba lance   in   the  Urban  Sur face   layer  The   understanding   of   urban   energy   balance   cannot   avoid   the   issue   of   the  precise  definition  of  the  ‘surface’  to  which  the  balance  refers.  This  is  a  complex  and   interrelated   issue,  because,  while   it   is  generally  accepted  what  constitutes  the   ‘surface’   to  which  the  energy  balance  of  a  building  wall,   suburban   lawn  or  warehouse  roof  applies,  this  becomes  increasingly  vague  as  we  scale  up  through  individual  landscape  units,  like  UCs,  to  land-­‐use  zones  and  even  whole  cities.    Storage  and  anthropogen ic  heat   f luxes   in   the  urban  energy  ba lance  The  energy  balance  for  a  simple  plane  facet  may  be  written  as:  Q*  =  QH  +  QE  +  QG                 (1)  Where:  Q*  is  net  radiation;  QH  and  QE  are  the  turbulent  fluxes  of  sensible  and  latent  heat  respectively;  QG  is  the  (primarily)  conductive  heat  flux  into  or  out  of  the  material  that  

                                                                                                               26  Arnfield,  A.  John,  “Two  decades  of  Urban  Climate  Research:  A  review  of  Turbulence,  Exchanges  of  Energy  and  Water,  and  the  Urban  heat  Island,”  International  Journal  of  Climatology,  published  online  28  Aug.  2002.  DOI:  10.1002/joc.859  

Page 16: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     15  

constitutes  the  surface.  Behavior  of  QG  for  simple  facets  can  normally  be  evaluated  using  heat  flux  plates  or  by  measuring  time  rates  of  temperature  change  if  the  heat  capacity  of  the  substrate  is  known.    Oke  (1988b)  suggests  that,  at  larger  scales,  for  total  urban  landscapes,  a  useful  approach  is  to  evaluate  the  equivalent  energy  fluxes  through  the  top  of  an  imaginary  volume,  extending  from  a  depth  in  the  substrate  below  which  energy  exchanges  are  negligible  at  the  time  scale  of  consideration  to  a  level  roughly  at  roof  level,  at  the  upper  margins  of  the  UCL.  The  energy  budget  for  this  volume  can  be  written  as:  Q*  +  QF  =  QH  +  QE  +  ΔQS  +  ΔQA             (2)  Where:  QF  is  the  anthropogenic  energy  releases  within  the  volume;  ΔQA  is  net  advection  through  the  sides  of  the  volume;  ΔQS  is  the  storage  heat  flux.  It  represents  all  energy  storage  mechanisms  within  the  volume,  in  air,  trees,  building  fabric,  soil,  etc.  In  practice,  by  virtue  of  the  sizes  of  heat  capacities  for  air  and  solid  fabric,  ΔQS  can  normally  be  equated  to  the  aggregate  QG  for  all  air–solid  interfaces  within  the  volume.    Incorporation  of  anthropogenic  heat  flux  in  simulation  models  of  urban  climate  is  relatively  straightforward,  involving  the  addition  of  a  (usually  constant)  term  in  the  surface  energy  budget  equation.  The  evaluation  of  QF  at  local  scales,  for  incorporation  into  energy  balances  for  suburban  terrain;  are  given  by  Grimmond  and  Oke  (1991)  and  Schmid  et  al.  (1991).  They  compute  this  term  as:  QF  =  QFV  +  QFH  +  QFM  Where:  QFV  is  the  heat  released  by  vehicles;  QFH  is  the  heat  released  by  stationary  sources  such  as  house  furnaces;  QFM  is  the  heat  released  by  metabolism.  It  should  be  noted  that,  in  some  cases,  QF  is  included  implicitly.  For  example,  the      Terjung  and  Louie  (1974),  Mills  (1993)  and  Arnfield  (2000b)  energy  budget  simulation  models  incorporate  constant  internal  building  temperatures,  which  reflect  the  investment  of  anthropogenic  energy  in  heating  and  cooling  living  spaces.    These  schemes  influence  external  climate  by  conductive  heat  fluxes  through  building  walls  and  roofs.  However,  they  don’t  incorporate  energy  releases  to  the  external  environment,  like  motor  vehicle  waste  heat,  chimney  gases  or  air-­‐conditioner  heat  output.        

Page 17: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     16  

CONCLUSION  Although   urban   climatologists   have   been   studying   urban   heat   islands   for  decades,   community   interest   and   concern   regarding   them   has   been   more  recent.  This   increased  attention  to  heat-­‐related  environment  and  health   issues  has   helped   to   advance   the   development   of   heat   island   reduction   strategies,  mainly  trees  and  vegetation,  green  roofs,  and  cool  roofs.   Interest   in  cool  pave-­‐ments  has  been  growing,  and  an  emerging  body  of  research  and  pilot  projects  are   helping   scientists,   engineers,   and   practitioners   to   better   understand   the  interactions  between  pavements  and  the  urban  climate.    Cities  release  more  heat  to  the  atmosphere  than  the  rural  vegetated  areas  around  them,  but  how  much  influence  these  urban  "heat  islands"  have  on  global  warming  has  been  a  matter  of  debate.  Although  the  size  of  literature  about  this  phenomenon  is  reasonable  enough,  recently,  scholars  have  been  questioning  the  authenticity  with  which  heat  island  observations  have  been  gathered  and  reported  through  history.  To  what  extent  does  this  literature  serve  the  aims  of  science?  Can  its  measurements  be  trusted?  So  far,  the  response  to  these  questions  is  not  obvious.  Modern  heat  island  investigators  such  as  Parry  (1956),  Chandler  (1962,  1970)  and  Bohm  and  Gabl  (1978),  for  example,  alluded  to  problems  of  methodology  decades  ago.  In  recent  years,  discussion  around  these  same  problems  has  been  open  and  direct.27    

Heat  emanating  from  cities  –  called  the  "urban  heat  island"  effect  –  is  not  a  significant  contributor  to  global  warming,  Stanford  researchers  have  found.  They  also  concluded  that  if  all  the  roofs  in  urban  areas  were  painted  white,  it  would  

increase,  not  decrease,  global  warming.28    This  was  quoted  from  the  study  by  Stanford  researchers,  which  has  quantified  the  contribution  of  the  heat  islands  for  the  first  time,  showing  that  it  is  modest  compared  with  what  greenhouse  gases  contribute  to  global  warming.  "Between  2  and  4  percent  of  the  gross  global  warming  since  the  Industrial  Revolution  may  be  due  to  urban  heat  islands,"  said  Mark  Z.  Jacobson,  a  professor  of  civil  and  environmental  engineering  who  led  the  study.  He  and  his  students  compared  this  with  the  greenhouse  gas  contribution  to  gross  warming  of  about  79  percent  and  the  black  carbon  contribution  of  about  18  percent.  Black  carbon  is  a  component  of  the  soot  created  by  burning  fossil  fuels  and  bio-­‐fuels  and  is  highly  efficient  at  absorbing  sunlight,  which  heats  the  atmosphere.          

                                                                                                               27  Stewart,  I.  D.,  “A  systematic  review  and  scientific  critique  of  methodology  in  modern  urban  heat  island  literature,”  International  Journal  of  Climatology,  published  online  15  Apr.  2010.  DOI:  10.1002/joc.2141  28  http://news.stanford.edu/news/2011/october/urban-­‐heat-­‐islands-­‐101911.html  

Page 18: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     17  

BIBLIOGRAPHY  [1,  ]  Stewart,  I.  D.,  “A  systematic  review  and  scientific  critique  of  methodology  in  modern  urban  heat  island  literature,”  International  Journal  of  Climatology,  published  online  15  Apr.  2010.  

DOI:  10.1002/joc.2141  

[2]  Oke,  T.R.  1982.  The  Energetic  Basis  of  the  Urban  Heat  Island.  Quarterly  Journal  of  the  Royal  Meteorological  Society.  108:1-­‐24.  

[3]  Glossary  of  Meteorology  (2009).  "Urban  Heat  Island".  American  Meteorological  Society.  Retrieved  2009-­‐06-­‐19.  

[4]  http://www.epa.gov/heatislands/about/index.htm  

[5]  Berdahl  P.  and  S.  Bretz.  1997.  Preliminary  Survey  of  the  Solar  Reflectance  of  Cool  Roofing  Materials.  Energy  and  Buildings  25:149-­‐158.  

[6]  Numbers  from  Voogt,  J.A.  and  T.R.  Oke.  2003.  Thermal  Remote  Sensing  of  Urban  Areas.  Remote  Sensing  of  Environment.  86.  (Special  issue  on  Urban  Areas):  370-­‐384.  

[7]  Oke.  T.R.  1987.  Boundary  Layer  Climates.  New  York,  Routledge.  

[8]  http://earthobservatory.nasa.gov/IOTD/view.php?id=7205  

[9]  T.  R.  Oke  (1982).  "The  energetic  basis  of  the  urban  heat  island".  Quarterly  Journal  of  the  Royal  Meteorological  Society  108  (455):  1–24.  

[10]  Akbari,  H.  2005.  Energy  Saving  Potentials  and  Air  Quality  Benefits  of  Urban  Heat  Island  Mitigation  (PDF)  (19  pp,  251K).  Lawrence  Berkeley  National  Laboratory.  

[11]  Center  for  Disease  Control  and  Prevention.  2006.  Extreme  Heat:  A  Prevention  Guide  to  Promote  Your  Personal  Health  and  Safety.  

[12]  http://www.epa.gov/heatislands/impacts/index.htm#2  

[13]  James,  W.  2002.  Green  roads:  research  into  permeable  pavers.  Stormwater  3(2):48-­‐40.  

[14]  http://www.epa.gov/heatislands/mitigation/index.htm  

[15]  Ibid.  

[16]  http://www.custombiltmetals.com/cool-­‐roof.php  

[17]  Levinson,  R.,  H.  Akbari,  S.  Konopacki,  and  S.  Bretz.  2002.  Inclusion  of  Cool  Roofs  in  Nonresidential  Title  24  Prescriptive  Requirements  (PDF)  (64  pp,  492K).  Paper  LBNL-­‐50451.  Lawrence  Berkeley  National  Laboratory.  

[18]  United  States  Environmental  Protection  Agency  (2011).  Reducing  Urban  Heat  Islands:  Compendium  of  Strategies.  

[19]  Bretz,  Sarah;  Hashem  Akbari  (1997).  "Long-­‐term  performance  of  high  albedo  roof  coatings".  Energy  and  Buildings  25  (2):  159-­‐167.  doi:10.1016/S0378-­‐7788(96)01005-­‐5.  

[20]  United  States  Environmental  Protection  Agency  (2011).  Reducing  Urban  Heat  Islands:  Compendium  of  Strategies:  Cool  Roofs.  

[21]  These  temperature  ranges  are  compiled  from  the  following  individual  reports:    

Konopacki,  S.,  L.  Gartland,  H.  Akbari,  and  I.  Rainer.  1998.  Demonstration  of  Energy  Savings  of  Cool  Roofs.  Paper  LBNL-­‐40673.  Lawrence  Berkeley  National  Laboratory,  Berkeley,  CA.    

Page 19: 00 UHI Report

URBAN  HEAT  ISLAND  PHENOMENON  –  Individual  Report  

750084  |  Amr  Elesawy     18  

Gartland,  L.  n.d.  Cool  Roof  Energy  Savings  Evaluation  for  City  of  Tucson.  

Miller,  W.A.,  A.  Desjarlais,  D.S.  Parker,  and  S.  Kriner.  2004.  Cool  Metal  Roofing  Tested  for  Energy  Efficiency  and  Sustainability.  CIB  World  Building  Congress,  May  1-­‐7,  2004.  Toronto,  Ontario.    

Konopacki,  S.  and  H.  Akbari.  2001.  Measured  Energy  Savings  and  Demand  Reduction  from  a  Reflective  Roof  Membrane  on  a  Large  Retail  Store  in  Austin.  Paper  LBNL-­‐47149.  Lawrence  Berkeley  National  Laboratory,  Berkeley,  CA.  

[22]  Rosenzweig,  C.,  W.  Solecki,  L.  Parshall,  S.  Gaffin,  B.  Lynn,  R.  Goldberg,  J.  Cox,  and  S.  Hodges.  2006.  Mitigating  New  York  City’s  Heat  Island  with  Urban  Forestry,  Living  Roofs,  and  Light  Surfaces.  Sixth  Symposium  on  the  Urban  Environment  and  Forum  on  Managing  our  Physical  and  Natural  Resources,  American  Meteorological  Society.  Atlanta,  GA.  

[23]  http://en.wikipedia.org/wiki/Cool_roof  

[24]  Levinson,  Ronnen  (2010).  "Cool  Roofs,  Cool  Cities,  Cool  Planet"  (PowerPoint  Slides).  Retrieved  10  December  2011.  

[25]  http://news.stanford.edu/news/2011/october/urban-­‐heat-­‐islands-­‐101911.html  

[26]  Arnfield,  A.  John,  “Two  decades  of  Urban  Climate  Research:  A  review  of  Turbulence,  Exchanges  of  Energy  and  Water,  and  the  Urban  heat  Island,”  International  Journal  of  Climatology,  published  online  28  Aug.  2002.  

DOI:  10.1002/joc.859  

[27]  Stewart,  I.  D.,  “A  systematic  review  and  scientific  critique  of  methodology  in  modern  urban  heat  island  literature,”  International  Journal  of  Climatology,  published  online  15  Apr.  2010.  

DOI:  10.1002/joc.2141  

[28]  http://news.stanford.edu/news/2011/october/urban-­‐heat-­‐islands-­‐101911.html