(nb-o) (nb=o)

1
(Nb-O) (Nb=O) 570 (m) 942 (s) 919 (s) (Te-O) 644 (s) (V=O) [VO 3 ] n n- 944 (s) 900 (sh) n (Mo=O) Mo 8 O 26 4- 955 (sh) (Mo=O) Mo 7 O 24 6- 937 (s) 893 (m) assignment [cm -1 ] 7 MoO 4 2- + 8 H + [Mo 7 O 24 ] 6- + 4 H 2 O 8 MoO 4 2- + 12 H + [Mo 8 O 26 ] 4- + 6 H 2 O Investigation of the structural Investigation of the structural transformations transformations during synthesis of MoVTeNb during synthesis of MoVTeNb mixed oxide catalysts mixed oxide catalysts P. Beato P. Beato 1 , A. Blume , A. Blume 1 , O. Timpe , O. Timpe 1 , A. Trunschke , A. Trunschke 1 , R. Schlögl , R. Schlögl 1 , , E. Omar E. Omar 2 , Q. Basher , Q. Basher 2 , L. Mohd Salim , L. Mohd Salim 2 , S.B.A. Hamid , S.B.A. Hamid 2 1 1 Department of Inorganic Chemistry, Fritz Haber Institute of the MPG, Faradayweg 4-6; DE - 14195 Berlin, Germany, Department of Inorganic Chemistry, Fritz Haber Institute of the MPG, Faradayweg 4-6; DE - 14195 Berlin, Germany, http://www.fhi-berlin.mpg.de 2 2 University Malaya, 50603 Kuala Lumpur, Malaysia University Malaya, 50603 Kuala Lumpur, Malaysia 2 Theta [°] 5 10 20 30 40 50 60 70 spray- dried calcined 1h air, 275°C activate d 2h He, 600°C *simulation based on the model of P. De Santo et al. Z. Kristallogr. 219 (2004) 152. 5 10 15 20 25 30 35 40 45 50 55 60 65 70 2theta [°] (a) (b) (c) (d) (e) measured calculated: MoV 0.21 Te 0.22 Nb 0.11 O 40 60%M1 + 40%M2 M1* M2* a-b catalyst MoV 0.3 Te 0.23 Nb 0.125 O x after activation M2 M1 (NH 4 ) 6 Mo 7 O 24 (0.126 mol Mo) / 100 ml H 2 O T = 80°C / pH = 5.0 NH 4 VO 3 (0.038 mol V) (powder) MoV 0.30 T = 80°C / pH = 5.5 Te(OH) 6 (0.029 mol Te) (powder) (NH 4 ) [NbO(C 2 O 4 ) 2 (H 2 O) 2 ] 3H 2 O (0.016 mol Nb) / 30 ml H 2 O T = 23°C / pH = 0.8 MoV 0.30 Te 0.23 Nb 0.13 (slurry) T = 25°C / pH = 3.2 MoV 0.30 Te 0.23 T = 80°C / pH = 5.0 MoV 0.30 Te 0.23 Nb 0.13 (precursor) cool down to 40°C 600°C (2 °C/min) / 2 h He flow MoV 0.30 Te 0.23 Nb 0.13 (calcined) 275°C (10°C/min) / 1h static air MoV 0.30 Te 0.23 Nb 0.13 (activated) spray- drying Introduction & Motivation Introduction & Motivation To understand the physico-chemical characteristics of a catalyst a detailed knowledge of the active structure is essential. However, heterogeneous catalysts represent a class of material of great complexity and the strategy of catalyst preparation in industry in part still remains to trial and error, leading to “mysterious” compositions and making a structure-activity analysis of the final catalyst almost impossible. Traces of many elements are present in most of the working molybdenum oxide catalysts in industry and in many cases it is still unclear whether these additional metals form active centres themselves, or act only as structural promoters for an active molybdenum oxide phase. By following each step in the preparation of a complex oxide catalyst, the structural transformations leading to the final active material can be revealed. Only if we understand the essential structural characteristics of a good catalyst we can develop new synthetic strategies to further improve systems, that are already pushed to the activity and selectivity limits after years of trial and error. 800 825 850 875 900 925 950 975 1000 1025 M oVTe intensity [a.u.] R am a n sh ift [cm -1 ] M oVTeNb 1 2 3 4 MoVTeNb 0.125 0.20 0.20 0.13 0.22 Nb 0.23 0.27 0.25 0.24 0.28 Te 0.3 0.35 0.28 0.33 0.30 V 1 1 1 1 1 Mo synthesis spot 4 spot 3 spot 2 spot 1 Molar ratios of elements normalized to Mo from EDX 10 15 20 25 30 35 40 2Theta (°) 450 o C 475 o C 500 o C 525 o C 550 o C 575 o C He, 2°C/min: M1 M2 MoO 3 PtTe Pt 3 Te 4 300 400 500 600 700 800 900 1E -11 1E -10 W eight[% of initial] T em perature [K ] Ion current[A ] m /e 17 m /e 18 m /e 28 m /e 30 m /e 44 D SC signal [ µ volts/m g ] 92 94 96 98 100 Exo -0,05 0,00 0,05 0,10 0,15 0,20 0,25 0,30 300 350 400 450 500 550 1E -11 1E -10 1E -9 D SC signal [µ volts/m g] W eight[% of initial] m /e 17 m /e 18 m /e 30 m /e 44 Ion current[A ] T em perature [K ] 80 85 90 95 100 E xo -0,20 -0,15 -0,10 -0,05 0,00 0,05 0,10 0.08 0.13 0 0.09 0.22 0.12 0.11 Nb 0.42 0.12 1 0.32 0.14 0.39 0.12 Te 0.32 0.15 0 0.33 0.31 0.35 0.28 V 1 1 0 1 1 1 1 Mo M2 M1 spot 5 spot 4 spot 3 spo t 2 spo t 1 Molar ratio of elements normalized to Mo from EDX 1 2 3 4 5 XPS: Mo 1 V 0.19 Te 0.19 Nb 0.14 O x 800 850 900 950 1000 1050 M oVTe, T=80°C , pH =5.0 R am an shift [cm -1 ] M oV , T=80°C , pH =5.5 in ten sity [a .u .] I.L. Botto et al. Mater. Chem. Phys.47 (1997) 37. TeMo 6 = 0.126 mol Mo + 0.021 mol Te + 0.008 mol residual Te(OH) 6 (V=O) [H x V 10 O 28 ] (6-x)- or (M=O) [TeMo 5 VO 24 ] 7- (Mo=O) [TeMo 6 O 24 ] 6- 1000 (m) 975 (vw) 937 (s) 899 (m) (Mo=O) Mo 7 O 24 6- (V=O) [VO 3 ] n n- (V=O) [V 10 O 28 ] 6- (V-O-V) or (Mo-O-V) 937 (s) 893 (m) 950 (sh) 980 (s) 956 (m) 848 (m) assignment [cm -1 ] Conclusions Conclusions An Anderson-type molybdo-tellurate is formed in the initial ternary MoVTe solution. This structural module is preserved in the spray-dried material. Hence, the role of tellurium in the MoVTeNb synthesis could be described as a structural promoter that arranges molybdenum and tellurium by forming the stable Anderson phase. This close contact of Mo and Te is fundamental for the formation of the required mixed oxide phases during calcination because it presumably prevents the formation of larger amounts of undesirable MoO 2 and MoO 3 . However, the Raman spectra have shown that large fractions of vanadium and niobium as well as a small amount of tellurium are not transformed in solution and therefore hinder, after calcination and thermal treatment, the formation of a homogeneous phase composition. Some of the phases observed might be either inactive, or favour deep oxidation. The contribution of amorphous components existing on top and in between the crystalline particles has to be taken into consideration as well. Therefore, there remains much more room for optimization. In fact, a novel

Upload: holt

Post on 11-Jan-2016

82 views

Category:

Documents


0 download

DESCRIPTION

3. 4. 1. 2. 4. MoVTeNb. 3. 2. 1. catalyst MoV 0.3 Te 0.23 Nb 0.125 O x after activation. n [cm -1 ]. assignment. TeMo 6 = 0.126 mol Mo + 0.021 mol Te + 0.008 mol residual Te(OH) 6. 937 (s) 893 (m) 950 (sh) 980 (s) 956 (m) 848 (m).  (Mo=O) Mo 7 O 24 6 - - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: (Nb-O)    (Nb=O)

(Nb-O) (Nb=O)

570 (m)942 (s)919 (s)

(Te-O)644 (s)

(V=O) [VO3]nn-944 (s)

900 (sh)

n (Mo=O) Mo8O264- 955 (sh)

(Mo=O) Mo7O246- 937 (s)

893 (m)

assignment [cm-1]

7 MoO42- + 8 H+ [Mo7O24]6- + 4 H2O

8 MoO42- + 12 H+ [Mo8O26]4- + 6 H2O

Investigation of the structural Investigation of the structural transformationstransformations during synthesis of MoVTeNb mixed oxide catalysts during synthesis of MoVTeNb mixed oxide catalystsP. BeatoP. Beato11, A. Blume, A. Blume11, O. Timpe, O. Timpe11, A. Trunschke, A. Trunschke11, R. Schlögl, R. Schlögl11, , E. OmarE. Omar22, Q. Basher, Q. Basher22, L. Mohd Salim, L. Mohd Salim22 , S.B.A. Hamid , S.B.A. Hamid22

11Department of Inorganic Chemistry, Fritz Haber Institute of the MPG, Faradayweg 4-6; DE - 14195 Berlin, Germany, Department of Inorganic Chemistry, Fritz Haber Institute of the MPG, Faradayweg 4-6; DE - 14195 Berlin, Germany, http://www.fhi-berlin.mpg.de22University Malaya, 50603 Kuala Lumpur, MalaysiaUniversity Malaya, 50603 Kuala Lumpur, Malaysia

2 Theta [°]

5 10 20 30 40 50 60 70

spray-dried

calcined 1h air, 275°C

activated 2h He, 600°C

*simulation based on the model of P. De Santo et al. Z. Kristallogr. 219 (2004) 152.

5 10 15 20 25 30 35 40 45 50 55 60 65 70

2theta [°]

(a)

(b)

(c)

(d)

(e)

measured

calculated: MoV0.21Te0.22Nb0.11O40

60%M1 + 40%M2

M1*

M2*

a-b

catalyst MoV0.3Te0.23Nb0.125Ox after activation

M2M1

(NH4)6Mo7O24 (0.126 mol Mo) / 100 ml H2O

T = 80°C / pH = 5.0

NH4VO3 (0.038 mol V)(powder)

MoV0.30

T = 80°C / pH = 5.5

Te(OH)6 (0.029 mol Te)(powder)

(NH4)[NbO(C2O4)2(H2O)2] 3H2O (0.016 mol Nb) / 30

ml H2OT = 23°C / pH = 0.8MoV0.30Te0.23Nb0.13

(slurry)T = 25°C / pH = 3.2

MoV0.30Te0.23

T = 80°C / pH = 5.0

MoV0.30Te0.23Nb0.13

(precursor)

cool down to 40°C

600°C (2 °C/min) / 2 h He flow

MoV0.30Te0.23Nb0.13

(calcined)275°C (10°C/min) / 1h static air

MoV0.30Te0.23Nb0.13

(activated)

spray-drying

Introduction & MotivationIntroduction & MotivationTo understand the physico-chemical characteristics of a catalyst a detailed knowledge of the active structure is essential. However, heterogeneous catalysts represent a class of material of great complexity and the strategy of catalyst preparation in industry in part still remains to trial and error, leading to “mysterious” compositions and making a structure-activity analysis of the final catalyst almost impossible. Traces of many elements are present in most of the working molybdenum oxide catalysts in industry and in many cases it is still unclear whether these additional metals form active centres themselves, or act only as structural promoters for an active molybdenum oxide phase. By following each step in the preparation of a complex oxide catalyst, the structural transformations leading to the final active material can be revealed. Only if we understand the essential structural characteristics of a good catalyst we can develop new synthetic strategies to further improve systems, that are already pushed to the activity and selectivity limits after years of trial and error.

800 825 850 875 900 925 950 975 1000 1025

MoVTe

inte

nsity

[a.u

.]

Raman shift [cm-1]

MoVTeNb

12

3

4

MoVTeNb

0.1250.200.200.130.22Nb

0.230.270.250.240.28Te

0.30.350.280.330.30V

11111Mo

synthesisspot 4spot 3spot 2spot 1

Molar ratios of elements normalized to Mo from EDX

10 15 20 25 30 35 40

2Theta (°)

450oC

475oC

500oC

525oC

550oC

575oC

He, 2°C/min:

M1M2MoO3

PtTePt3Te4

300 400 500 600 700 800 900

1E-11

1E-10

Wei

ght [

% o

f in

itia

l]

Temperature [K]

Ion

curr

ent [

A]

m/e 17 m/e 18 m/e 28 m/e 30 m/e 44

DS

C s

igna

l [µ

volt

s/m

g]

92

94

96

98

100 Exo

-0,050,000,050,100,150,200,250,30

300 350 400 450 500 550

1E-11

1E-10

1E-9 DSC

sig

nal

[µvo

lts/m

g]

Wei

ght [

% o

f in

itial

]

m/e 17 m/e 18 m/e 30 m/e 44Io

n cu

rren

t [A

]

Temperature [K]

80

85

90

95

100

Exo

-0,20-0,15-0,10-0,050,000,050,10

0.080.1300.090.220.120.11Nb

0.420.1210.320.140.390.12Te

0.320.1500.330.310.350.28V

1101111Mo

M2M1spot 5spot 4spot 3spot 2

spot 1

Molar ratio of elements normalized to Mo from EDX

1 2 34

5XPS: Mo1V0.19Te0.19Nb0.14Ox

800 850 900 950 1000 1050

MoVTe,T=80°C,pH=5.0

Raman shift [cm-1]

MoV,T=80°C,pH=5.5

inte

nsity

[a.u

.]

I.L. Botto et al. Mater. Chem. Phys.47 (1997) 37.

TeMo6 = 0.126 mol Mo + 0.021 mol Te+ 0.008 mol residual Te(OH)6

(V=O) [HxV10O28](6-x)-

or (M=O) [TeMo5VO24]7-

(Mo=O) [TeMo6O24]6-

1000 (m)975 (vw)

937 (s)899 (m)

(Mo=O) Mo7O246-

(V=O) [VO3]nn-

(V=O) [V10O28]6-

(V-O-V) or (Mo-O-V)

937 (s)893 (m)950 (sh)

980 (s)956 (m)

848 (m)

assignment [cm-1]

ConclusionsConclusionsAn Anderson-type molybdo-tellurate is formed in the initial ternary MoVTe solution. This structural module is preserved in the spray-dried material. Hence, the role of tellurium in the MoVTeNb synthesis could be described as a structural promoter that arranges molybdenum and tellurium by forming the stable Anderson phase. This close contact of Mo and Te is fundamental for the formation of the required mixed oxide phases during calcination because it presumably prevents the formation of larger amounts of undesirable MoO2 and MoO3. However, the Raman spectra have shown that large fractions of vanadium and niobium as well as a small amount of tellurium are not transformed in solution and therefore hinder, after calcination and thermal treatment, the formation of a homogeneous phase composition. Some of the phases observed might be either inactive, or favour deep oxidation. The contribution of amorphous components existing on top and in between the crystalline particles has to be taken into consideration as well. Therefore, there remains much more room for optimization. In fact, a novel strategy for a knowledge based preparation routine is likely to yield better material with increased activity for partial oxidation catalysis. Finally, the stability of a specific phase under reaction conditions must be accounted for when brought into discussion.